Systematic Approach to Tumors and Focal Lesions of Bone

Chapter

Abstract

Bone neoplasms consist of mesenchymal tumors, hematopoietic tumors, and metastasis from mainly epithelial carcinomas. Also non-neoplastic bone lesions that mimic true tumors, including bone cysts and Langerhans cell histiocytosis, need to be included in the differential diagnosis. Classic analyses on tumor margin, mineralized matrix, and periosteal reaction, based on plain radiography, are important for differential diagnoses. CT provides greater morphological detail about the bone surrounding a lesion, and a similar analysis can be applied in the same way as classic radiographic margin analysis. MR imaging is particularly useful for preoperative staging of tumor extent and involvement of critical tissues such as joints, nearby neurovascular bundles, and muscles. In addition, it is particularly useful to evaluate aggressive lesions, with transcortical infiltration, a sign of highly aggressive lesions, and intertrabecular infiltration, a sign of focal infiltrative growth seen in malignant tumors. An “Aunt Minnie” approach often works, but radiologists have to approach non-specific or atypical lesions systematically.

Keywords

Bone tumors Metastases Tumor margin Mineralized matrix Periosteal reaction 

Further Readings

  1. 1.
    Dorfman HD, Czerniak B. Bone cancers. Cancer 1995; 75(Suppl 1):203–210.PubMedGoogle Scholar
  2. 2.
    Huvos AG. Bone Tumors: Diagnosis, Treatment and Prognosis, 2nd ed. Philadelphia, PA: WB Saunders, 1991.Google Scholar
  3. 3.
    Fletcher CD, et al. World Health Organization Classification of Tumors: Pathology and Genetics of Tumours of Soft Tissue and Bone. Lyon: IARC Press, 2002.Google Scholar
  4. 4.
    Madewell JE, Ragsdale BD, Sweet DE. Radiologic and pathologic analysis of solitary bone lesions. Part I: internal margins. Radiol Clin North Am 1981; 19:715–748.PubMedGoogle Scholar
  5. 5.
    Lodwick GS, Wilson AJ, Farrell C, et al. Determining growth rates of focal lesions bone from radiographs. Radiology 1980; 577–583.Google Scholar
  6. 6.
    Sweet DE , Madewell JE, Ragsdale BD. Radiologic and pathologic analysis of solitary bone lesions. Part II: matrix patterns. Radiol Clin N Am 1981; 19:785–814.PubMedGoogle Scholar
  7. 7.
    Ragsdale BD, Madewell JE, Sweet DE. Radiologic and pathologic analysis of solitary bone lesions. Part III: periosteal reactions. Radiol Clin N Am 1981; 19:749–784.PubMedGoogle Scholar
  8. 8.
    Volberg FM Jr, Whalen JP, Krook L, Winchester P. Lamellated periosteal reactions: a radiologic and histologic investigation. Am J Roentgenol 1977; 128:85–87.Google Scholar
  9. 9.
    Brown KT, Kattapuram SV, Rosenthal DI. Computed tomography analysis of bone tumors: patterns of cortical destruction and soft tissue extension. Skeletal Radiol 1986; 15:448–451.PubMedGoogle Scholar
  10. 10.
    Wittekind C, Green FL, Hutter RVP et al. (Eds.). TNM Atlas: Illustrated Guide to the TNM/pTNM Classification of Malignant Tumors. Berlin: Springer, 2007.Google Scholar
  11. 11.
    Enneking WF, Kagan A. “Skip” metastasis in osteosarcoma. Cancer 1975; 36:2192–2205.PubMedGoogle Scholar
  12. 12.
    Panicek DM, Gatsonis C, Rosenthal DI, et al. CT and MR imaging in local staging of primary malignant musculoskeletal neoplasms: report of the Radiology Diagnostic Oncology Group. Radiology 1997; 202:237–246.PubMedGoogle Scholar
  13. 13.
    Atacy GS, Mahal RS, Peabody TD. Staging of bone tumors: a review with illustrative examples. Am J Roentgenol 2006; 186:967–976.Google Scholar
  14. 14.
