Glaucoma Drainage Devices

Advances in Design and Surgical Techniques
  • Cheryl L. Cullen
Part of the Ophthalmology Research book series (OPHRES)

Abstract

Glaucoma is a group of optic neuropathies that share a slowly progressive degeneration of the retinal ganglion cells and their axons, resulting in a distinct appearance of the optic disc and a concurrent pattern of vision loss (1). Glaucoma is the second leading cause of blindness in the world with estimates that it affects 66.8 million individuals worldwide (2); at least 6.7 million of these affected people suffer from complete blindness (2). The vision loss associated with this disease is irreversible, yet the biological basis of glaucoma and the factors contributing to its progression have not been completely elucidated (1). Intraocular pressure (IOP) is the only proven treatable risk factor in glaucoma (1). As such, glaucoma is theoretically defined as a progressive optic neuropathy as a result of elevation of IOP above the physiological level of individuals (3). The upper limit of “normal” IOP, based on a large number of subjects, is internationally accepted as being approx 21 mmHg as a standard in the clinical diagnosis of glaucoma (3).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet 2004;363:1711–1720.PubMedCrossRefGoogle Scholar
  2. 2.
    Quigley HA. Number of people with glaucoma worldwide. Br J Ophthalmol 1996;80:389–393.PubMedCrossRefGoogle Scholar
  3. 3.
    Shiose Y. Intraocular pressure: new perspectives. Surv Ophthalmol 1990;34:413–435.PubMedCrossRefGoogle Scholar
  4. 4.
    Gelatt KN, Brooks DE, Samuelson DA. Comparative glaucomatology. I: The spontaneous glaucomas. J Glaucoma 1998;7:187–201.PubMedGoogle Scholar
  5. 5.
    Bellezza AJ, Rintalan CJ, Thompson HW, Downs JC, Hart RT, Burgoyne CF. Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma. Invest Ophthalmol Vis Sci 2003;44:623–637.PubMedCrossRefGoogle Scholar
  6. 6.
    Stefansson E, Pedersen DB, Jensen PK, et al. Optic nerve oxygenation. Prog Retin Eye Res 2005;24:307–332.PubMedCrossRefGoogle Scholar
  7. 7.
    Dreyer EB, Zurakowski D, Schumer RA, Podos SM, Lipton SA. Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Arch Ophthalmol 1996;114:299–305.PubMedGoogle Scholar
  8. 8.
    Yan X, Tezel G, Wax MB, Edward DP. Matrix metalloproteinases and tumor necrosis factor alpha in glaucomatous optic nerve head. Arch Ophthalmol 2000;118:666–673.PubMedGoogle Scholar
  9. 9.
    Sacca S. Nitric oxide as a mediator of glaucoma pathogenesis. Med Sci Monit 2002;8:LE33–LE34.PubMedGoogle Scholar
  10. 10.
    Tezel G, Edward DP, Wax MB. Serum autoantibodies to optic nerve head glycosaminoglycans in patients with glaucoma. Arch Ophthalmol 1999;117:917–924.PubMedGoogle Scholar
  11. 11.
    Yucel YH, Zhang Q, Weinreb RN, Kaufman PL, Gupta N. Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog Retin Eye Res 2003;22:465–481.PubMedCrossRefGoogle Scholar
  12. 12.
    Tielsch JM, Sommer A, Witt K, Katz J, Royall RM. Blindness and visual impairment in an American urban population. The Baltimore Eye Survey Arch Ophthalmol 1990;108:286–290.Google Scholar
  13. 13.
    Lim KS, Allan BDS, Lloyd AW, Muir A, Khaw PT. Glaucoma drainage devices; past, present, and future. Br J Ophthalmol 1998;82:1083–1089.PubMedGoogle Scholar
  14. 14.
    Khaw PT, Shah P, Elkington AR. Glaucoma—2: treatment. Br Med J 2004;328:156–158.CrossRefGoogle Scholar
  15. 15.
    Chen CW, Huang HT, Bair JS, Lee CC. Trabeculectomy with simultaneous topical application of mitomycin-C in refractory glaucoma. J Ocul Pharmacol 1990;6:175–182.PubMedGoogle Scholar
  16. 16.
    Smith MF, Sherwood MB, Doyle JW, Khaw PT. Results of intraoperative 5-fluorouracil supplementation on trabeculectomy for open-angle glaucoma. Am J Ophthalmol 1992;114:737–741.PubMedGoogle Scholar
  17. 17.
