Equality of the Sexes? Parent-of-Origin Effects on Transcription and de novo Mutations

  • Rivka L. GlaserEmail author
  • Ian M. Morison


Two main categories of the parent-of-origin effects are reviewed in this chapter: parent-of-origin effects on transcription, or genomic imprinting, and parent-of-origin effects on the development of de novo mutations. Each type of parent-of-origin effect is described, and the mechanisms that contribute to each discussed. The parent-of-origin effect database provides a catalog reports of genomic imprinting and related effects as well as reports of the parental origin of spontaneous mutations. This database provides a useful tool for finding genes, diseases, or traits that exhibit a parent-of-origin effect in humans and animals, conducting comparative analyses of the imprinted genes among different species, and examining the role of parent-of-origin effects for different types of spontaneous mutations in human genes.


Parental origin Genomic imprinting de novo mutations Transcription 

Suggested Reading

Introduction to the Range of Parent-of-Origin Effects

  1. 1.
    Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nature Rev Genet. 2001;2:21–32.PubMedCrossRefGoogle Scholar
  2. 2.
    Wood AJ, Oakey RJ. Genomic imprinting in mammals: emerging themes and established theories. PLoS Genet. 2006;2: e147.PubMedCrossRefGoogle Scholar
  3. 3.
    Glaser RL, Jabs EW. Dear old dad. Sci Aging Knowl Environ. 2004;3 re1.Google Scholar
  4. 4.
    Crow JF. The origins, patterns and implications of human spontaneous mutation. Nature Rev Genet. 2000;1:40–47.PubMedCrossRefGoogle Scholar
  5. 5.
    Bittel DC, Butler MG. Prader-Willi syndrome: clinical genetics, cytogenetics and molecular biology. Expert Rev Mol Med. 2005;7:1–20.PubMedCrossRefGoogle Scholar
  6. 6.
    Lalande M, Calciano MA. Molecular epigenetics of Angelman syndrome. Cell Mol Life Sci. 2007;64:947–960.PubMedCrossRefGoogle Scholar
  7. 7.
    Enklaar T, Zabel BU, Prawitt D. Beckwith-Wiedemann syndrome: multiple molecular mechanisms. Expert Rev Mol Med. 2006;8:1–19.PubMedCrossRefGoogle Scholar
  8. 8.
    Tycko B, Morison IM. Physiological functions of imprinted genes. J Cell Phys. 2002;192:245–258.CrossRefGoogle Scholar
  9. 9.
    Georges M, Charlier C, Cockett N. The callipyge locus: evidence for the trans interaction of reciprocally imprinted genes. Trends Genet. 2003;19:248–252.PubMedCrossRefGoogle Scholar
  10. 10.
    Wilkin DJ, Szabo R, Cameron S, et al. Mutations in fibroblast growth factor receptor 3 in sporadic cases of achondroplasia occur exclusively on the paternally-derived chromosome. Am J Hum Genet. 1998;63:711–716.PubMedCrossRefGoogle Scholar
  11. 11.
    Moloney DM, Slaney DF, Oldridge M, et al. Exclusive paternal origin of new mutations in Apert syndrome. Nat Genet. 1996;13:48–53.PubMedCrossRefGoogle Scholar
  12. 12.
    Glaser RL, Jiang W, Boyadjiev S, et al. Paternal origin of FGFR2 mutations in sporadic cases of Crouzon syndrome and Pfeiffer syndrome. Am J Hum Genet. 2000;66:768–777.PubMedCrossRefGoogle Scholar
  13. 13.
    Petersen MB, Mikkelsen M. Nondisjunction in trisomy 21: Origin and mechanisms. Cytogenet Cell Genet. 2000;91:199–203.PubMedCrossRefGoogle Scholar
  14. 14.
    Morison IM, Reeve AE. A catalogue of imprinted genes and parent-of-origin effects in humans and animals. Hum Mol Genet. 1998;7:1599–1609.PubMedCrossRefGoogle Scholar
  15. 15.
    Morison IM, Paton CJ, Cleverly SD. The imprinted gene and parent-of-origin effect database. Nucleic Acids Res. 2001;29:275–276.PubMedCrossRefGoogle Scholar
  16. 16.
    Morison IM, Ramsay JP, Spencer HG. A census of mammalian imprinting. Trends Genet. 2005;21:457–465.PubMedCrossRefGoogle Scholar
  17. 17.
    Glaser RL, Ramsay JP, Morison IM. The imprinted gene and parent-of-origin effect database now includes parental origin of de novo mutations. Nucleic Acids Res Database Issue. 2006;34:D29-D31.CrossRefGoogle Scholar
  18. 18.
    Nikaido, I, Saito, C, Mizuno, Y, Meguro, M, Bono, H, Kadomura, M, Kono, T, Morris, GA, Lyons, PA, Oshimura, M, Hayashizaki, Y, and Okazaki, Y. (2003) Discovery of imprinted transcripts in the mouse transcriptome using large-scale expression profiling. Genome Res, 13, 1402–1409.PubMedCrossRefGoogle Scholar

