Proteomics of Human Pancreatic Juice

  • Mads Grønborg
  • Anirban Maitra
  • Akhilesh Pandey


Pancreatic juice has recently been characterized in detail using proteomic methods. The cataloging of proteins from healthy individuals and those diagnosed with pancreatic cancer has revealed the presence of a number of proteins in pancreatic juice that could serve as potential biomarkers for cancer. Because obtaining pancreatic juice is not trivial, it is possible that these biomarkers can be detected in serum using more sensitive methods like ELISA. Here, we discuss the protein constituents of pancreatic juice with special reference to cancer biomarkers.

Key Words

Pancreatic juice LC-MS/MS quantitative proteomics biomarker discovery mass spectrometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson NL, Polanski M, Pieper R, et al. The human plasma proteome: a nonredundant list developed by combination of four separate sources. Mol Cell Proteomics 2004;3:311–326.PubMedCrossRefGoogle Scholar
  2. 2.
    Muthusamy B, Hanumanthu G, Suresh S, et al. Plasma Proteome Database as a resource for proteomics research. Proteomics 2005;5:3531–3536.PubMedCrossRefGoogle Scholar
  3. 3.
    Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 2002; 1:845–867.PubMedCrossRefGoogle Scholar
  4. 4.
    Tirumalai RS, Chan KC, Prieto DA, Issaq HJ, Conrads TP, Veenstra TD. Characterization of the low molecular weight human serum proteome. Mol Cell Proteomics 2003;2:1096–1103.PubMedCrossRefGoogle Scholar
  5. 5.
    Pieper R, Gatlin CL, Makusky AJ, et al. The human serum proteome: display of nearly 3700 chromatographically separated protein spots on two-dimensional electrophoresis gels and identification of 325 distinct proteins. Proteomics 2003; 3:1345–1364.PubMedCrossRefGoogle Scholar
  6. 6.
    Satoh J, Darley-Usmar VM, Kashimura H, Fukutomi H, Anan K, Ohsuga T. Analysis of pure pancreatic juice proteins by two-dimensional gel electrophoresis in cases of pancreatic cancer. Gastroenterol Jpn 1986;21:623–629.PubMedGoogle Scholar
  7. 7.
    Goke B, Keim V, Dagorn JC, Arnold R, Adler G. Resolution of human exocrine pancreatic juice proteins by reversed-phase high performance liquid chromatography (HPLC). Pancreas 1990;5:261–266.PubMedCrossRefGoogle Scholar
  8. 8.
    Gronborg M, Bunkenborg J, Kristiansen TZ, et al. Comprehensive proteomic analysis of human pancreatic juice. J Proteome Res 2004;3:1042–1055.PubMedCrossRefGoogle Scholar
  9. 9.
    Rosty C, Goggins M. Early detection of pancreatic carcinoma. Hematol Oncol Clin North Am 2002; 16:37–52.PubMedCrossRefGoogle Scholar
  10. 10.
    Chen R, Pan S, Brentnall TA, Aebersold R. Proteomic profiling of pancreatic cancer for biomarker discovery. Mol Cell Proteomics 2005;4:523–533.PubMedCrossRefGoogle Scholar
  11. 11.
    Greenlee RT, Hill-Harmon MB, Murray T, Thun M. Cancer statistics, 2001. CA Cancer J Clin 2001;51:15–36.PubMedGoogle Scholar
  12. 12.
    Jemal A, Thomas A, Murray T, Thun M. Cancer statistics, 2002. CA Cancer J Clin 2002;52:23–47.PubMedGoogle Scholar
  13. 13.
    Yeo TP, Hruban RH, Leach SD, et al. Pancreatic cancer. Curr Probl Cancer 2002;26:176–275.PubMedCrossRefGoogle Scholar
  14. 14.
    Steinberg W. The clinical utility of the CA 19-9 tumor-associated antigen. Am J Gastroenterol 1990;85:350–355.PubMedGoogle Scholar
  15. 15.