    Assaad MH, Baerveldt G, Rockwood EJ. Glaucoma drainage devices: pros and cons. Curr Opin Ophthalmol 1999;10:147–153.PubMedCrossRefGoogle Scholar
  18. 18.
    Hong CH, Arosemena A, Zurakowski D, Ayyala RS. Glaucoma drainage devices: a systematic literature review and current controversies. Surv Ophthalmol 2005;50:48–60.PubMedCrossRefGoogle Scholar
  19. 19.
    Rodrigues AM, Corpa MV, Mello PA, de Moura CR. Results of the Susanna implant in patients with refractory primary congenital glaucoma. J AAPOS 2004;8:576–579.PubMedGoogle Scholar
  20. 20.
    Muckley ED, Lehrer RA. Late-onset blebitis/endophthalmitis: incidence and outcomes with mitomycin C. Optom Vis Sci 2004;81:499–504.PubMedCrossRefGoogle Scholar
  21. 21.
    Rollett M, Moreau M. Traitement de hypopyon par le drainage capillary de la chambre anterieure. Rev Gen Ophtalmol 1906;25:481–489.Google Scholar
  22. 22.
    Rollett M, Moreau M. Le drainage au crin de la chambre anterieure contre l’hypertonie et la douleur. Rev Gen Ophtalmol 1907;26:289–292.Google Scholar
  23. 23.
    Zorab A. The reduction of tension in chronic glaucoma. Ophthalmoscope 1912;10:258–261.Google Scholar
  24. 24.
    Stefansson J. An operation for glaucoma. Am J Ophthalmol 1925;8:681–693.Google Scholar
  25. 25.
    Muldoon WE, Ripple PH, Eilder HC. Platinum implant in glaucoma surgery. Arch Ophthalmol 1951;45:666–672.Google Scholar
  26. 26.
    Row H. Operation to control glaucoma:preliminary report. Arch Ophthalmol 1934;12:325–329.Google Scholar
  27. 27.
    Trancosco MU. Use of tantalum implants for inducing a premanent hypotony in rabbits’ eyes. Am J Ophthalmol 1949;32:499–508.Google Scholar
  28. 28.
    Gibson G. Transcleral lacrimal canaliculus transplants. Trans Am Ophthalmol Soc 1942;40:499–515.PubMedGoogle Scholar
  29. 29.
    Bick MW. Use of tantalum for ocular drainage. Arch Ophthalmol 1949;42:373–388.Google Scholar
  30. 30.
    Bock RH. Subconjunctival drainage of the anterior chamber by a glass seton. Am J Ophthalmol 1950;33:929.PubMedGoogle Scholar
  31. 31.
    Losche W. Vorschlage zur Verbesserung der Zyklodialyse. Klin Monatsbl Augenheilkd 1952;121:715–716.Google Scholar
  32. 32.
    Bietti GB. The present state of the use of plastics in eye surgery. Acta Ophthalmol (Copenh) 1955;33:337–370.Google Scholar
  33. 33.
    La Rocca V. Int. Cong. Ophthalmol (Brussels) 1958.Google Scholar
  34. 34.
    Lee PF, Wong WT. Aqueous-venous shunt for glaucoma: report on 15 cases. Ann Ophthalmol 1974;6:1083–1088.PubMedGoogle Scholar
  35. 35.
    Mascati NT. A new surgical approach for the control of a class of glaucomas. Int Surg 1967;47:10–15.PubMedGoogle Scholar
  36. 36.
    Molteno AC. New implant for drainage in glaucoma. Clinical trial Br J Ophthalmol 1969;53:606–615.Google Scholar
  37. 37.
    Molteno AC. New implant for drainage in glaucoma. Animal trial Br J Ophthalmol 1969;53:161–168.CrossRefGoogle Scholar
  38. 38.
    Molteno AC, Straughan JL, Ancker E. Long tube implants in the management of glaucoma. S Afr Med J 1976;50:1062–1066.PubMedGoogle Scholar
  39. 39.
    Krupin T, Podos SM, Becker B, Newkirk JB. Valve implants in filtering surgery. Am J Ophthalmol 1976;81:232–235.PubMedGoogle Scholar
  40. 40.
    Ayyala RS, Zurakowski D, Smith JA, et al. A clinical study of the Ahmed glaucoma valve implant in advanced glaucoma. Ophthalmology 1998;105:1968–1976.PubMedCrossRefGoogle Scholar
  41. 41.