Imprinting Effects

  1. 19.
    Edwards CA, Ferguson-Smith AC. Mechanisms regulating imprinted genes in clusters. Curr Opin Cell Biol. 2007;19:281–289.PubMedCrossRefGoogle Scholar
  2. 20.
    Spahn L, Barlow DP. An ICE pattern crystallizes. Nat Genet. 2003;35:11–12.PubMedCrossRefGoogle Scholar
  3. 21.
    Seidl CI, Stricker SH, Barlow DP. The imprinted air ncRNA is an atypical RNAPII transcript that evades splicing and escapes nuclear export. Embo J. 2006;25:3565–3575.PubMedCrossRefGoogle Scholar
  4. 22.
    Paoloni-Giacobino A, D’Aiuto L, Cirio MC, Reinhart B, Chaillet JR. Conserved features of imprinted differentially methylated domains. Gene. 2007; Epub ahead of print.Google Scholar
  5. 23.
    Okazaki Y, Furuno M, Kasukawa T, et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature. 2002;420:563–573.PubMedCrossRefGoogle Scholar
  6. 24.
    Takagi N, Sasaki M. Preferential inactivation of the paternal derived X chromosome in the extraembryonic membranes of the mouse. Nature. 1975;256:640–642.PubMedCrossRefGoogle Scholar
  7. 25.
    Graves JA. Mammals that break the rules: genetics of marsupials and monotremes. Ann Rev Genet. 1996; 30:233–260.PubMedCrossRefGoogle Scholar
  8. 26.
    Pauler FM, Koerner MV, Barlow DP. Silencing by imprinted noncoding RNAs: is transcription the answer? Trends Genet. 2007;23:284–292.PubMedCrossRefGoogle Scholar
  9. 27.
    Lewis A, Mitsuya K, Umlauf D, et al. Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation. Nat Genet. 2004;36:1291–1295.PubMedCrossRefGoogle Scholar
  10. 28.
    Umlauf D, Goto Y, Cao R, et al. Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nat Genet. 2004;36:1296–1300.PubMedCrossRefGoogle Scholar
  11. 29.
    Le Meur E, Watrin F, Landers M, Sturny R, Lalande M, Muscatelli F. Dynamic developmental regulation of the large non-coding RNA associated with the mouse 7C imprinted chromosomal region. Dev Biol. 2005;286:587–600.PubMedCrossRefGoogle Scholar
  12. 30.
    Kurukuti S, Tiwari VK, Tavoosidana G, et al. CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc Natl Acad Sci USA. 2006;103:10684–10689.PubMedCrossRefGoogle Scholar
  13. 31.
    O’Neill MJ. The influence of non-coding RNAs on allele-specific gene expression in mammals. Hum Mol Genet. 2005;14 Suppl 1:R113–120.PubMedCrossRefGoogle Scholar
  14. 32.
    Davis E, Caiment F, Tordoir X, et al. RNAi-mediated allelic trans-interaction at the imprinted Rtl1/Peg11 locus. Curr Biol. 2005;15:743–749.PubMedCrossRefGoogle Scholar
  15. 33.
    Schule B, Albalwi M, Northrop E, et al. Molecular breakpoint cloning and gene expression studies of a novel translocation t(4;15)(q27; q11.2) associated with Prader-Willi syndrome. BMC Med Genet. 2005;6:18.PubMedCrossRefGoogle Scholar
  16. 34.
    Seitz H, Royo H, Bortolin ML, Lin SP, Ferguson-Smith AC, Cavaille J. A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Res. 2004;14:1741–1748.PubMedCrossRefGoogle Scholar
  17. 35.
    Cai X, Cullen BR. The imprinted H19 noncoding RNA is a primary microRNA precursor. Rna. 2007;13:313–316.PubMedCrossRefGoogle Scholar
  18. 36.
    Killian JK, Nolan CM, Stewart N, et al. Monotreme IGF2 expression and ancestral origin of genomic imprinting. J Exp Zool. 2001;291:205–212.PubMedCrossRefGoogle Scholar
  19. 37.
    Killian JK, Byrd JC, Jirtle JV, et al. M6P/IGF2R imprinting evolution in mammals. Mol Cell. 2000;5:707–716.PubMedCrossRefGoogle Scholar
  20. 38.
    Wang Y, Joh K, Masuko S, et al. The mouse Murr1 gene is imprinted in the adult brain, presumably due to transcriptional interference by the antisense-oriented U2af1-rs1 gene. Mol Cell Biol. 2004;24:270–279.PubMedCrossRefGoogle Scholar
  21. 39.
    Xu Y, Goodyer CG, Deal C, Polychronakos C. Functional polymorphism in the parental imprinting of the human IGF2R gene. Biochem Biophys Res Comm. 1993;197:747–754.PubMedCrossRefGoogle Scholar
  22. 40.
    Monk D, Arnaud P, Apostolidou S, et al. Limited evolutionary conservation of imprinting in the human placenta. Proc Natl Acad Sci USA. 2006;103:6623–6628.PubMedCrossRefGoogle Scholar
  23. 41.
    Killian JK, Nolan CM, Wylie AA, et al. Divergent evolution in M6P/IGF2R imprinting from the Jurassic to the Quaternary. Hum Mol Genet. 2001;10:1721–1728.PubMedCrossRefGoogle Scholar
  24. 42.
    Braidotti G, Baubec T, Pauler F, et al. The air noncoding RNA: an imprinted cis-silencing transcript. Cold Spring Harb Symp Quant Biol. 2004;69:55–66.PubMedCrossRefGoogle Scholar
  25. 43.
    Meguro M, Mitsuya K, Sui H, et al. Evidence for uni-parental, paternal expression of the human GABA(A) Receptor subunit genes, using microcell-mediated chromosome transfer. Hum Mol Genet.1997;6:2127–2133.PubMedCrossRefGoogle Scholar
  26. 44.
    Bittel DC, Kibiryeva N, Talebizadeh Z, Butler MG. Microarray analysis of gene/transcript expression in Prader-Willi syndrome: deletion versus UPD. J Med Genet, 2003;40:568–574.PubMedCrossRefGoogle Scholar
  27. 45.
    Buettner VL, Longmate JA, Barish ME, Mann JR, Singer-Sam J. Analysis of imprinting in mice with uni-parental duplication of proximal chromosomes 7 and 15 by use of a custom oligonucleotide microarray. Mamm Genome. 2004;15:199–209.PubMedCrossRefGoogle Scholar
  28. 46.
    Liljelund P, Handforth A, Homanics GE, Olsen RW. GABAA receptor beta3 subunit gene-deficient heterozygous mice show parent-of-origin and gender-related differences in beta3 subunit levels, EEG, and behavior. Brain Res Dev Brain Res. 2005;157:150–161.PubMedCrossRefGoogle Scholar
  29. 47.
    Kayashima T, Ohta T, Niikawa N, Kishino T. On the conflicting reports of imprinting status of mouse ATP10a in the adult brain: strain-background-dependent imprinting? J Hum Genet. 2003;48:492–493; author reply 494.PubMedCrossRefGoogle Scholar
  30. 48.
    Jinno Y, Yun K, Nishiwaki K, et al. Mosaic and polymorphic imprinting of the WT1 gene in humans. Nat Genet. 1994;6:305–309.PubMedCrossRefGoogle Scholar
  31. 49.
    Nishiwaki K, Niikawa N, Ishikawa M. Polymorphic and tissue-specific imprinting of the human Wilms tumor gene, WT1. Jpn J Hum Genet. 1997;42:205–211.PubMedCrossRefGoogle Scholar
  32. 50.
    Mitsuya K, Sui, Meguro M, et al. Paternal expression of WT1 in human fibroblasts and lymphocytes. Hum Mol Genet.1997;6:2243–2246.PubMedCrossRefGoogle Scholar
  33. 51.
    Dallosso AR, Hancock AL, Brown KW, Williams AC, Jackson S, Malik K. Genomic imprinting at the WT1 gene involves a novel coding transcript (AWT1) that shows deregulation in Wilms' tumours. Hum Mol Genet. 2004;13:405–415.PubMedCrossRefGoogle Scholar
  34. 52.
    Lo HS, Wang Z, Hu Y, et al. Allelic variation in gene expression is common in the human genome. Genome Res. 2003;13:1855–1862.PubMedCrossRefGoogle Scholar

