Potential Role of Fascia in Chronic Musculoskeletal Pain

  • Helene M. Langevin
Part of the Contemporary Pain Medicine book series (CPM)

Summary

Many empirically developed physical therapy techniques as well as alternative manual therapies (e.g., Rolfing, myofascial release) are aimed at treating fascia and other “unspecialized” connective tissues; however, compared with muscles, joints, and the nervous system, very little research has been devoted to the role of fascia in chronic musculoskeletal pain. One possible reason for this discrepancy is the lack of an integrative pathophysiological model linking connective tissue to known musculoskeletal pain mechanisms . This chapter examines the potential role of fascia in musculoskeletal pain, especially regarding how connective tissue remodeling may interact with other factors such as fear of movement, muscle activity patterns and central nervous system plasticity.

Key Words

pain musculoskeletal connective tissue fascia remodeling fibrosis movement plasticity fibroblasts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Langevin HM, Sherman KJ, Pathophysiological model for chronic low back pain integrating connective tissue and nervous system mechanisms. Med Hypotheses, 2007;68(1):74–80.PubMedCrossRefGoogle Scholar
  2. 2.
    Tillman LJ, Cummings GS. 1992. Biologic Mechanisms of Connective Tissue Mutability, in Dynamics of Human Biologic Tissues Contemporary Perspectives in Rehabilitation. Volume 8. Currier DP, Nelson RM, Eds. F.A. Davis: Philadelphia, pp. 1–44.Google Scholar
  3. 3.
    Mow VC, Ratcliffe A. 1997. Structure and Function of Articular Cartilage and Meniscus, in Basic Orthopaedic Biomechanics. Mow VC, Hayes WC, Eds. Lippincott-Raven: Philadelphia, pp. 113–177.Google Scholar
  4. 4.
    Guilak F, Sah R, Setton LA. 1997. Physical Regulation of Cartilage Metabolism, in Basic Orthopaedic Biomechanics. Mow VC, Hayes WC, Eds. Lippincott-Raven: Philadelphia, pp. 179–207.Google Scholar
  5. 5.
    Woo S, Livesay GA, Runco TJ, Young EP. 1997. Structure and Function of Tendons and Ligaments, in Basic Orthopaedic Biomechanics. Mow VC, Hayes WC, Eds. Lippincott-Raven: Philadelphia, pp. 209–252.Google Scholar
  6. 6.
    Giancotti, FG, Ruoslahti E. Integrin signaling. Science 1999;285(5430):1028–1032.PubMedCrossRefGoogle Scholar
  7. 7.
    Chicurel ME, Chen CS, Ingber DE. Cellular control lies in the balance of forces. Curr Opin Cell Biol 1998;10(2):23–29.CrossRefGoogle Scholar
  8. 8.
    Langevin HM, et al., Dynamic fibroblast cytoskeletal response to subcutaneous tissue stretch ex vivo and in vivo. Am J Physiol Cell Physiol 2005;288(3):C747–C756.PubMedCrossRefGoogle Scholar
  9. 9.
    Langevin HM, et al. Subcutaneous tissue fibroblast cytoskeletal remodeling induced by acupuncture: Evidence for a mechanotransduction-based mechanism. J Cell Physiol, 2006;207(3):767–774.PubMedCrossRefGoogle Scholar
  10. 10.
    Langevin HM, et al. Fibroblast spreading induced by connective tissue stretch involves intracellular redistribution of alpha- and beta-actin. Histochem Cell Biol 2006;125(5):487–495.PubMedCrossRefGoogle Scholar
  11. 11.
    Chiquet M. Regulation of extracellular matrix gene expression by mechanical stress. Matrix Biol 1999;18(5):417–426.PubMedCrossRefGoogle Scholar
  12. 12.
    Brand RA. What do tissues and cells know of mechanics? Ann Med 1997;29(4):267–269.PubMedCrossRefGoogle Scholar
  13. 13.