    Musculoskeletal Tumor Society (Enneking WF). Staging of musculoskeletal neoplasms. Skeletal Radiol 1985; 13: 183–194.Google Scholar
  15. 15.
    Caceres E, Zaharia M, Tantlean E. Lymph node metastasis in osteogenic sarcoma. Surgery 1969; 65:421–422.PubMedGoogle Scholar
  16. 16.
    Geirnaerdt MJ, Hermans J, Bloem JL, et al. Usefulness of radiography in differentiating enchondroma from central grade 1 chondrosarcoma. Am J Roentgenol 1997; 169:1097–1104.Google Scholar
  17. 17.
    Murphey MD, Flemming JD, Boyea SR, et al. Enchondroma versus chondrosarcoma in the appendicular skeleton: differentiating features. RadioGraphics 1988; 18:1213–1237.Google Scholar
  18. 18.
    Cohen EV, Kressel HY, Frank TS, et al. Hyaline cartilage-origin bone and soft tissue neoplasms: MR appearance and histologic correlation. Radiology 1988; 167:477–481.PubMedGoogle Scholar
  19. 19.
    De Santos LA, Spjut HJ. Periosteal chondroma: a radiological spectrum. Skeletal Radiol 1981; 6:15–20.Google Scholar
  20. 20.
    Hudson TM, Springfield DS, Spanier SS, et al. Benign exostoses and exostotic chondrosarcomas: evaluation of cartilage thickness by CT. Radiology 1984; 152:595–599.PubMedGoogle Scholar
  21. 21.
    Garrison RC, Unni KK, McLoad RA, et al. Chondrosarcoma arising in osteochondroma. Cancer 1982; 49:1890–1897.PubMedGoogle Scholar
  22. 22.
    Chin KR, Kharazzi FD, Miller BS, et al. Osteochondromas of the distal tibia and fibula: natural history and treatment. J Bone Joint Surg Am 2000; 82A:1269–1278.Google Scholar
  23. 23.
    El-Khoury GY, Bassett GS. Symptomatic bursa formation with osteochondroma. Am J Roentgenol 1979; 133:895–898.Google Scholar
  24. 24.
    Brower AC, Moser RP, Kransdorf MJ. The frequency and diagnostic significance of periostitis of chondroblastoma. Am J Roentgenol 1990; 154:309–314.Google Scholar
  25. 25.
    Cohen EV, Kressel HY, Frank TS, et al. Hyaline cartilage-origin bone and soft tissue neoplasms: MR appearance and histologic correlation. Radiology 1988; 167:477–481.PubMedGoogle Scholar
  26. 26.
    Weatherall PT, Maale GE, Mendelsohn DB, et al. Chondroblastoma: classic and confusing appearance at MR imaging. Radiology 1994; 190:467–474.PubMedGoogle Scholar
  27. 27.
    Wilson AJ, Kyriakos M, Ackerman LV. Chondromyxoid fibroma: radiographic appearance in 38 cases and in a review of the literature. Radiology 1991; 179:513–518.PubMedGoogle Scholar
  28. 28.
    Rosenthal DI, Schiller AL, Mankin HJ. Chondrosarcoma: correlation of radiological and histological grades. Radiology 1984; 150:21–26.PubMedGoogle Scholar
  29. 29.
    Geirnaerdt MJ, Bloem JL, Eulderink F, et al. Cartilaginous tumors: correlation of gadolinium-enhanced MR imaging and histopathologic findings. Radiology 1993; 186:813.PubMedGoogle Scholar
  30. 30.
    Bovee JV, van der Heul RO, Taminiau AH, et al. Chondrosarcoma of phalanx: a locally aggressive lesion with minimal metastatic potential: a report of 35 cases and a review of literature. Cancer 1999; 86:1724–1732.PubMedGoogle Scholar
  31. 31.
    Norman A, Sissons HA. Radiographic hallmarks of peripheral chondrosarcoma. Radiology 1984; 151:589–596.PubMedGoogle Scholar
  32. 32.