Uni-parental Disomy

  1. 53.
    Engel E. Uni-parental disomy revisited: The first twelve years. Am J Med Genet. 1993;46:670–674.PubMedCrossRefGoogle Scholar
  2. 54.
    Nicholls RD, Knoll JHM, Butler MG, Karam S, Lalande M. Genetic imprinting suggested by maternal heterodisomy in non-deletion Prader-Willi syndrome. Nature. 1989;342:281–285.PubMedCrossRefGoogle Scholar
  3. 55.
    Cattanach BM, Beechey CV. Genomic imprinting in the mouse: possible final analysis. In: Reik W, Surani A, eds. Genomic Imprinting. Oxford: New York: OUP/IRL Press, 1997:118–145.Google Scholar
  4. 56.
    Beechey CV, Cattanach BM, Blake A, Peters J. MRC Mammalian Genetics Unit, Harwell, Oxfordshire. World Wide Web Site — Mouse Imprinting Data and References 2005. cited; Available from:

Parental Effects in Genetic Linkage

  1. 57.
    Niikawa N, Ishikiriyama S, Takahashi S, et al. The Wiedemann-Beckwith syndrome: pedigree studies on five families with evidence for autosomal dominant inheritance with variable expressivity. Am J Med Genet. 1986;24:41–55.PubMedCrossRefGoogle Scholar
  2. 58.
    Davies SJ, Hughes HE. Imprinting in Albright's hereditary osteodystrophy. J Med Genet. 1993;30:101–103.PubMedCrossRefGoogle Scholar
  3. 59.
    Baysal BE, Farr JE, Rubinstein WS, et al. Fine mapping of an imprinted gene for familial nonchromaffin paragangliomas, on chromosome 11q23. Am J Hum Genet. 1997;60:121–132.PubMedGoogle Scholar
  4. 60.
    Milunsky J, DeStefano AL, Huang XL, et al. Familial paragangliomas: linkage to chromosome 11q23 and clinical implications. Am J Med Genet. 1997;72:66–70.PubMedCrossRefGoogle Scholar
  5. 61.
    Hensen EF, Jordanova ES, Van Minderhout IJ, et al. Somatic loss of maternal chromosome 11 causes parent-of-origin-dependent inheritance in SDHD-linked paraganglioma and phaeochromocytoma families. Oncogene. 2004;23:4076–4083.PubMedCrossRefGoogle Scholar
  6. 62.
    Shete S, Zhou X. Parametric approach to genomic imprinting analysis with applications to Angelman's syndrome. Hum Hered. 2005;59:26–33.PubMedCrossRefGoogle Scholar
  7. 63.
    Dudbridge F, Gusnanto A, Koeleman BP. Detecting multiple associations in genome-wide studies. Hum Genom. 2006;2:310–317.Google Scholar
  8. 64.
    Siwek M, Cornelissen SJ, Nieuwland MG, et al. Detection of QTL for immune response to sheep red blood cells in laying hens. Anim Genet. 2003;34:422–428.PubMedCrossRefGoogle Scholar
  9. 65.
    Buitenhuis AJ, Rodenburg TB, van Hierden YM, et al. Mapping quantitative trait loci affecting feather pecking behavior and stress response in laying hens. Poult Sci. 2003;82:1215–1222.PubMedGoogle Scholar
  10. 66.
    Gorlova OY, Lei L, Zhu D, et al. Imprinting detection by extending a regression-based QTL analysis method. Hum Genet. 2007;Epub ahead of print.Google Scholar
  11. 67.
    Cui Y. A statistical framework for genome-wide scanning and testing of imprinted quantitative trait loci. J Theor Biol. 2007;244:115–126.PubMedCrossRefGoogle Scholar
  12. 68.
    Savory TH. The mule. Sci Amer. 1970;223:102–109.CrossRefGoogle Scholar
  13. 69.
    Mendel GJ. Experiments in plant hybridisation. Edinburgh: Oliver & Boyd. 1965;7–51.Google Scholar