    Cummings GS, Tillman LJ. 1992. Remodeling of Dense Connective Tissue in Normal Adult Tissues, in Dynamics of Human Biologic Tissues Contemporary Perspectives in Rehabilitation. Volume 8. Currier DP, Nelson RM, Eds. F.A. Davis: Philadelphia, pp. 45–73.Google Scholar
  14. 14.
    Gabbiani G. The myofibroblast in wound healing and fibrocontractive diseases. J Pathol 2003;200(4):500–503.PubMedCrossRefGoogle Scholar
  15. 15.
    Schleip R, Klingler W, Lehmann-Horn F. Active fascial contractility: Fascia may be able to contract in a smooth muscle-like manner and thereby influence musculoskeletal dynamics. Med Hypotheses 2005;65(2):273–277.PubMedCrossRefGoogle Scholar
  16. 16.
    Savolainen J, Vaananen K, Vihko V, et al. Effect of immobilization on collagen synthesis in rat skeletal muscles. Am J Physiol 1987;252(5 Pt 2):R883–R888.PubMedGoogle Scholar
  17. 17.
    Uebelhart D, Bernard J, Hartmann DJ, et al. Modifications of bone and connective tissue after orthostatic bedrest. Osteoporos Int 2000;11(1):59–67.PubMedCrossRefGoogle Scholar
  18. 18.
    Williams PE, Catanese T, Lucey EG, et al. The importance of stretch and contractile activity in the prevention of connective tissue accumulation in muscle. J Anat 1988;158:109–114.PubMedGoogle Scholar
  19. 19.
    Woo SLY, Mathews JV, Akeson WH, et al. Connective tissue response to immobility. Correlative study of biomechanical and biochemical measurements of normal and immobilized rabbit knees. Arthritis Rheum 1975;18(3): 257–264.PubMedCrossRefGoogle Scholar
  20. 20.
    Akeson WH, Amiel D, Woo SL. Immobility effects on synovial joints the pathomechanics of joint contracture. Biorheology 1980;17(1–2):95–110.PubMedGoogle Scholar
  21. 21.
    Armstrong CG, Mow VC. Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content. J Bone Joint Surg Am, 1982;64(1):88–94.PubMedGoogle Scholar
  22. 22.
    Lyons G, Eisenstein SM, Sweet MB. Biochemical changes in intervertebral disc degeneration. Biochim Biophys Acta 1981;673(4):443–453.PubMedGoogle Scholar
  23. 23.
    Jenkins JPR, Hickey DS, Zhu XP, et al. MR imaging of the intervertebral disc: a quantitative study. Br J Radiol 1985;58(692):705–709.PubMedCrossRefGoogle Scholar
  24. 24.
    Akeson WH, Amiel D, Mechanic GL, et al. Collagen cross-linking alterations in joint contractures: changes in the reducible cross-links in periarticular connective tissue collagen after nine weeks of immobilization. Connect Tissue Res 1977;5(1):15–19.PubMedGoogle Scholar
  25. 25.
    Akeson WH, Woo SLY, Amiel D, et al. The connective tissue response to immobility: biochemical changes in periarticular connective tissue of the immobilized rabbit knee. Clin Orthop Relat Res 1973;93:356–362.PubMedCrossRefGoogle Scholar
  26. 26.
    Finsterbush, A, Friedman B. Early changes in immobilized rabbits knee joints: a light and electron microscopic study. Clin Orthop 1973;92:305–319.PubMedCrossRefGoogle Scholar
  27. 27.
    Giannelli G, De Marzo A, Marinosci F, et al. Matrix metalloproteinase imbalance in muscle disuse atrophy. Histol Histopathol 2005;20(1):99–106.PubMedGoogle Scholar
  28. 28.
    Han XY, Wang W, Myllyla R, et al., mRNA levels for alpha-subunit of prolyl 4-hydroxylase and fibrillar collagens in immobilized rat skeletal muscle. J Appl Physiol 1999;87(1):90–96.PubMedGoogle Scholar
  29. 29.
    Kovacs EJ, DiPietro LA, Fibrogenic cytokines and connective tissue production. FASEB J 1994;8(11):854–861.PubMedGoogle Scholar
  30. 30.
    Grodin AJ, Cantu RI. 1993. Soft Tissue Mobilization, in Rational Manual Therapies. Basmajian JV, Nyberg R, Eds. Baltimore: Williams & Wilkins, pp. xii and 484.Google Scholar