    Nojima T, Unni KK, McLeod RA, et al. Periosteal chondroma and periosteal chondrosarcoma. Am J Surg Path 1985; 9:666–677.PubMedGoogle Scholar
  33. 33.
    Kumar R, David R, Cierney G III, et al. Clear cell chondrosarcoma. Radiology 1985:154:45–48.PubMedGoogle Scholar
  34. 34.
    Nakashima Y, Unni KK, Shives TC, et al. Mesenchymal chondrosarcoma of bone and soft tissue: a review of 111 cases. Cancer 1986; 57:2444–2453.PubMedGoogle Scholar
  35. 35.
    Littrell LA, Wenger DE, Wold LE, et al. Radiographic, CT and MR imaging features of dedifferentiated chondrosarcomas: a retrospective review of 174 de novo cases. RadioGraphics 2004; 24:1397–1409.PubMedGoogle Scholar
  36. 36.
    Rosenthal DI, Springfield DS, Gebhardt MC, et al. Osteoid osteoma: percutaneous radio-frequency ablation. Radiology 1995; 197:451–454.PubMedGoogle Scholar
  37. 37.
    Edeiken J, DePalma A, Hodes PJ. Osteoid osteoma: roentgenographic emphasis. Clin Orthop 1966; 49:201–206.PubMedGoogle Scholar
  38. 38.
    Woods ER, Martel W, Mandell SH, et al. Reactive soft tissue mass associated with osteoid osteoma: correlation of MR imaging features with pathologic findings. Radiology 1993; 186:221–225.PubMedGoogle Scholar
  39. 39.
    Assoun J, Richardi G, Railhac JJ, et al. Osteoid osteoma: MR imaging versus CT. Radiology 1994; 191:217.PubMedGoogle Scholar
  40. 40.
    Makley JT, Dunn MJ. Prostaglandin synthesis by osteoid osteoma. Lancet 1982; 2:42.PubMedGoogle Scholar
  41. 41.
    Lieu P, Chivers S, Roberts CC, et al. Imaging of osteoid osteoma with dynamic gadolinium-enhanced MR imaging. Radiology 2003; 227:691.Google Scholar
  42. 42.
    McLeod RA, Dahlin DC, Beabout JW. The spectrum of osteoblastoma. Am J Roentgenol 1976; 126:321–325.Google Scholar
  43. 43.
    Kroon HM, Schurmans J. Osteoblastoma: clinical and radiologic findings in 98 new cases. Radiology 1990; 175:783–790.PubMedGoogle Scholar
  44. 44.
    Norton KI, Hermann G, Abdelwahab IF, et al. Epiphyseal involvement of osteosarcoma. Radiology 1991; 180:813.PubMedGoogle Scholar
  45. 45.
    Ilaslan H, Sundaram M, Unni KK, et al. Primary vertebral osteosarcoma: imaging findings. Radiology 2004; 230: 697–702.PubMedGoogle Scholar
  46. 46.
    Edeiken J, Raymond AK, Ayala AG, et al. Small-cell osteosarcoma. Skeletal Radiol 1987; 16:621–628.PubMedGoogle Scholar
  47. 47.
    Okada K, Frassica FJ, Sim FH, et al. Parosteal osteosarcoma: a clinicopathologic study. J Bone Joint Surg 1994; 76A:366–378.Google Scholar
  48. 48.
    Bertoni F, Present D, Hudson T, et al. The meaning of radiolucency in parosteal osteosarcoma. J Bone Joint Surg 1985; 67A:901–910.Google Scholar
  49. 49.
    Murphey MD, Jelinek JS, Temple HT, et al. Imaging of periosteal osteosarcoma: radiologic-pathologic correlation. Radiology 2004; 233:129–138.PubMedGoogle Scholar
  50. 50.
    Weiss A, Khoury JD, Hoffer FA, et al. Telangictatic osteosarcoma: the St. Jude Children’s Research Hospital experience. Cancer 2007; 109:1627–1637.PubMedGoogle Scholar
  51. 51.