Parent-of-Origin Effects on De Novo Mutations

  1. 70.
    Weinberg W. Zur Vererbung des Zwergwuchses. Arch Rassen-u Gesell. Biol. 1912;9:710–718.Google Scholar
  2. 71.
    Vogel F and Rathenberg R. Spontaneous mutation in man. Adv Hum Genet. 1975;5:223–318.PubMedGoogle Scholar
  3. 72.
    Vogel F and Motulsky AG. Mutation: Spontaneous mutation in germ cells. In: Vogel F and Motulsky, eds. Human Genetics: Problems and Approaches, 3rd ed., New York: Springer, 1997:385–430.Google Scholar
  4. 73.
    Mørch ET. Chondrodystrophic dwards in Denmark. (Opera ex Domo Biol Hered Hum Univ Hafn Munskgaard, Copenhagen). 1941:3.Google Scholar
  5. 74.
    Crow JF. Spontaneous mutation in man. Mutat Res. 1999;43:5–9.Google Scholar
  6. 75.
    Penrose LS. Parental age in achondroplasia and mongolism. Am J Hum Genet. 1957;9:167–169.PubMedGoogle Scholar
  7. 76.
    Risch R, Reich EW, Wishnick MW and McCarthy JG. Spontaneous mutation and parental age in humans. Am J Hum Genet. 1987;41:218–248.PubMedGoogle Scholar
  8. 77.
    Zampino G, Pantaleoni F, Carta C, et al. Diversity, parental germline origin, and phenotypic spectrum of de novo HRAS missense changes in Costello syndrome. Hum Mutat. 2007;28:265–272.PubMedCrossRefGoogle Scholar
  9. 78.
    Sol-Church K, Stabley DL, Nicholson L, Gonzalez IL, Gripp KW. Paternal bias in parental origin of HRAS mutations in Costello syndrome. Hum Mutat. 2006;27:736–741.PubMedCrossRefGoogle Scholar
  10. 79.
    Rannan-Eliya SV, Taylor IB, de Heer IM, van den Ouweland AMW, Wall SA, Wilkie AOM. Paternal origin of FGFR3 mutations in Muenke-type craniosynostosis. Hum Genet. 2004;115:200–207.PubMedCrossRefGoogle Scholar
  11. 80.
    Schuffenecker I, Ginet N, Goldgar D, et al. Prevalence and parental origin of de novo RET mutations in multiple endocrine neoplasia type 2A and familial medullary thyroid carcinoma. Le Groupe d'Etude des Tumeurs a Calcitonine. Am J Hum Genet. 1997;60:233–237.PubMedGoogle Scholar
  12. 81.
    Carlson KM, Bracamontes J, Jackson CE, et al. Parent-of-origin effects in multiple endocrine neoplasia type 2B. Am J Hum Genet. 1994;55:1076–1082.PubMedGoogle Scholar
  13. 82.
    Tartaglia M, Cordeddu V, Change H, et al. Paternal germline origin and sex-ratio distortion in transmission of PTPN11 mutations in Noonan syndrome. Am J Hum Genet. 2004;75:492–497.PubMedCrossRefGoogle Scholar
  14. 83.
    Penrose LS. Parental age and mutation. Lancet. 1955;269:312–313.PubMedCrossRefGoogle Scholar
  15. 84.
    Eppig JJ, Vivieros MM, Marin-Bivens C, De La Fuente R. Regulation of mammalian oocyte maturation. In: Leung PCK and EY Adashi, eds. The Ovary. Amsterdam: Elsevier Academic Press, 2004:113–129.Google Scholar
  16. 85.
    Muller F, Rebiffé M, Taillandier A, Oury JF, Mornet E. Parental origin of the extra chromosome in prenatally diagnosed fetal trisomy 21. Hum Genet. 2000;106:340–344.PubMedCrossRefGoogle Scholar
  17. 86.
    Hertz JM, Juncker I, Persson U, et al. Detection of mutations in the COL4A5 gene by SSCP in X-linked Alport syndrome. Hum Mutat. 2001;18:141–148.PubMedCrossRefGoogle Scholar
  18. 87.
    Taillandier A, Sallinen SL, Brun-Heath I, De Mazancourt P, Serre JL, Mornet E. Childhood hypophosphatasia due to a de novo missense mutation in the tissue-nonspecific alkaline phosphatase gene. J Clin Endocrinol Metab. 2005;90:2436–2439.PubMedCrossRefGoogle Scholar
  19. 88.
    Roa BB, Garcia CA, Suter U, et al. Charcot-Marie-Tooth disease type 1A. Association with a spontaneous point mutation in the PMP22 gene. N Engl J Med. 1993;329:96–101.PubMedCrossRefGoogle Scholar
  20. 89.
    Orfali KA, Ohene-Abuakwa Y, Ball SE. Diamond Blackfan anaemia in the UK: clinical and genetic heterogeneity. Br J Haematol. 2004;125:243–252.PubMedCrossRefGoogle Scholar
  21. 90.
    Mulligan LM, Eng C, Healey CS, et al. A de novo mutation of the RET proto-oncogene in a patient with MEN 2A. Hum Mol Genet. 1994;3:1007–1008.PubMedCrossRefGoogle Scholar
  22. 91.
    Zedenius J, Wallin G, Hamberger B, Nordenskjöld M, Weber G, Larsson C. Somatic and MEN 2A de novo mutations identified in the RET proto-oncogene by screening of sporadic MTC:s. Hum Mol Genet. 1994;3:1259–1262.PubMedCrossRefGoogle Scholar
  23. 92.
    Wohllk N, Cote GJ, Bugalho MM, Ordonez N, Evans DB, Goepfert H, Khorana S, et al. Relevance of RET proto-oncogene mutations in sporadic medullary thyroid carcinoma. J Clin Endocrinol Metab. 1996;81:3740–3745.PubMedCrossRefGoogle Scholar
  24. 93.
    Eriksson M, Brown WT, Gordon LB. Recurrent de novo point mutation sin lamin A case Hutchinson-Guilford progeria syndrome. Nature. 2003;423:293–298.PubMedCrossRefGoogle Scholar
  25. 94.
    Cao H, Hegel A. LMNA is mutated in Hutchinson-Guilford progeria (MIM 176670) but not in Wiedemann-Rautenstrach progeroid syndrome (MIM 264090). J Hum Genet. 2003;48:271–274.PubMedCrossRefGoogle Scholar
  26. 95.
    Mulligan LM, Kwok JB, Healey CS, et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature. 1993;363:458–460.PubMedCrossRefGoogle Scholar
  27. 96.
    Eng C, Clayton D, Schuffenecker I. The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. International RET mutation consortium analysis. JAMA. 1996;276:1575–1579.PubMedCrossRefGoogle Scholar
  28. 97.
    Passos-Bueno MR, Wilcox WR, Jabs EW, Sertie AL, Alonso LG, Kitoh H. Clinical spectrum of fibroblast growth factor receptor mutations. Hum Mutat. 1999;14:115–125.PubMedCrossRefGoogle Scholar
  29. 98.
    Tartaglia M, Kalidas K, Shaw A, et al. PTPN11 Mutations in Noonan Syndrome: Molecular Spectrum, Genotype-Phenotype Correlation, and Phenotypic Heterogeneity. Am J Hum Genet. 2002;70:1555–1563.PubMedCrossRefGoogle Scholar
  30. 99.
    Oldridge M, Lunt PW, Zackai EH, et al. Genotype-phenotype correlation for nucleotide substitutions in the IgII-IgIII linker of FGFR2. Hum Mol Genet. 1997;6:137–143.PubMedCrossRefGoogle Scholar
  31. 100.
    Goriely A, McVean GA, van Pelt AM, et al. Gain-of-function amino acid substitutions drive positive selection of FGFR2 mutations in human spermatogonia. Proc Natl Acad Sci USA. 2005;102:6051–6056.PubMedCrossRefGoogle Scholar
  32. 101.
    Van Dissel-Emiliani FM, De Boer-Brouwer M, de Rooij DG. Effect of fibroblast growth factor-2 on Sertoli cells and gonocytes in coculture during the perinatal period. Endocrinology. 1996;137:n647–654.CrossRefGoogle Scholar
  33. 102.