  31. 31.
    Leask A, Abraham DJ, TGF-beta signaling and the fibrotic response. FASEB J 2004;18(7):816–827.PubMedCrossRefGoogle Scholar
  32. 32.
    Hunt TK, Banda MJ, Silver IA. Cell interactions in post-traumatic fibrosis. Ciba Found Symp 1985;114:127–149.PubMedGoogle Scholar
  33. 33.
    Williams PE, Goldspink G. Connective tissue changes in immobilised muscle. J Anat 1984;138 (Pt 2):343–350.PubMedGoogle Scholar
  34. 34.
    Hong CZ, Simons DG. Pathophysiologic and electrophysiologic mechanisms of myofascial trigger points. Arch Phys Med Rehabil 1998;79(7):863–872.PubMedCrossRefGoogle Scholar
  35. 35.
    Bohr T. Problems with myofascial pain syndrome and fibromyalgia syndrome. Neurology 1996;46(3):593–597.PubMedGoogle Scholar
  36. 36.
    Travell JG. 1990. Chronic myofascial pain syndromes. Mysteries of the History. In Advances in Pain Research and Therapy. Friction JR, Awad E, Eds. New York: Raven Press Ltd. pp. 129–137.Google Scholar
  37. 37.
    Shah JP, Phillips TM, Danoff JV, et al. An in-vivo microanalytical technique for measuring the local biochemical milieu of human skeletal muscle. J Appl Physiol 2005.Google Scholar
  38. 38.
    Hurwitz EL, Morgenstern H, Yu F. Cross-sectional and longitudinal associations of low-back pain and related disability with psychological distress among patients enrolled in the UCLA Low-Back Pain Study. J Clin Epidemiol 2003;56(5):463–471.PubMedCrossRefGoogle Scholar
  39. 39.
    Dionne CE. Psychological distress confirmed as predictor of long-term back-related functional limitations in primary care settings. J Clin Epidemiol 2005;58(7):714–718.PubMedCrossRefGoogle Scholar
  40. 40.
    Pincus T, Burton KA, Vogel S, et al. A systematic review of psychological factors as predictors of chronicity/disability in prospective cohorts of low back pain. Spine 2002;27(5):E109–E120.PubMedCrossRefGoogle Scholar
  41. 41.
    Swinkels-Meewisse IEJ, Roelofs J, Oostenclorp RAB, et al. Acute low back pain: pain-related fear and pain catastrophizing influence physical performance and perceived disability. Pain 2006;120:36–43.Google Scholar
  42. 42.
    van Tulder MW, Koes B, Malmivaara A. Outcome of non-invasive treatment modalities on back pain: an evidence-based review. Eur Spine J 2006;15(Suppl 1):S64–S81.PubMedCrossRefGoogle Scholar
  43. 43.
    Hurwitz EL, Morgenstern H, Chiao C. Effects of recreational physical activity and back exercises on low back pain and psychological distress: findings from the UCLA Low Back Pain Study. Am J Public Health 2005;95(10):1817–1824.PubMedCrossRefGoogle Scholar
  44. 44.
    Grotle M, Vollestad NK, Veierod MB, et al. Fear-avoidance beliefs and distress in relation to disability in acute and chronic low back pain. Pain 2004;112(3):343–352.PubMedCrossRefGoogle Scholar
  45. 45.
    Reeves NP, Cholewicki J, Milner TE. Muscle reflex classification of low-back pain. J Electromyogr Kinesiol 2005;15(1):53–60.PubMedCrossRefGoogle Scholar
  46. 46.
    Grimstone SK, Hodges PW. Impaired postural compensation for respiration in people with recurrent low back pain. Exp Brain Res 2003;151(2):218–224.PubMedCrossRefGoogle Scholar
  47. 47.
    Mok, NW, Brauer SG, Hodges PW. Hip strategy for balance control in quiet standing is reduced in people with low back pain. Spine 2004;29(6):E107–E112.PubMedCrossRefGoogle Scholar
  48. 48.
    Roland MO. A critical review of the evidence for a pain-spasm-pain cycle in spinal disorders. Clin Biomech 1986;1(2):102–109.CrossRefGoogle Scholar
  49. 49.