    Hanash S. Mining the cancer proteome. Proteomics 2001; 1:1189–1190.PubMedGoogle Scholar
  16. 16.
    Petricoin EF, Ardekani AM, Hitt BA, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 2002;359:572–577.PubMedCrossRefGoogle Scholar
  17. 17.
    Srinivas PR, Srivastava S, Hanash S, Wright GL Jr. Proteomics in early detection of cancer. Clin Chem 2001;47:1901–1911.PubMedGoogle Scholar
  18. 18.
    Srivastava S, Verma M, Henson DE. Biomarkers for early detection of colon cancer. Clin Cancer Res 2001;7:1118–1126.PubMedGoogle Scholar
  19. 19.
    Verma M, Srivastava S. Epigenetics in cancer: implications for early detection and prevention. Lancet Oncol 2002;3:755–763.PubMedCrossRefGoogle Scholar
  20. 20.
    Shevchenko A, Jensen ON, Podtelejnikov AV, et al. Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci U S A 1996;93:14,440–14,445.PubMedCrossRefGoogle Scholar
  21. 21.
    Gygi SP, Corthals GL, Zhang Y, Rochon Y, Aebersold R. Evaluation of two dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci U S A 2000;97:9390–9395.PubMedCrossRefGoogle Scholar
  22. 22.
    Rabilloud T. Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics 2002;2:3–10.PubMedCrossRefGoogle Scholar
  23. 23.
    Veenstra TD. Proteome analysis of posttranslational modifications. Adv Protein Chem 2003;65:161–194.PubMedGoogle Scholar
  24. 24.
    Mann M, Jensen ON. Proteomic analysis of post-translational modifications. Nat Biotechnol 2003;21:255–261.PubMedCrossRefGoogle Scholar
  25. 25.
    Shen J, Person MD, Zhu J, Abbruzzese JL, Li D. Protein expression profiles in pancreatic adenocarcinoma compared with normal pancreatic tissue and tissue affected by pancreatitis as detected by two-dimensional gel electrophoresis and mass spectrometry. Cancer Res 2004;64:9018–9026.PubMedCrossRefGoogle Scholar
  26. 26.
    Lu Z, Hu L, Evers S, Chen J, Shen Y. Differential expression profiling of human pancreatic adenocarcinoma and healthy pancreatic tissue. Proteomics 2004;4: 3975–3988.PubMedCrossRefGoogle Scholar
  27. 27.
    Shekouh AR, Thompson CC, Prime W, et al. Application of laser capture microdissection combined with two-dimensional electrophoresis for the discovery of differentially regulated proteins in pancreatic ductal adenocarcinoma. Proteomics 2003;3:1988–2001.PubMedCrossRefGoogle Scholar
  28. 28.
    Seike M, Kondo T, Fujii K, et al. Proteomic signature of human cancer cells. Proteomics 2004;4:2776–2788.PubMedCrossRefGoogle Scholar
  29. 29.
    Koopmann J, Fedarko NS, Jain A, et al. Evaluation of osteopontin as biomarker for pancreatic adenocarcinoma. Cancer Epidemiol Biomarkers Prev 2004; 13: 487–491.PubMedGoogle Scholar
  30. 30.
    Verma M, Wright GL, Jr., Hanash SM, Gopal-Srivastava R, Srivastava S. Proteomic approaches within the NCI early detection research network for the discovery and identification of cancer biomarkers. Ann N YAcad Sci 2001;945:103–115.CrossRefGoogle Scholar
  31. 31.
    Mann M, Hendrickson RC, Pandey A. Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem 2001;70:437–473.PubMedCrossRefGoogle Scholar
  32. 32.
    Pandey A, Mann M. Proteomics to study genes and genomes. Nature 2000;405: 837–846.PubMedCrossRefGoogle Scholar
  33. 33.
    Kristiansen TZ, Bunkenborg J, Gronborg M, et al. A proteomic analysis of human bile. Mol Cell Proteomics 2004;3:715–728.PubMedCrossRefGoogle Scholar
  34. 34.