    Cancilla B, Risbridger GP, Differential localization of fibroblast growth factor receptor-1, -2, -3, and -4 in fetal, immature, and adult rat testes. Biol Reprod. 1998;58:1138–1145.PubMedCrossRefGoogle Scholar
  34. 103.
    Cancilla B, Davies A, Ford-Perriss M, Risbridger GP. Discrete cell- and stage-specific localisation of fibroblast growth factors and receptor expression during testis development. J Endocrinol. 2000;64;149–159.CrossRefGoogle Scholar
  35. 104.
    Lemmon MA, Schlessinger J. Regulation of signal transduction and signal diversity by receptor oligomerization. Trends Biochem Sci. 1994;19:459–463.PubMedCrossRefGoogle Scholar
  36. 105.
    Bajpai M, Asin S, Doncel GF. Effect of tyrosine kinase inhibitors on tyrosine phosphorylation and motility parameters in human sperm. Arch Androl. 2003;49:229–246.PubMedCrossRefGoogle Scholar
  37. 106.
    Urner F, Sakkas D. Protein phosphorylation in mammalian spermatozoa. Reproduction. 2003;125:17–26.PubMedCrossRefGoogle Scholar
  38. 107.
    Asai N, Iwashita T, Matsuyama M, Takahashi M. Mechanism of activation of the ret proto-oncogene by multiple endocrine neoplasia 2A mutations. Mol Cell. Biol. 1995;15:1613–1619.PubMedGoogle Scholar
  39. 108.
    Wang Y, Spatz MK, Kannan K, et al. A mouse model for achondroplasia produced by targeting fibroblast growth factor receptor 3. Proc Natl Acad Sci. USA. 1999;96:4455–4460.PubMedCrossRefGoogle Scholar
  40. 109.
    Kannan K, Givol D. FGF receptor mutations: dimerization syndromes, cell growth suppression, and animal models. IUBMB Life. 2000;49:197–205.PubMedGoogle Scholar
  41. 110.
    Yu K, Herr AB, Waksman A, Ornitz DM. Loss of fibroblast growth factor receptor 2 ligand-binding specificity in Apert syndrome. Proc Natl Acad Sci. USA. 2000;97:14536–14541.PubMedCrossRefGoogle Scholar
  42. 111.
    Ibrahimi OA, Eliseenkova AV, Plotnikov AN, Yu K, Ornitz DM, Mohammadi M. Structural basis for fibroblast growth factor receptor 2 activation in Apert syndrome. Proc Natl Acad Sci. USA. 2001;98:7182–7187.PubMedCrossRefGoogle Scholar
  43. 112.
    Li R, Johnson AB, Salomons GS, et al. Propensity for paternal inheritance of de novo mutations in Alexander disease. Hum Genet. 2006;119:137–144.PubMedCrossRefGoogle Scholar
  44. 113.
    Twigg SR, Matsumoto K, Kidd AM, et al. The origin of EFNB1 mutations in craniofrontonasal syndrome: frequent somatic mosaicism and explanation of the paucity of carrier males. Am J Hum Genet. 2006;78:999–1010.PubMedCrossRefGoogle Scholar
  45. 114.
    Aretz S, Uhlhaas S, Caspari R, et al. Frequency and parental origin of de novo APC mutations in familial adenomatous polyposis. Eur J Hum Genet. 2004;12:52–58.PubMedCrossRefGoogle Scholar
  46. 115.
    Becker J, Schwaab R, Möller-Taube A, et al. Characterization of the factor VIII defect in 147 patients with sporadic hemophilia A: family studies indicate a mutation type-dependent sex ratio of mutation frequencies. Am J Hum Genet. 1996;58:657–670.PubMedGoogle Scholar
  47. 116.
    Ketterling RP, Vielhaber E, Li X, et al. Germline origins in the human F9 gene: frequent G:C–>A:T mosaicism and increased mutations with advanced maternal age. Hum Genet. 1999;105:629–640.PubMedCrossRefGoogle Scholar
  48. 117.
    Yin L, Seri M, Barone V, Tocco T, Scaranari M, Romeo G. Prevalence and parental origin of de novo RET mutations in Hirschsprung's disease. Eur J Hum Genet. 1996;4:356–358.PubMedGoogle Scholar
  49. 118.
    Edghill EL, Gloyn AL, Goriely A, et al. Origin of de novo KCNJ11 mutations and risk of neonatal diabetes for subsequent siblings. J Clin Endocrinol Metab. 2007;92:1773–1777.PubMedCrossRefGoogle Scholar
  50. 119.
    Stephens K, Kayes L, Riccardi VM, Rising M, Sybert VP, Pagon RA. Preferential mutation of the neurofibromatosis type 1 gene in paternally-derived chromosomes. Hum Genet. 1992;88:279–282.PubMedCrossRefGoogle Scholar
  51. 120.
    Lazaro C, Gaona A, Ainsworth P, et al. Sex differences in mutational rate and mutational mechanism in the NF1 gene in neurofibromatosis type 1 patients. Hum Genet. 1996;98:696–699.PubMedCrossRefGoogle Scholar
  52. 121.
    Jadayel D, Fain P, Upadhyaya M, et al. Paternal origin of new mutations in von Recklinghausen neurofibromatosis. Nature. 1990;343:558–559.PubMedCrossRefGoogle Scholar
  53. 122.
    Kluwe L, Mautner V, Parry DM, et al. The parental origin of new mutations in neurofibromatosis 2. Neurogenetics. 2000;3:17–24.PubMedCrossRefGoogle Scholar
  54. 123.
    Mimault C, Giraud G, Courtois V, et al. Proteolipoprotein gene analysis in 82 patients with sporadic Pelizaeus-Merzbacher Disease: duplications, the major cause of the disease, originate more frequently in male germ cells, but point mutations do not. The Clinical European Network on Brain Demyelinating Disease. Am J Hum Genet. 1999;65:360–369.PubMedCrossRefGoogle Scholar
  55. 124.
    Amir RE, Van den Veyver IB, Schultz R, et al. Influence of mutation type and X chromosome inactivation on Rett syndrome phenotypes. Ann Neurol. 2000;47:670–679.Google Scholar
  56. 125.
    Girard M, Couvert P, Carrie A, et al. Parental origin of de novo MECP2 mutations in Rett syndrome. Eur J Hum Genet. 2001;9:231–236.PubMedCrossRefGoogle Scholar
  57. 126.
    Trappe R, Laccone F, Cobilanschi J, et al. MECP2 mutations in sporadic cases of Rett syndrome are almost exclusively of paternal origin. Am J Hum Genet. 2001;68:1093–1101.PubMedCrossRefGoogle Scholar
  58. 127.
    Böhm J, Munk-Schulenburg S, Felscher S, Kohlhase J. SALL1 mutations in sporadic Townes-Brocks syndrome are of predominantly paternal origin without obvious paternal age effect. Am J Med Genet A. 2006;140:1904–1908.PubMedGoogle Scholar
  59. 128.
    Roberts PS, Chung J, Jozwiak S, et al. SNP identification, haplotype analysis, and parental origin of mutations in TSC2. Hum Genet. 2002;111:96–101.PubMedCrossRefGoogle Scholar
  60. 129.
    Richards FM, Payne SJ, Zbar B, Affara NA, Ferguson-Smith MA, Maher ER, Molecular analysis of de novo germline mutations in the von Hippel-Lindau disease gene. Hum Mol Genet. 1995;4:2139–2143.PubMedCrossRefGoogle Scholar
  61. 130.
    Deleuze JF, Hazan J, Dhorne S, Weissenbach J, Hadchouel M. Mapping of microsatellite markers in the Alagille region and screening of microdeletions by genotyping 23 patients. Eur J Hum Genet. 1994;2(3):185–190.PubMedGoogle Scholar
  62. 131.