    Bathurst N, Sanerkin N, Watt I. Osteoclast-rich osteosarcoma. Br J Radiol 1986; 59:667–673.PubMedGoogle Scholar
  52. 52.
    Andresen KJ, Sundaram M, Unni KK, et al. Imaging features of low-grade central osteosarcoma of long bones and pelvis. Skeletal Radiol 2004; 33:373–379.PubMedGoogle Scholar
  53. 53.
    Okada K, Unni KK, Swee RG, et al. High grade surface osteosarcoma: a clinicopathologic study of 46 cases. Cancer 1999; 85:1044–1054.PubMedGoogle Scholar
  54. 54.
    Bertoni F, Dallera P, Bacchini P, et al. The Instituto Rizzoli-Beretta experience with osteosarcoma of the jaw. Cancer 1991; 68:1555–1563.PubMedGoogle Scholar
  55. 55.
    Amstutz HC. Multiple osteogenic sarcoma: metastatic or multicentric? Cancer 1969; 24:923–931.PubMedGoogle Scholar
  56. 56.
    Hopper KD, Moser RP, Haseman DB, et al. Osteosarcomastosis. Radiology 1990; 175:233–239.PubMedGoogle Scholar
  57. 57.
    Mankin HJ, Hornicek FJ. Paget’s sarcoma: a historical and outcome review. Clin Orthop 2005; 438:97–102.PubMedGoogle Scholar
  58. 58.
    Jee WH, Choe BY, Kang HS, et al. Nonossifying fibroma: characteristics at MR imaging with pathologic correlation. Radiology 1998; 209:197.PubMedGoogle Scholar
  59. 59.
    Arata MA, Peterson HA, Dahlin DC. Pathological fractures through non-ossifying fibromas: review of Mayo Clinic experience. J Bone Joint Surg 1981; 63A:980–983.Google Scholar
  60. 60.
    Resnick D, Greenway G. Distal femoral cortical defect, irregularities, and excavations. Radiology 1982; 143:345–354.PubMedGoogle Scholar
  61. 61.
    Ishida T, Dorfman HD. Massive chondroid differentiation in fibrous dysplasia of bone (fibrocartilaginous dysplasia). Am J Surg Path 1993; 17:924–930.PubMedGoogle Scholar
  62. 62.
    Crim JR, Gold RH, Mirra JM, et al. Desmoplastic fibroma of bone: radiographic analysis. Radiology 1989; 172:827–832.PubMedGoogle Scholar
  63. 63.
    Frick MA, Sundaram M, Unni KK, et al. Imaging findings in desmoplastic fibroma of bone: distinctive T2 characteristics. Am J Roentgenol 2005; 184:1762–1767.Google Scholar
  64. 64.
    Taconis WK, van Rijsseel TG. Fibrosarcoma of long bones: a study of the significance of areas of malignant fibrous histiocytoma. J Bone Joint Surg 1985; 67B:111–116.Google Scholar
  65. 65.
    Dahlin DC, Unni KK, Matsuno T. Malignant fibrous histiocytoma: fact or fancy? Cancer 1977; 39:1508–1516.PubMedGoogle Scholar
  66. 66.
    Unni KK, Ivins JC, Beabout JW, et al. Hemangioma, hemangiopericytoma, and hemangioendothelioma (angiosarcoma) of bone. Cancer 1971; 27:1403–1414.PubMedGoogle Scholar
  67. 67.
    Ross JS, Masaryk TJ, Modic MT, et al. Vertebral hemangiomas: MR imaging. Radiology 1987; 165:165–169.PubMedGoogle Scholar
  68. 68.
    Baker ND, Greenspan A, Neuwirth M. Symptomatic vertebral hemangiomas: a report of four cases. Skeletal Radiol 1986; 15:458–463.PubMedGoogle Scholar
  69. 69.
    Kenan S, Abdelwahab IF, Klein MJ, et al. Hemangiomas of the long tubular bone. Clin Orthop 1992; 280:256–260.PubMedGoogle Scholar
  70. 70.
