GoPubMed: Exploring PubMed with Ontological Background Knowledge

  • Heiko Dietze
  • Dimitra Alexopoulou
  • Michael R. Alvers
  • Liliana Barrio-Alvers
  • Bill Andreopoulos
  • Andreas Doms
  • Jörg Hakenberg
  • Jan Mönnich
  • Conrad Plake
  • Andreas Reischuck
  • Loïc Royer
  • Thomas Wächter
  • Matthias Zschunke
  • Michael Schroeder

Abstract

With the ever increasing size of scientific literature, finding relevant documents and answering questions has become even more of a challenge. Recently, ontologies—hierarchical, controlled vocabularies—have been introduced to annotate genomic data. They can also improve the question and answering and the selection of relevant documents in the literature search. Search engines such as GoPubMed.org use ontological background knowledge to give an overview over large query results and to answer questions. We review the problems and solutions underlying these next-generation intelligent search engines and give examples of the power of this new search paradigm.

Keywords

PubMed Literature search Ontology Intelligent search 

References

The Ontology

  1. 1.
    Ashburner, M., Ball, CA., Blake, JA., Botstein, D., Butler, H., Cherry, JM., Davis, AP., Dolinski, K., Dwight, SS., Eppig, JT., Harris, MA., Hill, DP., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, JC., Richardson JE., Ringwald, M., Rubin, GM., and Sherlock, G. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium, Nat. Genet. 25(1):25–29.Google Scholar
  2. 2.
    Bodenreider, O. (2004) The Unified Medical Language System (UMLS): integrating biomedical terminology, Nucleic Acids Res., 32(Database issue):D267–270.Google Scholar
  3. 3.
    Ehrler, F., Geissbhler, A., Jimeno, A. and Ruch P. (2005) Data-poor categorization and passage retrieval for gene ontology annotation in Swiss-Prot, BMC Bioinformatics, 6 Suppl 1:S23.CrossRefPubMedGoogle Scholar

Text and Literature Mining

  1. 4.
    Price, DJ (1965) Network of scientific papers, Science, 149(3683):510–515.CrossRefPubMedGoogle Scholar
  2. 5.
    Garfield, E. and Melino, G. (1997) The growth of the cell death field: an analysis from the ISI-science citation index, Cell Death Differ, 4(5):352–361.CrossRefPubMedGoogle Scholar
  3. 6.
    Boyack, KW. (2004) Mapping knowledge domains: characterizing PNAS, Proc. Natl. Acad. Sci. USA, 101 Suppl. 1, 5192–5129.CrossRefPubMedGoogle Scholar
  4. 7.
    Newman, M. (2004) Coauthorship networks and patterns of scientific collaboration, Proc. Natl. Acad. Sci. USA, 101 Suppl. 1, 5200–5205.CrossRefPubMedGoogle Scholar
  5. 8.
    Jensen, LJ., Saric, J. and Bork P. (2006) Literature mining for the biologist: from information retrieval to biological discovery, Nat. Rev. Genet., 7(2):119–129.CrossRefPubMedGoogle Scholar
  6. 9.
    Hirschman, L., Yeh, A., Blaschke, C. and Valencia, A. (2005) Overview of BioCreAtIvE: critical assessment of information extraction for biology, BMC Bioinformatics, 6 Suppl. 1, S1.CrossRefPubMedGoogle Scholar
  7. 10.
    Kim, J., Ohta, T., Tsuruoka, Y. and Tateisi, Y. (2004) Introduction to the bioentity recognition task at JNLPBA, Proceedings of the Joint Workshop on Natural Language Processing in Biomedicine and its Applications Geneva, 70–76.Google Scholar
  8. 11.
    Hakenberg, J., Royer, L., Plake, C., Strobelt, H. and Schroeder, M. (2007) Me and my friends: gene mention normalization with background knowledge, Proc. 2nd BioCreAtIvE Challenge Evaluation Workshop:141–144.Google Scholar
  9. 12.
    Finkel, J., Dingare, S., Manning, C., Nissim, M., Alex, B. and Grover, C. (2005) Exploring the boundaries: gene and protein identification in biomedical text, BMC Bioinformatics, 6 Suppl. 1, S5.CrossRefPubMedGoogle Scholar
  10. 13.
    Lee, L., Horn, F. and Cohen, F. (2007) Automatic Extraction of Protein Point Mutations Using a Graph Bigram Association. PLoS Comput. Biol., 3, e16.CrossRefPubMedGoogle Scholar
  11. 14.
    Baker, CJ. and Witte, R. (2006) Mutation Mining—A Prospector’s Tale Information Systems Frontiers, Kluwer Academic Publishers, 8, 47–57.Google Scholar

Searching

  1. 15.
    Doms, A. and Schroeder, M. (2005) GoPubMed: exploring PubMed with the Gene Ontology, Nucleic Acids Res., 33, W783–6.CrossRefPubMedGoogle Scholar
  2. 16.
    Eaton, A. (2006) HubMed: a web-based biomedical literature search interface. Nucleic Acids Res., 34, W745–747.CrossRefPubMedGoogle Scholar
  3. 17.
    Goetz, T. and von der Lieth, CW. (2005) PubFinder: a tool for improving retrieval rate of relevant PubMed abstracts. Nucleic Acids Res., 33, W774–778.CrossRefPubMedGoogle Scholar
  4. 18.
    Lewis, J., Ossowski, S., Hicks, J., Errami, M. and Garner, H. (2006) Text similarity: an alternative way to search MEDLINE, Bioinformatics, 22, 2298–2304.CrossRefPubMedGoogle Scholar
  5. 19.
    Müller, H., Kenny, E. and Sternberg, P. (2004) Textpresso: an ontology-based information retrieval and extraction system for biological literature, PLoS Biol., 2, e309.CrossRefPubMedGoogle Scholar
  6. 20.
    Perez-Iratxeta, C., Pérez, A., Bork, P. and Andrade, M. (2003) Update on XplorMed: A web server for exploring scientific literature, Nucleic Acids Res., 31, 3866–3868.CrossRefPubMedGoogle Scholar
  7. 21.
    Hoffmann, R. and Valencia, A. (2004) A gene network for navigating the literature, Nature Genetics, 36, 664.Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Heiko Dietze
    • 1
  • Dimitra Alexopoulou
    • 1
  • Michael R. Alvers
    • 1
  • Liliana Barrio-Alvers
    • 1
  • Bill Andreopoulos
    • 1
  • Andreas Doms
    • 1
  • Jörg Hakenberg
    • 1
  • Jan Mönnich
    • 1
  • Conrad Plake
    • 1
  • Andreas Reischuck
    • 1
  • Loïc Royer
    • 1
  • Thomas Wächter
    • 1
  • Matthias Zschunke
    • 1
  • Michael Schroeder
    • 2
  1. 1.Technische Universität DresdenDresdenGermany
  2. 2.BiotecTU Dresden, DresdenGermany

Personalised recommendations