    Horsthemke B, Greger V, Barnert HJ, Hopping W, Passarge E. Detection of submicroscopic deletions and a DNA polymorphism at the retinoblastoma locus. Hum Genet. 1987;76:257–261.PubMedCrossRefGoogle Scholar
  63. 132.
    Ejima Y, Sasaki MS, Kaneko A, Tanooka H. Types, rates, origin and expressivity of chromosome mutations involving 13q14 in retinoblastoma patients. Hum Genet. 1988;79:118–123.PubMedCrossRefGoogle Scholar
  64. 133.
    Dryja TP, Mukai S, Petersen R, Rapaport JM, Walton D, Yandell DW. Parental origin of mutations of the retinoblastoma gene. Nature. 1989;339:556–558.PubMedCrossRefGoogle Scholar
  65. 134.
    Zhu XP, Dunn JM, Phillips RA. et al. Preferential germline mutation of the paternal allele in retinoblastoma. Nature. 1989;340:312–313.PubMedCrossRefGoogle Scholar
  66. 135.
    Petek E, Windpassinger C, Mach M, et al. Molecular characterization of a 12q22-q24 deletion associated with congenital deafness: confirmation and refinement of the DFNA25 locus. Am J Med Genet A. 2003;117:122–126.Google Scholar
  67. 136.
    Overhauser J, McMahon J, Oberlender S, et al. Parental origin of chromosome 5 deletions in the cri-du-chat syndrome. Am J Med Genet. 1990;37:83–86.PubMedCrossRefGoogle Scholar
  68. 137.
    Church DM, Bengtsson U, Nielsen KV, Wasmuth JJ, Niebuhr E. Molecular definition of deletions of different segments of distal 5p that result in distinct phenotypic features. Am J Hum Genet. 1995;56:1162–1172.PubMedGoogle Scholar
  69. 138.
    Mainardi PC, Perfumo C, Cali A, et al. Clinical and molecular characterisation of 80 patients with 5p deletion: genotype-phenotype correlation. J Med Genet. 2001;38:151–158.PubMedCrossRefGoogle Scholar
  70. 139.
    Shapira SK, McCaskill C, Northrup H, et al. Chromosome 1p36 deletions: the clinical phenotype and molecular characterization of a common newly delineated syndrome. Am J Hum Genet. 1997;61:642–650.PubMedCrossRefGoogle Scholar
  71. 140.
    Heilstedt HA, Ballif BC, Howard LA, et al. Physical map of 1p36, placement of breakpoints in monosomy 1p36, and clinical characterization of the syndrome. Am J Hum Genet. 2003;72:1200–1212.PubMedCrossRefGoogle Scholar
  72. 141.
    Petek E, Windpassinger C, Simma B, Mueller T, Wagner K, Kroisel PM. Molecular characterisation of a 15 Mb constitutional de novo interstitial deletion of chromosome 3p in a boy with developmental delay and congenital anomalies. J Hum Genet. 2003;48:283–287.PubMedGoogle Scholar
  73. 142.
    Micale MA, Haren JM, Conroy JM, Crowe CA, Schwartz S. Parental origin of De Novo chromosome 9 deletions in del(9p) syndrome. Am J Med Genet. 1995;57:79–81.PubMedCrossRefGoogle Scholar
  74. 143.
    Olivieri C, Maraschio P, Caselli D, et al. Interstitial deletion of chromosome 9, int del(9)(9q22.31–q31.2), including the genes causing multiple basal cell nevus syndrome and Robinow/brachydactyly 1 syndrome. Eur J Pediatr. 2003;162:100–103.PubMedGoogle Scholar
  75. 144.
    Hreidarsson SJ, Stamberg J. Distal monosomy 14 not associated with ring formation. J Med Genet. 1983;20:147–149.PubMedCrossRefGoogle Scholar
  76. 145.
    Telford N, Thomson DA, Griffiths MJ, Ilett S, Watt JL. Terminal deletion (14)(q32.3): a new case. J Med Genet. 1990;27:261–263.PubMedCrossRefGoogle Scholar
  77. 146.
    Elliott J, Maltby EL, Reynolds B, A case of deletion 14(q22.1→q22.3) associated with anophthalmia and pituitary abnormalities. J Med Genet. 1993;30:251–252.PubMedCrossRefGoogle Scholar
  78. 147.
    Shapira SK, Anderson KL, Orr-Urtregar A, Craigen WJ, Lupski JR, Shaffer LG. De novo proximal interstitial deletions of 14q: cytogenetic and molecular investigations. Am J Med Genet. 1994;52:44–50.PubMedCrossRefGoogle Scholar
  79. 148.
    Byth BC, Costa MT, Teshima IE, Wilson WG, Carter NP, Cox DW. Molecular analysis of three patients with interstitial deletions of chromosome band 14q31. J Med Genet. 1995;32:564–567.PubMedCrossRefGoogle Scholar
  80. 149.
    Petek E, Plecko-Startinig B, Windpassinger C, Egger H, Wagner K, Kroisel PM. Molecular characterisation of a 3.5 Mb interstitial 14q deletion in a child with several phenotypic anomalies. J Med Genet. 2003;40:e47.PubMedCrossRefGoogle Scholar
  81. 150.
    Demczuk S, Levy A, Aubry M, et al. Excess of deletions of maternal origin in the DiGeorge/velo-cardio-facial syndromes. A study of 22 new patients and review of the literature. Hum Genet. 1995;96:9–13.PubMedCrossRefGoogle Scholar
  82. 151.
    Morrow B, Goldberg R, Carlson C, et al. Molecular definition of the 22q11 deletions in velo-cardio-facial syndrome. Am J Hum Genet. 1995;56:1391–1403.PubMedGoogle Scholar
  83. 152.
    Ryan AK, Goodship JA, Wilson DI, et al. Spectrum of clinical features associated with interstitial chromosome 22q11 deletions: a European collaborative study. J Med Genet. 1997;34:798–804.PubMedCrossRefGoogle Scholar
  84. 153.
    Fokstuen S, Arbenz U, Artan S, et al. 22q11.2 deletions in a series of patients with non-selective congenital heart defects: incidence, type of defects and parental origin. Clin Genet. 1998;53:63–69.PubMedCrossRefGoogle Scholar
  85. 154.
    Matsuoka R, Kimura M, Scambler PJ, et al. Molecular and clinical study of 183 patients with conotruncal anomaly face syndrome. Hum Genet. 1998;103:70–80.PubMedCrossRefGoogle Scholar
  86. 155.
    Lu JH, Chung MY, Hwang B, Chien HP. Prevalence and parental origin in Tetralogy of Fallot associated with chromosome 22q11 microdeletion. Pediatrics. 1999;104:87–90.PubMedCrossRefGoogle Scholar
  87. 156.
    Chung MY, Lu JH, Chien HP, Hwang B. Chromosome 22q11 microdeletion in conotruncal heart defects: clinical presentation, parental origin and de novo mutations. Int J Mol Med. 2001;7:501–505.PubMedGoogle Scholar
  88. 157.
    Eliez S, Antonarakis SE, Morris MA, Dahoun SP, Reiss AL. Parental origin of the deletion 22q11.2 and brain development in velocardiofacial syndrome: a preliminary study. Arch Gen Psychiatry. 2001;58:64–68.PubMedCrossRefGoogle Scholar
  89. 158.
    Saitta SC, Harris SE, McDonald-McGinn DM, et al. Independent de novo 22q11.2 deletions in first cousins with DiGeorge/velocardiofacial syndrome. Am J Med Genet A. 2004;124:313–317.CrossRefGoogle Scholar
  90. 159.
    Bakker E, Veenema H, Den Dunnen JT, et al. Germinal mosaicism increases the recurrence risk for 'new' Duchenne muscular dystrophy mutations. J Med Genet. 1989;26:553–559.PubMedCrossRefGoogle Scholar
  91. 160.