    Gygi SP, Rist B, Griffin TJ, Eng J, Aebersold R. Proteome analysis of low-abundance proteins using multidimensional chromatography and isotope-coded affinity tags. J Proteome Res 2002; 1:47–54.PubMedCrossRefGoogle Scholar
  35. 35.
    Zhou H, Ranish JA, Watts JD, Aebersold R. Quantitative proteome analysis by solid phase isotope tagging and mass spectrometry. Nat Biotechnol 2002;20:512–515.PubMedCrossRefGoogle Scholar
  36. 36.
    Li C, Hong Y, Tan YX, et al. Accurate qualitative and quantitative proteomic analysis of clinical hepatocellular carcinoma using laser capture microdissection coupled with isotope-coded affinity tag and two-dimensional liquid chromatography mass spectrometry. Mol Cell Proteomics 2004;3:399–409.PubMedCrossRefGoogle Scholar
  37. 37.
    Meehan KL, Sadar MD. Quantitative profiling of LNCaP prostate cancer cells using isotope-coded affinity tags and mass spectrometry. Proteomics 2004;4: 1116–1134.PubMedCrossRefGoogle Scholar
  38. 38.
    Everley PA, Krijgsveld J, Zetter BR, Gygi SP. Quantitative cancer proteomics: stable isotope labeling with amino acids in cell culture (SILAC) as a tool for prostate cancer research. Mol Cell Proteomics 2004;3:729–735.PubMedCrossRefGoogle Scholar
  39. 39.
    Gronborg M, Kristiansen TZ, Iwahori A, et al. Biomarker discovery from pancreatic cancer secretome using a differential proteomics approach. Mol Cell Proteomics 2006;5:157–176.PubMedGoogle Scholar
  40. 40.
    Iacobuzio-Donahue CA, Ashfaq R, Maitra A, et al. Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies. Cancer Res 2003;63:8614–8622.PubMedGoogle Scholar
  41. 41.
    Iacobuzio-Donahue CA, Maitra A, Olsen M, et al. Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays. Am J Pathol 2003;162:1151–1162.PubMedGoogle Scholar
  42. 42.
    Iacobuzio-Donahue CA, Maitra A, Shen-Ong GL, et al. Discovery of novel tumor markers of pancreatic cancer using global gene expression technology. Am J Pathol 2002;160:1239–1249.PubMedGoogle Scholar
  43. 43.
    Mulla A, Christian HC, Solito E, Mendoza N, Morris JF, Buckingham JC. Expression, subcellular localization and phosphorylation status of annexins 1 and 5 in human pituitary adenomas and a growth hormone-secreting carcinoma. Clin Endocrinol (Oxf) 2004;60:107–119.CrossRefGoogle Scholar
  44. 44.
    Wang Y, Serfass L, Roy MO, Wong J, Bonneau AM, Georges E. Annexin-I expression modulates drug resistance in tumor cells. Biochem Biophys Res Commun 2004;314:565–570.PubMedCrossRefGoogle Scholar
  45. 45.
    Fang MZ, Liu C, Song Y, et al. Over-expression of gastrin-releasing peptide in human esophageal squamous cell carcinomas. Carcinogenesis 2004;25:865–876.PubMedCrossRefGoogle Scholar
  46. 46.
    Pencil SD, Toth M. Elevated levels of annexin I protein in vitro and in vivo in rat and human mammary adenocarcinoma. Clin Exp Metastasis 1998;16:113–121.PubMedCrossRefGoogle Scholar
  47. 47.
    Kodera Y, Isobe K, Yamauchi M, et al. Expression of carcinoembryonic antigen (CEA) and nonspecific crossreacting antigen (NCA) in gastrointestinal cancer; the correlation with degree of differentiation. Br J Cancer 1993;68:130–136.PubMedGoogle Scholar
  48. 48.
