The Role of Deep Brain Stimulation (DBS) in the Treatment of Postural Instability and Gait Disorders of Parkinson's Disease

  • Helen Bronte-Stewart
Part of the Current Clinical Neurology book series (CCNEU)


Postural instability and gait disorders are movement abnormalities commonly associated with advanced Parkinson's disease (PD) that lead to loss of independence. Although the available literature varies in methodology and design, there appears to be consensus among many studies concerning the effect of subthalamic nucleus (STN) or globus pallidus internus (GPi) deep brain stimulation (DBS) on postural stability and gait disorders in PD. In the short term, DBS improves all postural and gait subscores of the UPDRS including freezing in the off-medication state.

Quantitative studies have revealed considerable detail concerning the effect of DBS on postural instability and gait disorders. This is especially the case in the area of postural stability, where medication and DBS both reduce postural tremor as well as the resonant behavior seen in postural sway in quiet stance. However, in both quiet stance and on unstable surfaces medication worsens, whereas STN DBS improves postural sway velocity and the area over which the body sways. Concerning voluntary postural movement, medication and DBS both improve postural bradykinesia, although this has only been only significant for DBS and DBS plus medication. Neither DBS nor medication improve righting responses to external perturbations. From the available data, this may be due to a lack of improvement in postural reaction times and automatic postural reflexes.

By contrast, medication and DBS appear to have similar effects on most aspects of gait. Gait initiation and gait velocity improve on DBS while off medication, mostly due to improvement in stride length. The irregularity in gait parameters and time spent in double stance also improve. Very few studies have examined the effect of DBS on freezing of gait (FOG) but there is consensus that both STN and GPi DBS improve FOG in the off-medication but not the on-medication state. Studies of long-term STN DBS in PD support continued benefit for retropulsion and gait in the off-medication state after 4 to 5 years. In the on medication state, there was worsening of axial scores and FOG after 5 years. Preliminary experience with pedunculopontine nucleus (PPN) DBS indicates a significant short-term benefit of PPN DBS alone on posture and gait scores compared to pre-operative on-medication scores.

This is an exciting time for research and development of new therapies in gait and balance disorders. These previously incapacitating disorders may eventually be treatable in PD and in other forms of parkinsonism, in which gait and postural instability are especially prominent features.


postural control postural instability gait Parkinson's disease deep brain stimulation freezing of gait 


  1. 1.
    Smithson F, Morris ME, Iansek R (1998) Performance on clinical tests of balance in Parkinson' disease. Physical Therapy 78:577–592.PubMedGoogle Scholar
  2. 2.
    Tinetti MS (1986) Performance oriented assessment of mobility problems in elderly patients. Am J Geriatr Soc 34:119–126.Google Scholar
  3. 3.
    Powell LE, Meyers AM (1995) The activities-specific balance confidence (ABC) scale. J Gerontol Med Sci 50A:M28–M34.Google Scholar
  4. 4.
    Fahn S, Elton RL, members of the UPDRS Development Committee, Unified Parkinson' Disease Rating Scale (1987) In Fahn S, et al., eds. Recent Developments in Parkinson' Disease. Florham Park, NJ: MacMillan Healthcare Information, pp. 153–163.Google Scholar
  5. 5.
    Lozano AM, Lang AE, Galvez-Jimenez N, Miyasaki J, Duff J, Hutchinson WD, Dostrovsky JO (1995) Effect of GPi pallidotomy on motor function in Parkinson' disease. Lancet 346:1383–1387.PubMedCrossRefGoogle Scholar
  6. 6.
    Bronte-Stewart HM, Yuriko Minn A, Rodrigues K, Buckley EL, Nashner LM (2002) Postural instabilityin idiopathic Parkinson' disease: the role of medication and unilateral pallidotomy. Brain 125:2100–2114.PubMedCrossRefGoogle Scholar
  7. 7.
    Faist M, Xie J, Kurz D, Berger W, Maurer C, Pollak P, Lucking CH (2001) Effect of bilateral subthalamic nucleus stimulation on gait in Parkinson' disease. Brain 124:1590–1600.PubMedCrossRefGoogle Scholar
  8. 8.