    Wenger DE, Wold LE. Malignant vascular tumor of bone: radiologic and pathologic features. Skeletal Radiol 2000; 29:619–631.PubMedGoogle Scholar
  71. 71.
    Chigira M, Maehara S, Arita S, et al. The aetiology and treatment of simple bone cysts. J Bone Joint Surg 1983; 65:633–637.Google Scholar
  72. 72.
    Norman A, Schiffman M. Simple bone cysts: factors of age dependency. Radiology 1977; 124:779–782.PubMedGoogle Scholar
  73. 73.
    Tsai JC, Dalinka MK, Fallon MD, et al. Fluid-fluid level: a non-specific finding in tumors of bone and soft tissue. Radiology 1990; 175:779–782.PubMedGoogle Scholar
  74. 74.
    Sanerkin NG, Mott MG, Roylance J. An unusual intraosseous lesion with fibroblastic, osteoclastic, osteoblastic, aneurismal and fibromyxoid elements: “solid” variant of aneurismal bone cyst. Cancer 1983; 51:2278–2286.PubMedGoogle Scholar
  75. 75.
    Bonakdarpour A, Levy WM, Aegerter E. Primary and secondary aneurismal bone cyst: a radiological study of 75 cases. Radiology 1978; 126:75–83.PubMedGoogle Scholar
  76. 76.
    Magee TH, Rowedder AM, Degnan GG. Intraosseous ganglion of the wrist. Radiology 1995; 195:517–520.PubMedGoogle Scholar
  77. 77.
    Ramirez H Jr, Blatt ES, Cable HF, et al. Intraosseous pneumatocyst of the ilium. Radiology 1984; 150:503–505.PubMedGoogle Scholar
  78. 78.
    Milgram JW. Intraosseous lipomas: radiologic and pathologic manifestations. Radiology 1988; 167:155–160.PubMedGoogle Scholar
  79. 79.
    Dahlin DC. Giant cell tumor of bone: highlights of 407 cases. Am J Roentgenol 1985; 144:955–960.Google Scholar
  80. 80.
    Kransdorf MJ, Sweet DE, Buetow PC, et al. Giant cell tumor in skeletally immature patients. Radiology 1992; 184:233.PubMedGoogle Scholar
  81. 81.
    Aoki J, Tanikawa H, Ishii K, et al. MR findings indicative of hemosiderin in giant-cell tumor of bone: frequency, cause, and diagnostic significance. Am J Roentgenol 1996; 166:145–148.Google Scholar
  82. 82.
    Cooper KL, Beabout JW, Dahlin DC. Giant cell tumor: ossification of soft tissue implants. Radiology 1984; 153:597–602.PubMedGoogle Scholar
  83. 83.
    Glass TA, Mills SE, Fechner RE, et al. Giant-cell reparative granuloma of the hands and feet. Radiology 1983; 149:65–68.PubMedGoogle Scholar
  84. 84.
    Ducou le Pointe H, Bruqieres P, Chevailer X, et al. Imaging if chordomas of mobile spine. J Neuroradiol 1991; 18:267–276.PubMedGoogle Scholar
  85. 85.
    Smith J, Ludwig RL, Masrcove RC. Sacrococcygeal chordoma: a clinicopathological study of 60 patients. Skeletal Radiol 1987; 16:33–44.Google Scholar
  86. 86.
    Yamaguchi T, Suzuki S. Ishiiwa H, et al. Benign notochordal cell tumors: a comparative histological study of benign notochordal cell tumors, classic chordomas, and notochordal vestiges of fetal intervertebral discs. Am J Surg Path 2004;28:756–761.PubMedGoogle Scholar
  87. 87.
    Sweet DE, Vinh TN, Devaney K. Cortical osteofibrous dysplasia of long bone and its relationship to adamantinoma: a clinicopathologic study of 30 cases. Am J Surg Path 1992; 16:282–290.PubMedGoogle Scholar
  88. 88.