    Hasegawa T, Isobe K, Tsuchiya Y, et al. Nonspecific crossreacting antigen (NCA) is a major member of the carcinoembryonic antigen (CEA)-related gene family expressed in lung cancer. Br J Cancer 1993;67:58–65.PubMedGoogle Scholar
  49. 49.
    Sienel W, Dango S, Woelfle U, et al. Elevated expression of carcinoembryonic antigen-related cell adhesion molecule 1 promotes progression of non-small cell lung cancer. Clin Cancer Res 2003;9:2260–2266.PubMedGoogle Scholar
  50. 50.
    Scholzel S, Zimmermann W, Schwarzkopf G, Grunert F, Rogaczewski B, Thompson J. Carcinoembryonic antigen family members CEACAM6 and CEACAM7 are differentially expressed in normal tissues and oppositely deregulated in hyperplastic colorectal polyps and early adenomas. Am J Pathol 2000; 156:595–605.PubMedGoogle Scholar
  51. 51.
    Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE. CEACAM6 gene silencing impairs anoikis resistance and in vivo metastatic ability of pancreatic adenocarcinoma cells. Oncogene 2004;23:465–473.PubMedCrossRefGoogle Scholar
  52. 52.
    Sato N, Fukushima N, Maitra A, et al. Gene expression profiling identifies genes associated with invasive intraductal papillary mucinous neoplasms of the pancreas. Am J Pathol 2004; 164:903–914.PubMedGoogle Scholar
  53. 53.
    Mori M, Shiraishi T, Tanaka S, et al. Lack of DMBT1 expression in oesophageal, gastric and colon cancers. Br J Cancer 1999;79:211–213.PubMedGoogle Scholar
  54. 54.
    Wu W, Kemp BL, Proctor ML, et al. Expression of DMBT1, a candidate tumor suppressor gene, is frequently lost in lung cancer. Cancer Res 1999;59:1846–1851.PubMedGoogle Scholar
  55. 55.
    Sasaki K, Sato K, Akiyama Y, Yanagihara K, Oka M, Yamaguchi K. Peptidomics based approach reveals the secretion of the 29-residue COOH-terminal fragment of the putative tumor suppressor protein DMBT1 from pancreatic adenocarcinoma cell lines. Cancer Res 2002;62:4894–4898.PubMedGoogle Scholar
  56. 56.
    Iacobelli S, Arno E, D’Orazio A, Coletti G. Detection of antigens recognized by a novel monoclonal antibody in tissue and serum from patients with breast cancer. Cancer Res 1986;46:3005–3010.PubMedGoogle Scholar
  57. 57.
    Iacobelli S, Arno E, Sismondi P, et al. Measurement of a breast cancer associated antigen detected by monoclonal antibody SP-2 in sera of cancer patients. Breast Cancer Res Treat 1988;11:19–30.PubMedCrossRefGoogle Scholar
  58. 58.
    Iacobelli S, Bucci I, D’Egidio M, et al. Purification and characterization of a 90 kDa protein released from human tumors and tumor cell lines. FEBS Lett 1993;319:59–65.PubMedCrossRefGoogle Scholar
  59. 59.
    Iacobelli S, Sismondi P, Giai M, et al. Prognostic value of a novel circulating serum 90K antigen in breast cancer. Br J Cancer 1994;69:172–176.PubMedGoogle Scholar
  60. 60.
    Christa L, Simon MT, Brezault-Bonnet C, et al. Hepatocarcinoma-intestine-pancreas/ pancreatic associated protein (HIP/PAP) is expressed and secreted by proliferating ductules as well as by hepatocarcinoma and cholangiocarcinoma cells. Am J Pathol 1999;155:1525–1533.PubMedGoogle Scholar
  61. 61.
    Christa L, Carnot F, Simon MT, et al. HIP/PAP is an adhesive protein expressed in hepatocarcinoma, normal Paneth, and pancreatic cells. Am J Physiol 1996;271:G993–G1002.PubMedGoogle Scholar
  62. 62.