    Morris ME, Huxham, F, McGinley J, Dodd K, Iansek R (2001) The biomechanics and motor control of gait in Parkinson disease. Clin Biomech 16:459–470.CrossRefGoogle Scholar
  9. 9.
    Nashner LM (1993) Computerized dynamic posturogrpahy. In: Jacbson G, Newman C, Kartush J, eds. Handbook of Balance Function Testing. Chicago: Mosby-Year Book, pp. 280–307.Google Scholar
  10. 10.
    Rocchi L, Chiari L, Horak FB (2002) Effects of deep brain stimulation and levodopa on postural sway in Parkinson' disease. J Neurol Neurosurg Psychiatry 73(3):267–274.PubMedCrossRefGoogle Scholar
  11. 11.
    Rocchi L, Chiari L, Cappello A, Gross A, Horak FB (2004) Comparison between subthalamic nucleus and globus pallidus internus stimulation for postural performance in Parkinson' disease. Gait and Posture 19(2):172–183.PubMedCrossRefGoogle Scholar
  12. 12.
    Maurer C, Mergner T, Xie J, Faist M, Pollak P, Lucking CH (2003) Effect of chronic bilateral subthalamic nucleus (STN) stimulation on postural control in Parkinson' disease. Brain 126:1146–1163.PubMedCrossRefGoogle Scholar
  13. 13.
    Colnat-Coulbois S, Gauchard GC, Maillard L, Barroche G, Vespignani H, Auque J, Perrin PhP (2005) Bilateral subthalamic nucleus stimulation improves balance control in Parkinson' disease. J Neurol Neurosurg Psychiatry 76(6):780–787.PubMedCrossRefGoogle Scholar
  14. 14.
    Guehl D, Dehail P, de Seze MP, Cuny E, Faux P, Tison F, Barat M, Bioulac B, Burbaud P (2006) Evolution of postural stability after subthalamic nucleus stimulation in Parkinson' disease: a combined clinical and posturometric study. Exp Brain Res 170:206–215.PubMedCrossRefGoogle Scholar
  15. 15.
    Shivitz N, Miller Koop M, Fahimi J, Heit G, Bronte-Stewart HM (2006) Bilateral subthalamic nucleus Deep Brain Stimulation improves certain aspects of postural control in Parkinson' disease, where medication does not. Mov Disord 21(8):1088–1097.PubMedCrossRefGoogle Scholar
  16. 16.
    Bronstein AM, Hood JD, Gresty MA, Panagi C (1990) Visual control of balance in cerebellar and parkinsonian syndromes. Brain 113:767–779.PubMedCrossRefGoogle Scholar
  17. 17.
    Waterston JA, Hawken MB, Tanyeri S, Jaantti P, Kennard (1993) Influence of sensory manipulation on postural control in Parkinson' disease. J Neurol Neurosurg Psychiatry 56:1276–1281.PubMedCrossRefGoogle Scholar
  18. 18.
    Toole T, Park S, Hirsch MA, Lehman DA, Maitland CG (1996) The multicomponent nature of equilibrium in persons with parkinsonism: A regression approach. J Neural Transmission 103:561–580.CrossRefGoogle Scholar
  19. 19.
    Trenkwalder C, Paulus W, Krafezyk S, Hawken M, Oertel WH (1995) Postural stability differentiates “lower body” from idiopathic parkinsonism. Acta Neurologica Scandinavica 91:444–452.PubMedCrossRefGoogle Scholar
  20. 20.
    Blaszczyk JW (1994) Dynamic balance control during minimum reach movements in elderly and young adults. Gait & Posture 2:11–17.CrossRefGoogle Scholar
  21. 21.
    Nashner LM, Black FO, Wall CD (1982) Adaptation to altered support and visual conditions during stance: patients with vestibular deficits. J Neurosci 2:536–544.PubMedGoogle Scholar
  22. 22.