    Sartoris DJ, Parker RB. Histiocytosis X: rate and pattern of resolution of osseous lesions. Radiology 1984; 152:679–684.PubMedGoogle Scholar
  89. 89.
    Braunstein EM. Hodgkin disease of bone: radiographic correlation with the histologic classification. Radiology 1980; 137:643–646.PubMedGoogle Scholar
  90. 90.
    Braunstein EM, White SJ. Non-Hodgkin lymphoma of bone. Radiology 1980; 135:59–63.PubMedGoogle Scholar
  91. 91.
    Heyning FH, Kroon HM, Hogerdoorn PC, et al. MR imaging characteristics in primary lymphoma of bone with emphasis on non-aggressive appearance. Skeletal Radiol 2007; 36:937–944.PubMedGoogle Scholar
  92. 92.
    Unni KK, Inward CY, Bridge JA, et al. Tumors of Bones and Joints (AFIP Atlas of Tumor Pathology). Washington, DC: ARP, 2005.Google Scholar
  93. 93.
    Reinus WR, Kyriakos M, Gilula LA, et al. Plasma cell tumors with calcified amyloid deposition mistaken for chondrosarcoma. Radiology 1993; 189:505–509.PubMedGoogle Scholar
  94. 94.
    Mahnken AH, Wildberger JE, Gehbauer G, et al. Multidetector CT of the spine in multiple myeloma: comparison with MR imaging and radiography. Am J Roentgenol 2002; 178:1429–1436.Google Scholar
  95. 95.
    Resnick D, Greenway GD, Bardwick PA, et al. Plasma-cell dyscrasia with polyneuropathy, organomegaly, endocrinopathy, M-proteinemia, and skin changes: the POEMS syndrome. Radiology 1981; 140:17–22.PubMedGoogle Scholar
  96. 96.
    Shapeero LG, Vanel D, Sundaram M, et al. Periosteal Ewing sarcoma. Radiology 1994; 191:825.PubMedGoogle Scholar
  97. 97.
    Reinus WR, Gilula LA. Radiology of Ewing’s sarcoma: intergroup Ewing’s sarcoma study (IESS). RadioGraphics 1984; 9:929–944.Google Scholar
  98. 98.
    Algra PR, Heimans JJ, Valk J, et al. Do metastases in vertebra begin in the body or pedicles? Am J Roentgenol 1992; 158:1275–1279.Google Scholar
  99. 99.
    Healey JH, Turnbull ADM, Miedema B, et al. Acrometastases: a study of twenty nine patients with osseous involvement of the hands and feet. J Bone Joint Surg 1986; 68A:743–746.Google Scholar
  100. 100.
    Coerkamp EG, Kroon HM. Cortical bone metastases. Radiology 1988; 169:525–528.PubMedGoogle Scholar
  101. 101.
    Hendrix RW, Rogers LF, Davis TM Jr. Cortical bone metastases. Radiology 1991; 181:409–413.PubMedGoogle Scholar
  102. 102.
    Yamaguchi T, Tamai K, Yamato M, et al. Intratrabecular pattern of tumors metastatic to bone. Cancer 1996; 78:1388–1394.PubMedGoogle Scholar
  103. 103.
    Ohuchida T, Nishitani H, Kamikawaji N, et al. “Adult T-cell leukemia/lymphoma” with bone demineralization. Skeletal Radiol 1985; 14:194–197.PubMedGoogle Scholar
  104. 104.
    Folpe AL, Fanberg-Smith JC, Billings SD, et al. Most osteomalacia-associated mesenchymal tumors are a single histopathologic entity: an analysis of 32 cases and comprehensive review of the literature. Am J Surg Path 2004; 28:1–30.PubMedGoogle Scholar
  105. 105.
    Nora FE, Dahlin DC, Beabout JW. Bizarre parosteal osteochondromatous proliferations of the hands and feet. Am J Surg Path 1983; 7:245–250.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of RadiologyIwate Medical University School of MedicineMoriokaJapan
  2. 2.Department of PathologyTemple University School of MedicinePhiladelphiaUSA

Personalised recommendations