    Molteno AC. The optimal design of drainage implants for glaucoma. Trans Ophthalmol Soc NZ 1981;33:39–41.Google Scholar
  42. 42.
    Britt MT, LaBree LD, Lloyd MA, et al. Randomized clinical trial of the 350-mm2 versus the 500-mm2 Baerveldt implant: longer term results: is bigger better? Ophthalmology 1999;106:2312–2318.PubMedCrossRefGoogle Scholar
  43. 43.
    Smith MF, Sherwood MB, McGorray SP. Comparison of the double-plate Molteno drainage implant with the Schocket procedure. Arch Ophthalmol 1992;110:1246–1250.PubMedGoogle Scholar
  44. 44.
    Freedman J. Clinical experience with the Molteno dual-chamber single-plate implant. Ophthalmic Surg 1992;23:238–241.PubMedGoogle Scholar
  45. 45.
    Baerveldt G, Chou JS, Longren B. Comparison of the Baerveldt glaucoma implant with bioseal to the Baerveldt implant in rabbits. Invest Ophthalmol Vis Sci 1997;38:52.Google Scholar
  46. 46.
    Price FW Jr., Whitson WE. Polypropylene ligatures as a means of controlling intraocular pressure with Molteno implants. Ophthalmic Surg 1989;20:781–783.PubMedGoogle Scholar
  47. 47.
    Egbert PR, Lieberman MF. Internal suture occlusion of the Molteno glaucoma implant for the prevention of postoperative hypotony. Ophthalmic Surg 1989;20:53–56.PubMedGoogle Scholar
  48. 48.
    Latina MA. Single stage Molteno implant with combination internal occlusion and external ligature. Ophthalmic Surg 1990;21:444–446.PubMedGoogle Scholar
  49. 49.
    Schocket SS, Lakhanpal V, Richards RD. Anterior chamber tube shunt to an encircling band in the treatment of neovascular glaucoma. Ophthalmology 1982;89:1188–1194.PubMedGoogle Scholar
  50. 50.
    White TC. Clinical-Results of Glaucoma Surgery Using the White Glaucoma Pump Shunt. Ann Ophthalmol 1992;24:365–373.PubMedGoogle Scholar
  51. 51.
    White TC. A new implantable ocular pressure relief device. A preliminary rep Glaucoma 1985;7:289–294.Google Scholar
  52. 52.
    Hitchings RA, Joseph NH, Sherwood MB, Lattimer J, Miller M. Use of one-piece valved tube and variable surface area explant for glaucoma drainage surgery. Ophthalmology 1987;94:1079–1084.PubMedGoogle Scholar
  53. 53.
    Joseph NH, Sherwood MB, Trantas G, Hitchings RA, Lattimer L. A one-piece drainage system for glaucoma surgery. Trans Ophthalmol Soc UK 1986;105(Pt 6):657–664.PubMedGoogle Scholar
  54. 54.
    Susanna R Jr. Modifications of the Molteno implant and implant procedure. Ophthalmic Surg 1991;22:611–613.PubMedGoogle Scholar
  55. 55.
    Nyska A, Glovinsky Y, Belkin M, Epstein Y. Biocompatibility of the Ex-PRESS miniature glaucoma drainage implant. J Glaucoma 2003;12:275–280.PubMedCrossRefGoogle Scholar
  56. 56.
    Kaplan-Messas A, Traverso CE, Glovinski Y, et al. The ExPRESS miniature glaucoma implant: Intermediate results of a prospective multi-center study. Invest Ophthalmol Vis Sci 2001;42:S552.Google Scholar
  57. 57.
    Wamsley S, Moster MR, Rai S, Alvim HS, Fontanarosa J. Results of the use of the Ex-PRESS miniature glaucoma implant in technically challenging, advanced glaucoma cases: a clinical pilot study. Am J Ophthalmol 2004;138:1049–1051.PubMedCrossRefGoogle Scholar
  58. 58.
    Traverso CE, De Feo F, Messas-Kaplan A, et al. Long term effect on IOP of a stainless steel glaucoma drainage implant (Ex-PRESS) in combined surgery with phacoemulsification. Br J Ophthalmol 2005;89:425–429.PubMedCrossRefGoogle Scholar
  59. 59.
    Ayyala RS, Michelini-Norris B, Flores A, Haller E, Margo CE. Comparison of different biomaterials for glaucoma drainage devices: part 2. Arch Ophthalmol 2000;118:1081–1084.PubMedGoogle Scholar
  60. 60.