    Horak FB, Macpherson JM (1996) Postural orientation and equilibrium. In: Rowell LB, Shepherd JT, eds. Handbook of Physiology, Sect. 12: Exercise Regulation and Integration of Multiple Systems. New York: Oxford University Press, pp. 255–292.Google Scholar
  23. 23.
    Wollacott MH, Shumway-Cook A, Nashner LM (1986) Aging and posture control: changes in sensory organization and muscular coordination. Int J Aging Human Dev 23:97–114.CrossRefGoogle Scholar
  24. 24.
    Koller WC, Glatt S, Betere-Overfiled S, Hassanein R (1989) Falls and Parkinson' disease. Clin Neuropharmacol 12:98–105.PubMedCrossRefGoogle Scholar
  25. 25.
    Bloem BR, Beckley DJ, van Hilten BJ, Roos RA (1998) Clinimetrics of postural instability in Parkinson' disease. J Neurol 245:669–673.PubMedCrossRefGoogle Scholar
  26. 26.
    Lang AE, Lozano AM, Montgomery E, Duff J, Tasker R, Huchinson W (1997) Posteroventral medial pallidotomy in advanced Parkinson' disease. N Engl J Med 337:1036–1042.PubMedCrossRefGoogle Scholar
  27. 27.
    Fine J, Duff J, Chen R, Chir B, Hutchison W, Lozano AM, Lang AE (2000) Longterm follow-up of unilateral pallidotomy in advanced Parkinson' disease. N Engl J Med 342:1708–1714.PubMedCrossRefGoogle Scholar
  28. 28.
    Vrancken AMPM, Allum JHJ, Peller M, Visser JE, Esselink RAJ, Speelman JD, Siebner HR, Bloem BR (2005) Effect of bilateral subthalamic nucleus stimulation on balance and finger control in Parkinson' disease. J Neurol 252(12): 1487–1494.PubMedCrossRefGoogle Scholar
  29. 29.
    Horak FB, Nutt JG, Nashner LM (1992) Postural inflexibility in parkinsonian subjects. J Neurolog Sci 111:46–58.CrossRefGoogle Scholar
  30. 30.
    Bloem BR, Beckley DJ, van Dijk JG, Zwinderman AH, Remler MP, Roos RA (1996) Influence of dopaminergic medication on automatic postural responses and balance impairment in Parkinson' disease. Mov Disord 11:509–521.PubMedCrossRefGoogle Scholar
  31. 31.
    Beckley DJ, Bloem BR, Remler MP (1993) Impaired scaling of long latency postural in patients with Parkinson' disease. Electroencephalogr Clin Neurophysiol 98:22–28.Google Scholar
  32. 32.
    Ostergaard K, Sunde N, Dupont E (2002) Effects of bilateral stimulation of the subthalamic nucleus in patients with severe Parkinson' disease and motor fluctuations Mov Disord 17:693–700.PubMedCrossRefGoogle Scholar
  33. 33.
    Krack P, Blair A, Van Blercom N et al (2003) Five year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson' disease. N Engl J Med 349:1925–1934.PubMedCrossRefGoogle Scholar
  34. 34.
    Rodriguez-Oroz MC, Obeso J, Lang AE, et al (2005) Bilateral deep brain stimulation in patients with severe Parkinson' disease; a multicentre study with 4 years follow-up. Brain 128:2240–2249.PubMedCrossRefGoogle Scholar
  35. 35.
    Krause M, Fogel W, Mayer P, et al (2004) Chronic inhibition of the subthalamic nucleus in Parkinson' disease. J Neurol Sci 219:119–124.PubMedCrossRefGoogle Scholar
  36. 36.
    Deuschl G, Schade-Brittinger C, Krack P, et al (2006) A randomized trail of deep brain stimulation for Parkinson' disease. N Engl J Med 355:896–908.PubMedCrossRefGoogle Scholar
  37. 37.
    Temperli P, Ghika J, Villemure J-G, Burkhard PR, Bogousslavsky J, Vingerhoets FJG (2003) How do parkinsonian signs return after discontinuation of subthalamic deep brain stimulation? Neurology 60:78–81.PubMedGoogle Scholar
  38. 38.