    Rosty C, Christa L, Kuzdzal S, et al. Identification of hepatocarcinoma-intestine pancreas/pancreatitis-associated protein I as a biomarker for pancreatic ductal adenocarcinoma by protein biochip technology. Cancer Res 2002;62:1868–1875.PubMedGoogle Scholar
  63. 63.
    Muller HL, Oh Y, Lehrnbecher T, Blum WF, Rosenfeld RG. Insulin-like growth factor-binding protein-2 concentrations in cerebrospinal fluid and serum of children with malignant solid tumors or acute leukemia. J Clin Endocrinol Metab 1994;79:428–434.PubMedCrossRefGoogle Scholar
  64. 64.
    Cohen P. Serum insulin-like growth factor-I levels and prostate cancer risk— interpreting the evidence. J Natl Cancer Inst 1998;90:876–879.PubMedCrossRefGoogle Scholar
  65. 65.
    Ho PJ, Baxter RC. Insulin-like growth factor-binding protein-2 in patients with prostate carcinoma and benign prostatic hyperplasia. Clin Endocrinol (Oxf) 1997;46:333–342.CrossRefGoogle Scholar
  66. 66.
    Cariani E, Lasserre C, Kemeny F, Franco D, Brechot C. Expression of insulin-like growth factor II, alpha-fetoprotein and hepatitis B virus transcripts in human primary liver cancer. Hepatology 1991;13:644–649.PubMedCrossRefGoogle Scholar
  67. 67.
    Kunzli BM, Berberat PO, Zhu ZW, et al. Influences of the lysosomal associated membrane proteins (Lamp-1, Lamp-2) and Mac-2 binding protein (Mac-2-BP) on the prognosis of pancreatic carcinoma. Cancer 2002;94:228–239.PubMedCrossRefGoogle Scholar
  68. 68.
    Ryu B, Jones J, Hollingsworth MA, Hruban RH, Kern SE. Invasion-specific genes in malignancy: serial analysis of gene expression comparisons of primary and passaged cancers. Cancer Res 2001;61:1833–1838.PubMedGoogle Scholar
  69. 69.
    Sanchez LM, Freije JP, Merino AM, Vizoso F, Foltmann B, Lopez-Otin C. Isolation and characterization of a pepsin C zymogen produced by human breast tissues. J Biol Chem 1992;267:24,725–24,731.PubMedGoogle Scholar
  70. 70.
    Diaz M, Rodriguez JC, Sanchez J, et al. Clinical significance of pepsinogen C tumor expression in patients with stage D2 prostate carcinoma. Int J Biol Markers 2002; 17:125–129.PubMedGoogle Scholar
  71. 71.
    Takahashi S, Suzuki S, Inaguma S, et al. Down-regulated expression of prostasin in high-grade or hormone-refractory human prostate cancers. Prostate 2003;54: 187–193.PubMedCrossRefGoogle Scholar
  72. 72.
    Chen LM, Chai KX. Prostasin serine protease inhibits breast cancer invasiveness and is transcriptionally regulated by promoter DNA methylation. Int J Cancer 2002;97:323–329.PubMedCrossRefGoogle Scholar
  73. 73.
    Mok SC, Chao J, Skates S, et al. Prostasin, a potential serum marker for ovarian cancer: identification through microarray technology. J Natl Cancer Inst 2001;93:1458–1464.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Mads Grønborg
    • 1
    • 2
  • Anirban Maitra
    • 3
  • Akhilesh Pandey
    • 4
  1. 1.McKusick-Nathans Institute of Genetic Medicine and Department of Biological ChemistryJohns Hopkins UniversityBaltimore
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdense MDenmark
  3. 3.McKusick-Nathans Institute of Genetic Medicine, The Sol Goldman Pancreatic Cancer Research Center, and Departments of Biological Chemistry, Pathology and OncologyJohns Hopkins UniversityBaltimore
  4. 4.McKusick-Nathans Institute of Genetic Medicine, and Departments of Biological Chemistry, Oncology and PathologyJohns Hopkins UniversityBaltimore

Personalised recommendations