    Bentley E, Nasisse MP, Glover T, Nelms S. Implantation of filtering devices in dogs with glaucoma: preliminary results in 13 eyes. Vet Comp Ophthalmol 1996;6:243–246.Google Scholar
  61. 61.
    Glover TL, Nasisse MP, Davidson MG. Effects of topically applied mitomycin-C on intraocular pressure, facility of outflow, and fibrosis after glaucoma filtration surgery in clinically normal dogs. Am J Vet Res 1995;56:936–940.PubMedGoogle Scholar
  62. 62.
    Tahery MM, Lee DA. Review: pharmacologic control of wound healing in glaucoma filtration surgery. J Ocul Pharmacol 1989;5:155–179.PubMedGoogle Scholar
  63. 63.
    Pasquale LR, Dorman-Pease ME, Lutty GA, Quigley HA, Jampel HD. Immunolocalization of TGF-beta 1, TGF-beta 2, and TGF-beta 3 in the anterior segment of the human eye. Invest Ophthalmol Vis Sci 1993;34:23–30.PubMedGoogle Scholar
  64. 64.
    Kostick AM, Grahn BH, Murphy PH, Romanchuk KG. Comparison of aqueous humor TGF-B-2 from cataract and glaucoma patients. Invest Ophthalmol Vis Sci 1996;37:717.Google Scholar
  65. 65.
    Kostick AM, Grahn BH, Murphy PH, Romanchuk KG. Analysis of Growth-Factors in Aqueous-Humor from Glaucoma and Cataract Patients. Invest Ophthalmol Vis Sci 1995;36:S726.Google Scholar
  66. 66.
    Tripathi RC, Li J, Chan WF, Tripathi BJ. Aqueous humor in glaucomatous eyes contains an increased level of TGF-beta 2. Exp Eye Res 1994;59:723–727.PubMedCrossRefGoogle Scholar
  67. 67.
    Grahn BH, Wilcock B, Hayes MA. Demonstration of mediators of fibrous and fibrovascular reactions in the canine, feline and equine eye. Vet Pathol 1992;25:216.Google Scholar
  68. 68.
    Cullen CL, Allen AL, Grahn BH. Anterior chamber to frontal sinus shunt for the diversion of aqueous humor: a pilot study in four normal dogs. Vet Ophthalmol 1998;1:31–39.PubMedCrossRefGoogle Scholar
  69. 69.
    Cullen CL. Cullen frontal sinus valved glaucoma shunt: preliminary findings in dogs with primary glaucoma. Vet Ophthalmol 2004;7:311–318.PubMedCrossRefGoogle Scholar
  70. 70.
    Cullen CL, Corcoran KA, Bartoe J, et al. Preliminary findings from the multicenter clinical study group evaluating the Cullen canine frontal sinus valved glaucoma shunt. Vet Ophthalmol 2003;6:356.CrossRefGoogle Scholar
  71. 71.
    Dohlman CH, Grosskreutz CL, Dudenhoefer EJ, Rubin PA. Can a glaucoma shunt tube be safely extended to the lacrimal sac or the ethmoid sinus in keratoprosthesis patients? Digital J of Ophthalmol 2002;9:http://www.djo.harvard.edu/site.php?url/physicians/oa/361&PHPSESSIDba3e304919c94c495374a52f318ef18d.Google Scholar
  72. 72.
    Rubin PA, Chang E, Bernardino CR, Hatton MP, Dohlman CH. Oculoplastic technique of connecting a glaucoma valve shunt to extraorbital locations in cases of severe glaucoma. Ophthal Plast Reconstr Surg 2004;20:362–367.PubMedCrossRefGoogle Scholar
  73. 73.
    Marcet MM, Woog JJ, Bellows AR, Mandeville JT, Maltzman JS, Khan J. Orbital complications after aqueous drainage device procedures. Ophthal Plast Reconstr Surg 2005;21:67–69.PubMedCrossRefGoogle Scholar
  74. 74.
    Joos KM, Lavina AM, Tawansy KA, Agarwal A. Posterior repositioning of glaucoma implants for anterior segment complications. Ophthalmology 2001;108:279–284.PubMedCrossRefGoogle Scholar
  75. 75.
    Gedde SJ, Scott IU, Tabandeh H, et al. Late endophthalmitis associated with glaucoma drainage implants. Ophthalmology 2001;108:1323–1327.PubMedCrossRefGoogle Scholar
  76. 76.