    Lee HM, Huang YZ, Chen JJ, Hwang IS (2002) Quantitative anlaysis of the velocity related pathophysiology of spasticity and rigidity in elbow flexors. J Neurol Neurosurg Psychiatry 72:621–629.PubMedCrossRefGoogle Scholar
  39. 39.
    Maurer C, Mergner T, Peterka RJ (2004) Abnormal resonance behavior of the postural control loop in Parkinson' disease. Exp Brain Res 157:369–376.PubMedCrossRefGoogle Scholar
  40. 40.
    Wingeier B, Tcheng T, Koop MM, Hill BC, Heit G, Bronte-Stewart HM (2006) Intra-operative STN DBS attenuates the prominent beta rhythm in the STN in Parkinson' disease. Exp Neurol 197(1):244–251.PubMedCrossRefGoogle Scholar
  41. 41.
    Inkster LM, Eng JJ (2004) Postural control during a sit-to-stand task in individuals with mild Parkinson' disease Exp Brain Res 154(1):33–38.PubMedCrossRefGoogle Scholar
  42. 42.
    Mak MK, Hui-Chan CW (2002) Switching of movement direction is central to parkinsonian bradykinesias in sit-to-stand. Mov Disord 17(6):1188–1195.PubMedCrossRefGoogle Scholar
  43. 43.
    Schultz AB, Alexander NB, Ashton-Miller JA (1992) Biomechanical analyses of rising from a chair. J Biomech 12:1383–1391.CrossRefGoogle Scholar
  44. 44.
    Coghlin SS, McFayden BJ (1994) Transfer strategies used to rise from a chair in normal and low back pain subjects. Clin Biomech 9:85–92.CrossRefGoogle Scholar
  45. 45.
    Elbe RJ, Moody C, Leffler K, Sinha R (1994) The initiation of normal walking. Mov Disord 9:139–146.CrossRefGoogle Scholar
  46. 46.
    Liu W, McIntire K, Kim SH, Zhang J, Dascalos S, Lyons KE, Pahwa R (2006) Bilateral subthalamic stimulation improves gait initiation in patients with Parkinson' disease. Gait & Posture 23(4):492–498.CrossRefGoogle Scholar
  47. 47.
    Rosin R, Topka H, Dichgans J (1997) Gait initiaton in Parkinson' disease. Mov Disord 12(5):682–690.PubMedCrossRefGoogle Scholar
  48. 48.
    Robertson LT, Horak FB, Anderson VC, Burchiel KJ, Hammerstad JP (2001) Assessments of axial motor control during deep brain stimulation in parkinsonian patients. Neurosurgery 48(3):544–552.PubMedCrossRefGoogle Scholar
  49. 49.
    Crenna P, Carpinella I, Rabuffetti M, Rizzone M, Lopiano L, Lanotte M, Ferrarin M (2006) Impact of subthalamic nucleus stimulation on the initiation of gait in Parkinson' disease. Exp Brain Res 172(4):519–532.PubMedCrossRefGoogle Scholar
  50. 50.
    Baltadjieva R, Giladi N, Greundlinger L, Peretz C, Haussdorff JM (2006) Marked alterations in the gait timing and rhythmicity of patients with de novo Parkinson' disease. Eur J Neurosci 24(6):1815–1820.PubMedCrossRefGoogle Scholar
  51. 51.
    Morris ME, Iansek R, Matyas T, Summers JJ (1996) Stride length regulation in Parkinson' disease. Normalization strategies and underlying mechanisms. Brain 119:551–568.PubMedCrossRefGoogle Scholar
  52. 52.
    Allert N, Volkmann J, Dotse S, Hefter H, Sturm V, Freund HJ (2001) Effects of bilateral pallidal or subthalamic stimulation on gait in advanced Parkinson' disease. Mo Disord 16(6):1076–1085.CrossRefGoogle Scholar
  53. 53.
    Faist M, Xie J, Kurz D, Berger W, Maurer C, Pollak P, Lucking CH (2001) Effect of bilateral subthalamic nucleus stimulation on gain in Parkinson' disease. Brain 124:1590–1600.PubMedCrossRefGoogle Scholar
  54. 54.