    Chen CP, Lin SP, Wang TH, Chen YJ, Chen M, Wang W. Perinatal findings and molecular cytogenetic analyses of de novo interstitial deletion of 9q (9q22.3→q31.3) associated with Gorlin syndrome. Prenat Diagn. 2006;26:725–729.PubMedCrossRefGoogle Scholar
  92. 161.
    Youssoufian H, Kasper CK, Phillips DG, Kazazian HH, Antonarakis SE. Restriction endonuclease mapping of six novel deletions of the factor VIII gene in hemophilia A. Hum Genet. 1988;80:143–148.PubMedCrossRefGoogle Scholar
  93. 162.
    Green PM, Saad S, Lewis CM, Giannelli F. Mutation rates in humans. I. Overall and sex-specific rates obtained from a population study of hemophilia B. Am J Hum Genet. 1999;65:1572–1579.PubMedCrossRefGoogle Scholar
  94. 163.
    LeGuern E, Gouider R, Ravisé N, et al. A de novo case of hereditary neuropathy with liability to pressure palsies (HNPP) of maternal origin: a new mechanism for deletion in 17p11.2? Hum Mol Genet. 1996;5:103–106.PubMedCrossRefGoogle Scholar
  95. 164.
    Ludecke HJ, Burdiek R, Senger G, Claussen U, Passarge E, Horsthemke B. Maternal origin of a de novo chromosome 8 deletion in a patient with Langer-Giedion syndrome. Hum. Genet. 1989;82:327–329.PubMedCrossRefGoogle Scholar
  96. 165.
    Lopes J, Ravisé N, Vandenberghe A, et al. Fine mapping of de novo CMT1A and HNPP rearrangements within CMT1A-REPs evidences two distinct sex-dependent mechanisms and candidate sequences involved in recombination.Hum Mol Genet. 1998;7:141–148.PubMedCrossRefGoogle Scholar
  97. 166.
    Schwartz CE, Johnson JP, Holycross B, et al. Detection of submicroscopic deletions in band 17p13 in patients with the Miller-Dieker syndrome. Am J Hum Genet. 1988;43:597–604.PubMedGoogle Scholar
  98. 167.
    van Tuinen P, Dobyns WB, Rich DC, et al. Molecular detection of microscopic and submicroscopic deletions associated with Miller-Dieker syndrome. Am J Hum Genet. 1988;43:587–596.Google Scholar
  99. 168.
    Kayes LM, Burke W, Riccardi VM, et al. Deletions spanning the neurofibromatosis 1 gene: identification and phenotype of five patients. Am J Hum Genet. 1994;54:424–436.PubMedGoogle Scholar
  100. 169.
    Upadhyaya M, Maynard J, Osborn M, et al. Characterisation of germline mutations in the neurofibromatosis type 1 (NF1) gene. J Med Genet. 1995;32:706–710.PubMedCrossRefGoogle Scholar
  101. 170.
    Upadhyaya M, Ruggieri M, Maynard J, et al. Gross deletions of the neurofibromatosis type 1 (NF1) gene are predominantly of maternal origin and commonly associated with a learning disability, dysmorphic features and developmental delay. Hum Genet. 1998;102:591–597.PubMedCrossRefGoogle Scholar
  102. 171.
    Lopez Correa C, Brems H, Lazaro C, et al. Molecular studies in 20 submicroscopic neurofibromatosis type 1 gene deletions. Hum Mutat. 1999;14:387–393.PubMedCrossRefGoogle Scholar
  103. 172.
    Lopez Correa C, Brems H, Lazaro C, Marynen P, Legius E. Unequal meiotic crossover: a frequent cause of NF1 microdeletions. Am J Hum Genet. 2000;66:1969–1974.PubMedCrossRefGoogle Scholar
  104. 173.
    Pescucci C, Meloni I, Bruttini M, et al. Chromosome 2 deletion encompassing the MAP2 gene in a patient with autism and Rett-like features. Clin Genet. 2003;64:497–501.PubMedCrossRefGoogle Scholar
  105. 174.
    Azevedo L, Soares PA, Quental R, et al. Mutational spectrum and linkage disequilibrium patterns at the ornithine transcarbamylase gene (OTC).Ann Hum Genet. 2006;70:797–801.PubMedCrossRefGoogle Scholar
  106. 175.
    Madia FStriano P, Gennaro E, et al. Cryptic chromosome deletions involving SCN1A in severe myoclonic epilepsy of infancy. Neurology. 2006;10;67:1230–1235.CrossRefGoogle Scholar
  107. 176.
    Miyake N, Kurotaki N, Sugawara H, et al. Preferential paternal origin of microdeletions caused by prezygotic chromosome or chromatid rearrangements in Sotos syndrome. Am J Hum Genet. 2003;72:1331–1337.PubMedCrossRefGoogle Scholar
  108. 177.
    Nardmann J, Tranebjaerg L, Horsthemke B, Ludecke HJ. The tricho-rhino-phalangeal syndromes: frequency and parental origin of 8q deletions. Hum Genet. 1997;99:638–643.PubMedCrossRefGoogle Scholar
  109. 178.
    Wang MS, Schinzel A, Kotzot D, et al. Molecular and clinical correlation study of Williams-Beuren syndrome: No evidence of molecular factors in the deletion region or imprinting affecting clinical outcome. Am J Med Genet. 1999;86:34–43.PubMedCrossRefGoogle Scholar
  110. 179.
    Wieczorek D, Krause M, Majewski F, et al. Unexpected high frequency of de novo unbalanced translocations in patients with Wolf-Hirschhorn syndrome (WHS). J Med Genet. 2000;37:798–804.PubMedCrossRefGoogle Scholar
  111. 180.
    Driscoll MC, Dobkin CS, Alter BP. Gamma delta beta-thalassemia due to a de novo mutation deleting the 5' beta-globin gene activation-region hypersensitive sites. Proc Natl Acad Sci U S A. 1989;86:7470–7474.PubMedCrossRefGoogle Scholar
  112. 181.
    Chehab FF, Winterhalter KH, Kan YW. Characterization of a spontaneous mutation in beta-thalassemia associated with advanced paternal age. Blood. 1989;74:852–854.PubMedGoogle Scholar
  113. 182.
    Ripa R, Bisgaard ML, Bülow S, Nielsen FC. De novo mutations in familial adenomatous polyposis (FAP). Eur J Hum Genet. 2002;10:631–637.PubMedCrossRefGoogle Scholar
  114. 183.
    Delatycki MB, Danks A, Churchyard A, Zhou XP, Eng C. De novo germline PTEN mutation in a man with Lhermitte-Duclos disease which arose on the paternal chromosome and was transmitted to his child with polydactyly and Wormian bones. J Med Genet. 200340:e92.PubMedCrossRefGoogle Scholar
  115. 184.
    Lastella P, Sabbà C, Lenato GM, et al. Endoglin gene mutations and polymorphisms in Italian patients with hereditary haemorrhagic telangiectasia. Clin Genet. 2003;63:536–540.PubMedCrossRefGoogle Scholar
  116. 185.
    Splendore A, Jabs EW, Félix TM, Passos-Bueno MR. Parental origin of mutations in sporadic cases of Treacher Collins syndrome. Eur J Hum Genet. 2003;11:718–722.PubMedCrossRefGoogle Scholar
  117. 186.
    Antonarakis SE, Krawczak M, Cooper DN. Disease causing mutations in the human genome. Eur J Pediatr. 2000;159:S173–S178.PubMedCrossRefGoogle Scholar
  118. 187.
    Penrose LS. Parental age in achondroplasia and mongolism. Am J Hum Genet. 1957;9:167–169.PubMedGoogle Scholar
  119. 188.
    Chen CP, Chern SR, Tsai FJ. A comparison of maternal age, sex ratio and associated major anomalies among fetal trisomy 18 cases with different cell division of error. Prenat diagn. 2005;25:327–330.PubMedCrossRefGoogle Scholar