    Greenfield DS, Tello C, Budenz DL, Liebmann JM, Ritch R. Aqueous misdirection after glaucoma drainage device implantation. Ophthalmology 1999;106:1035–1040.PubMedCrossRefGoogle Scholar
  77. 77.
    Tuli SS, WuDunn D, Ciulla TA, Cantor LB. Delayed suprachoroidal hemorrhage after glaucoma filtration procedures. Ophthalmology 2001;108:1808–1811.PubMedCrossRefGoogle Scholar
  78. 78.
    Zalta AH, Sweeney CP, Zalta AK, Kaufman AH. Intracameral tissue plasminogen activator use in a large series of eyes with valved glaucoma drainage implants. Arch Ophthalmol 2002;120:1487–1493.PubMedGoogle Scholar
  79. 79.
    Lavina AM, Creasy JL, Tsai JC. Orbital cellulitis as a late complication of glaucoma shunt implantation. Arch Ophthalmol 2002;120:849–851.PubMedGoogle Scholar
  80. 80.
    Danesh-Meyer HV, Spaeth GL, Maus M. Cosmetically significant proptosis following a tube shunt procedure. Arch Ophthalmol 2002;120:846–847.PubMedGoogle Scholar
  81. 81.
    Oh KT, Alward WL, Kardon RH. Myositis associated with a Baerveldt glaucoma implant. Am J Ophthalmol 1999;128:375–376.PubMedCrossRefGoogle Scholar
  82. 82.
    Nazemi PP, Chong LP, Varma R, Burnstine MA. Migration of intraocular silicone oil into the subconjunctival space and orbit through an Ahmed glaucoma valve. Am J Ophthalmol 2001;132:929–931.PubMedCrossRefGoogle Scholar
  83. 83.
    Yoon PS, Singh K. Update on antifibrotic use in glaucoma surgery, including use in trabeculectomy and glaucoma drainage implants and combined cataract and glaucoma surgery. Curr Opin Ophthalmol 2004;15:141–146.PubMedCrossRefGoogle Scholar
  84. 84.
    Trible JR, Brown DB. Occlusive ligature and standardized fenestration of a Baerveldt tube with and without antimetabolites for early postoperative intraocular pressure control. Ophthalmology 1998;105:2243–2250.PubMedCrossRefGoogle Scholar
  85. 85.
    Jacob JT, LaCour OJ, Burgoyne CF. Slow release of the antimetabolite 5-fluorouracil (5-FU) from modified Baerveldt glaucoma drains to prolong drain function. Biomaterials 2001;22:3329–3335.PubMedCrossRefGoogle Scholar
  86. 86.
    Gelatt KN, Brooks DE, Samuelson DA. Comparative glaucomatology. II: The experimental glaucomas. J Glaucoma 1998;7:282–294.PubMedGoogle Scholar
  87. 87.
    Hakanson NW. Extraorbital diversion of aqueous humour in the treatment of glaucoma in the dog: a pilot study including two recipient sites. Vet Comp Ophthalmol 1996;6:82–88, 90.Google Scholar
  88. 88.
    Bhatia LS, Chen TC. New Ahmed valve designs. Int Ophthalmol Clin 2004;44:123–138.PubMedCrossRefGoogle Scholar
  89. 89.
    Coleman AL, Hill R, Wilson MR, et al. Initial clinical experience with the Ahmed Glaucoma Valve implant. Am J Ophthalmol 1995;120:23–31.PubMedGoogle Scholar
  90. 90.
    Boswell CA, Noecker RJ, Mac M, Snyder RW, Williams SK. Evaluation of an aqueous drainage glaucoma device constructed of ePTFE. J Biomed Mater Res 1999;48:591–595.PubMedCrossRefGoogle Scholar
  91. 91.
    Pandya AD, Rich C, Eifrig DE, Hanker J, Peiffer RL. Experimental evaluation of a hydroxylapatite reservoir tube shunt in rabbits. Ophthalmic Surg Lasers 1996;27:308–314.PubMedGoogle Scholar
  92. 92.
    Lim KS. Cell and protein adhesion studies in glaucoma drainage device development. The AGFID project team. Br J Ophthalmol 1999;83:1168–1171.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa NJ 2007

Authors and Affiliations

  • Cheryl L. Cullen
    • 1
  1. 1.Faculty of Veterinary MedicineUniversity of CalgaryCalgaryCanada

Personalised recommendations