    Ferrarin M, Rizzone M, Bergamasco B, Lanotte M, Recalcati M, Pedotti A, Lopiano L (2005) Effects of bilateral subthalamic stimulation on gait kinematics and kinetics in Parkinson' disease. Exp Brain Res 160(4):517–527.PubMedCrossRefGoogle Scholar
  55. 55.
    Xie J, Krack P, Benabid AL, Pollak P (2001) Effect of bilateral subthalamic nucleus stimulation on parkinsonian gait. J Neurol 248:1068–1072.PubMedCrossRefGoogle Scholar
  56. 56.
    Stolze H, Klebe S, Poepping M, Lorenz D, Herzog J, Hamel W, Schrader B, Raethjen J, Wenzelburger R, Mehdorn HM, Deuschl G, Krack P (2001) Effects of bilateral subthalamic nucleus stimulation on parkinsonian gait. Neurology 57:144–146.PubMedGoogle Scholar
  57. 57.
    Defebvre LJP, Krystkowiak P, Blatt JL, Duhamel A, Bourriez JL, Perina M, Blond S, Guieu JD, Destee A (2002) Influence of pallidal stimulation and levodopa on gait and preparatory postural adjustments in Parkinson' disease. Mov Disord 17(1):76–83PubMedCrossRefGoogle Scholar
  58. 58.
    Rizzone M, Ferrarin M, Pedotti A, Bergamasco B, Bosticco E, Lanotte M, Perozzo P, Tavella A, Torre E, Recalcati M, Melcarne A, Lopiano L (2002) High-frequency electrical stimulation of the subthalamic nucleus in Parkinson' disease: kinetic and kinematic gait analysis. Neurol Sci 23:S103–S104.PubMedCrossRefGoogle Scholar
  59. 59.
    Ferrarin M, Lopiano L, Rizzone M, Lanotte M, Bergamasco B, Recalcati M, Pedotti A (2002) Quantitative analysis of gait in Parkinson' disease: a pilot study on the effects of bilateral sub-thalamic stimulation. Gait and Posture 16:135–148.PubMedCrossRefGoogle Scholar
  60. 60.
    Krystkowiak P, Blatt JL, Bourriez JL, Duhamel A, Perina M, Blond S, Guieu JD, Destee A, Defebvre L (2003) Effects of subthalamic nucleus stimulation and levodopa treatment on gait abnormalities in Parkinson disease. Arch Neurol 60:80–84.PubMedCrossRefGoogle Scholar
  61. 61.
    Bastian AJ, Kelly VE, Revilla FJ, Perlmutter JS, Mink JW (2003) Different effects of unilateral versus bilateral subthalamic nucleus stimulation on walking and reaching in Parkinson' disease. Mov Disord 18(9):1000–1007.PubMedCrossRefGoogle Scholar
  62. 62.
    Piper M, Abrams GM, Marks Jr WJ (2005) Deep brain stimulation for the treatment of Parkinson' disease: Overview and impact on gait and mobility. NeuroRehabilitation 20(3):223–232.PubMedGoogle Scholar
  63. 63.
    Liu W, McIntire K, Kim SH, Zhang J, Dascalos S, Lyons KE, Pahwa R (2005) Quantitative assessments of the effect of bilateral subthalamic stimulation on multiple aspects of sensorimotor function for patients with Parkinson' disease. Parkinsonism Related Disord 11(8):503–508.CrossRefGoogle Scholar
  64. 64.
    Lubik S, Fogel W, Tronnier V, Krause M, Konig J, Jost WH (2006) Gait analysis in patients with advanced Parkinson disease: different or additive effects on gait induced by levodopa and chronic STN stimulation. J Neural Transm 113(2): 163–173.PubMedCrossRefGoogle Scholar
  65. 65.
    Morris ME, Iansek R, Matyas T, Summers JJ (1998) Abnormalities in the stride length-cadence relation in parkinsonian gait. Mov Disord 13:61–69.PubMedCrossRefGoogle Scholar
  66. 66.