    Lund JP, Donga R, Widmer CG, et al. The pain-adaptation model: a discussion of the relationship between chronic musculoskeletal pain and motor activity. Can J Physiol Pharmacol 1991;69(5): 683–694.PubMedGoogle Scholar
  50. 50.
    Moseley GL, Nicholas MK, Hodges PW. Does anticipation of back pain predispose to back trouble? Brain 2004;127(Pt 10):2339–2347.PubMedCrossRefGoogle Scholar
  51. 51.
    Willis WD, Coggeshall RE. 1991. Sensory Mechanisms of the Spinal Cord, 2nd edition. Volume XIV. New York: Plenum Press, p 575.Google Scholar
  52. 52.
    Koltzenburg M. The changing sensitivity in the life of the nociceptor. Pain 1999;(Suppl 6):S93–S102.Google Scholar
  53. 53.
    Waldmann R, Champigny G, Bassilana F, et al. A proton-gated cation channel involved in acid-sensing. Nature 1997;386(6621):173–177.PubMedCrossRefGoogle Scholar
  54. 54.
    Woolf CJ, Salter MW. Neuronal plasticity: increasing the gain in pain. Science 2000;288(5472): 1765–1769.Google Scholar
  55. 55.
    Bessou P, Laporte Y. Etude des recepteurs musculaires innerves par les fibres afferents du groupe III (fibres myelinisees fines) chez le chat. Arch Ital Biol 1961;99:293–321.Google Scholar
  56. 56.
    Ansel JC, Kaynard AH, Armstrong CA, et al. Skin–nervous system interactions. J Invest Dermatol 1996;106(1):198–204.PubMedCrossRefGoogle Scholar
  57. 57.
    Barnard JA, Lyons RM, Moses HL. The cell biology of transforming growth factor beta. Biochim Biophys Acta 1990;1032(1):79–87.PubMedGoogle Scholar
  58. 58.
    Sporn MB, Roberts AB. TGF-beta: problems and prospects. Cell Regul 1990;1(12):875–882.PubMedGoogle Scholar
  59. 59.
    Ji RR, Woolf CJ. Neuronal plasticity and signal transduction in nociceptive neurons: implications for the initiation and maintenance of pathological pain. Neurobiol Dis 2001;8(1):1–10.PubMedCrossRefGoogle Scholar
  60. 60.
    Boal RW, Gillette RG. Central neuronal plasticity, low back pain and spinal manipulative therapy. J Manipulative Physiol Ther 2004;27(5):314–326.PubMedCrossRefGoogle Scholar
  61. 61.
    Coderre TJ, Katz J, Vaccarino AL, et al. Contribution of central neuroplasticity to pathological pain: review of clinical and experimental evidence. Pain 1993;52(3):259–285.PubMedCrossRefGoogle Scholar
  62. 62.
    Bolay H, Moskowitz MA. Mechanisms of pain modulation in chronic syndromes. Neurology 2002;59(5 Suppl 2):S2–S7.PubMedGoogle Scholar
  63. 63.
    Ikeda H, Heinke B, Ruscheweyh R, et al. Synaptic plasticity in spinal lamina I projection neurons that mediate hyperalgesia. Science 2003;299(5610):1237–1240.PubMedCrossRefGoogle Scholar
  64. 64.
    Gebhart GF. Descending modulation of pain. Neurosci Biobehav Rev 2004;27(8):729–737.PubMedCrossRefGoogle Scholar
  65. 65.
    Apkarian AV, Bushnell MC, Treede RD, et al. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 2005;9(4):463–484.PubMedCrossRefGoogle Scholar
  66. 66.
    Flor H, Cortical reorganisation and chronic pain: implications for rehabilitation. J Rehabil Med 2003(41 Suppl):66–72.Google Scholar
  67. 67.
    Melzack R. From the gate to the neuromatrix. Pain 1999;(Suppl 6):S121–S126.Google Scholar
  68. 68.
    Moseley GL. A pain neuromatrix approach to patients with chronic pain. Man Ther 2003;8(3): 130–140.PubMedCrossRefGoogle Scholar
  69. 69.
    Khalsa PS. Biomechanics of musculoskeletal pain: dynamics of the neuromatrix. J Electromyogr Kinesiol 2004;14(1):109–120.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Helene M. Langevin

There are no affiliations available

Personalised recommendations