Plasma Proteome Database

  • Malabika Sarker
  • G. Hanumanthu
  • Akhilesh Pandey


The plasma proteome is one of the most important proteomes from a diagnostic standpoint, as quantitative changes between normal and diseased states can be used to discover novel biomarkers for clinical diagnosis and therapeutic monitoring of diseases. HUPO’s Plasma Proteome Project has involved characterization of the plasma proteome by an international consortium using technologies ranging from antibody arrays to mass spectrometry and has helped in the construction of a substantial catalog of plasma proteins. Our group has developed the Plasma Proteome Database ( as a comprehensive resource of annotated data for posttranslational modifications, single-nucleotide polymorphisms, tissue expression, subcellular localization, and disease involvement of plasma proteins. This database should serve to facilitate further research to help understand the plasma proteome in health and disease.

Key Words

Proteomics annotation bioinformatics database plasma mass spectrometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Putnam FW. In: Putnam FW, ed. The Plasma Proteins: Structure, Function, and Genetic Control. New York, Academic Press, 1975–1987:1–55.Google Scholar
  2. 2.
    Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 2002; 11:845–867.Google Scholar
  3. 3.
    Qian WJ, Jacobs JM, Camp DG 2nd, et al. Comparative proteome analyses of human plasma following in vivo lipopolysaccharide administration using multidimensional separations coupled with tandem mass spectrometry. Proteomics 2005;5:572–584.PubMedCrossRefGoogle Scholar
  4. 4.
    Ping P, Vondriska TM, Creighton CJ, et al. A functional annotation of subproteomes in human plasma. Proteomics 2005;5:3506–3519.PubMedCrossRefGoogle Scholar
  5. 5.
    Rai AJ, Gelfand CA, Haywood BC, et al. HUPO Plasma Proteome Project specimen collection and handling: towards the standardization of parameters for plasma proteome samples. Proteomics 2005;5:3262–3277.PubMedCrossRefGoogle Scholar
  6. 6.
    Omenn GS, States DJ, Adamski M, et al. Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics 2005;5:3226–3245.PubMedCrossRefGoogle Scholar
  7. 7.
    Muthusamy B, Hanumanthu G, Suresh S, et al. Plasma Proteome Database as a resource for proteomics research. Proteomics 2005;5:3531–3536.PubMedCrossRefGoogle Scholar
  8. 8.
    Martens L, Hermjakob H, Jones P, et al. PRIDE: the proteomics identifications database. Proteomics 2005;5:3537–3545.PubMedCrossRefGoogle Scholar
  9. 9.
    Deutsch EW, Eng JK, Zhang H, et al. Human Plasma PeptideAtlas. Proteomics 2005;5:3497–3500.PubMedCrossRefGoogle Scholar
  10. 10.
    Chan KC, Lucas DA, Hise D, et al. Analysis of the human serum proteome. Clin Proteomics 2004;1:101–225.CrossRefGoogle Scholar
  11. 11.
    Anderson NL, Polanski M, Pieper R, et al. the human plasma proteome: a nonredundant list developed by combination of four separate sources. Mol Cell Proteomics 2004;3:311–326.PubMedCrossRefGoogle Scholar
  12. 12.
    Shen Y, Jacobs JM, Camp DG, et al. Ultra-high-efficiency strong cation exchange LC/RPLC/MS/MS for high dynamic range characterization of the human plasma proteome. Anal Chem 2004;76:1134–1144.PubMedCrossRefGoogle Scholar
  13. 13.
    Adamski M, Blackwell T, Menon R, et al. Data management and preliminary data analysis in the pilot phase of the HUPO Plasma Proteome Project. Proteomics 2005;5:3246–3261.PubMedCrossRefGoogle Scholar
  14. 14.
    Peri S, Navarro JD, Amanchy R, et al. Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res 2003;13:2363–2371.PubMedCrossRefGoogle Scholar
  15. 15.
    Hanash S. Building a foundation for the human proteome: the role of the Human Proteome Organization. J Proteome Res 2004;3:197–199.PubMedCrossRefGoogle Scholar
  16. 16.
    Schonberger J, Wang L, Shin JT, et al. Mutation in the transcriptional coactivator EYA4 causes dilated cardiomyopathy and sensorineural hearing loss. Nat Genet 2005;37:418–422.PubMedCrossRefGoogle Scholar
  17. 17.
    Allen PG. Functional consequences of disulfide bond formation in gelsolin. FEBS Lett 1997;401:89–94.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Malabika Sarker
    • 1
  • G. Hanumanthu
    • 1
  • Akhilesh Pandey
    • 2
  1. 1.Institute of BioinformaticsBangaloreIndia
  2. 2.McKusick-Nathans Institute of Genetic Medicine, and Departments of Biological Chemistry, Oncology and PathologyJohns Hopkins UniversityBaltimore

Personalised recommendations