    Marsden CD, Parkes JD, Quinn N (1981) Fluctuations of disability in Parkinson' disease: clinical aspects. In: Marsdec CD, Fahn S, eds. Movement Disorders. London: Butterworth Scientific, pp. 96–122.Google Scholar
  67. 67.
    Giladi N, Treves TA, Simon ES, et al (2001) Freezing of gait in patients with advanced Parkinson' disease. J Neural Transm 108:53–61.PubMedCrossRefGoogle Scholar
  68. 68.
    Iansek R, Huxham F, McGinley J (2006) The sequence effect and gait festination in Parkinson disease: contributors to freezing of gait? Mov Disord 21(9):1419–1424.PubMedCrossRefGoogle Scholar
  69. 69.
    Brontë-Stewart HM, Ding L, Moore GP (2000) Quantitative Digitography (QDG)—a sensitive measure of motor control in Idiopathic Parkinson' Disease. Mov Disord 15(1):36–47.PubMedCrossRefGoogle Scholar
  70. 70.
    Yokochi F (2006) Effect of deep brain stimulation on FOG. Parkinsonism Related Disords 12(Suppl 2):S67–S69.CrossRefGoogle Scholar
  71. 71.
    Davis JT, Lyons KE, Pahwa R (2006) Freezing of gait after bilateral subthalamic nucleus stimulation for Parkinson' disease. Clin Neurol Neurosurg 108(5): 461–464.PubMedCrossRefGoogle Scholar
  72. 72.
    Garcia-Rill E (1986) The basal ganglia and the locomotor regions. Brain Res 396:47–63.PubMedCrossRefGoogle Scholar
  73. 73.
    Garcia-Rill E (1991) The pedunculopontine nucleus. Progress Neurobiol 36: 363–389.CrossRefGoogle Scholar
  74. 74.
    Conde H, Dormont JF, Farin D (1998) The role of the pedunculopontine tegmen-tal nucleus in relation to conditioned motor performance in the cat. II. Effects of reversible inactivation by intracerebral microinjections. Exp Brain Res 121: 411–418.PubMedCrossRefGoogle Scholar
  75. 75.
    Dormont JF, Conde H, Farin D (1998) The role of the pedunculopontine tegmental nucleus in relation to conditioned motor performance in the cat. I. Context-dependent and reinforcement-related single unit activity. Exp Brain Res 121:401–410.PubMedCrossRefGoogle Scholar
  76. 76.
    Aziz TZ, Davies L, Stein J, France S (1998) The role of descending basal ganglia connections to the brainstem in parkinsonian akinesia. Br J Neurosurg 12: 245–249.PubMedCrossRefGoogle Scholar
  77. 77.
    Garcia-Rill E, Skinner RD (1988) Modulation of rhythmic function in the posterior brainstem. Neuroscience 27:639–654.PubMedCrossRefGoogle Scholar
  78. 78.
    Nandi D, Liu X, Winter J, Aziz TZ, Stein JF (2002) Deep brain stimulation of the pedunculopontine region in the normal non-human primate. J Clin Neurosci 9(2):170–174.PubMedCrossRefGoogle Scholar
  79. 79.
    Mazzone P, Lozano A, Stanzione P, Galati S, Scarnati E, Peppe A, Stefani A (2005) Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson' disease. Neuroreport 16(17):1877-2-1881.PubMedCrossRefGoogle Scholar
  80. 80.
    Plaha P, Gill SS (2005) Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson' disease. Neuroreport 16(17):1883–1887.PubMedCrossRefGoogle Scholar
  81. 81.
    Stefani A, Lozano AM, Peppe A, Stanzione P, Galati S, Tropepi D, Pierantozzi M, Brusa L, Scarnati E, Mazzone P (2007) Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson' disease. Brain 1–12.Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Helen Bronte-Stewart
    • 1
  1. 1.Departments of Neurology and Neurosciences and Neurosurgery, Stanford Movement Disorders CenterStanford UniversityStanfordUSA

Personalised recommendations