Mechanisms of Mutation

  1. 189.
    Haldane JBS. The rate of spontaneous mutation of a human gene. J Genet. 1935;31:317–326.CrossRefGoogle Scholar
  2. 190.
    Li WH, Yi S, Makova K. Male-driven evolution. Curr Opin Genet Dev. 2002;12:650–656.PubMedCrossRefGoogle Scholar
  3. 191.
    Thomas GH. High male:female ratio of germ-line mutations: an alternative explanation for postulated gestational lethality in males in X-linked dominant disorders. Am J Hum Genet. 1996;58:1364–1368.PubMedGoogle Scholar
  4. 192.
    Monk M, Boubelik M, Lehnert S. Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development. 1987;99:371–382.PubMedGoogle Scholar
  5. 193.
    Driscoll DJ, Migeon BR. Sex difference in methylation of single-copy genes in human meiotic germ cells: implications for X chromosome inactivation, parental imprinting, and origin of CpG mutations. Somatic Cell Mol Genet. 1990;16:267–282.CrossRefGoogle Scholar
  6. 194.
    D'Apice MR, Tenconi R, Mammi I, van den Ende J, Novelli G. Paternal origin of LMNA mutations in Hutchinson-Gilford progeria. Clin Genet. 2004;65:52–54.PubMedCrossRefGoogle Scholar
  7. 195.
    Tiemann-Boege I, Navidi W, Grewal R, et al. The observed human sperm mutation frequency cannot explain the achondroplasia paternal age effect. Proc Natl Acad Sci. USA. 2002;99:14952–14957.PubMedCrossRefGoogle Scholar
  8. 196.
    Cooper DN, Krawczak M, Antonarakis SE. The nature and mechanisms of human gene mutation. In: Scriver CS, Beaudet AL, Sly WS, Valle D, eds. The Metabolic and Molecular Basis of Inherited Disease, 7th ed. New York: McGraw-Hill, 1995:65–94.Google Scholar

Challenging Penrose’s Copy Error Hypothesis

  1. 197.
    Glaser RL, Broman KW, Schulman RL, Eskenazi B, Wyrobek AJ, Jabs EW. The paternal age effect in Apert syndrome is due, in part, to the increased frequency of mutations in sperm. Am J Hum Genet. 2003;73:939–947.PubMedCrossRefGoogle Scholar
  2. 198.
    Goriely A, McVean GAT, Röjmyr M, Ingemarsson B, Wilkie AOM. Evidence for selective advantage of pathogenic mutations in the male germline. Science. 2003;301:643–646.PubMedCrossRefGoogle Scholar
  3. 199.
    Wyrobek AJ, Eskenazi B, Young S, et al. Advancing age has differential effects on DNA damage, chromatin integrity, gene mutations, and aneuploidies in sperm. Proc Natl Acad Sci. USA. 2006;103:9601–9606.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Biological SciencesStevenson UniversityStevensonUSA
  2. 2.University of OtagoNew Zealand

Personalised recommendations