Restoring Host Antitumoral Immunity: How Coregulatory Molecules Are Changing the Approach to the Management of Renal Cell Carcinoma

  • Brant A. Inman
  • Xavier Frigola
  • Haidong Dong
  • James C. Yang
  • Eugene D. Kwon


Renal cell carcinoma (RCC) is a tumor whose past is filled with failed treatments and unpreventable patient death. Fortunately, science is progressing at an ever increasing rate and novel discoveries are bringing new possibilities for patients with RCC. The future of RCC treatment is bright, and we believe that immunotherapy will realize much of its potential within the next decade.

In this chapter, we discuss one of the newest discoveries in RCC tumor immunology: T-cell coinhibition. This chapter will first introduce key concepts of T-cell function and tumor immunology that are necessary for a good understanding of how coinhibition works. We then describe some of the key defects in immunity that are present in RCC. Finally, we propose a model to explain why certain renal tumors are eliminated by the immune system and others are not.


Costimulation Coinhibition Tumor immunology Immunoediting Immunotherapy T lymphocyte Renal cell carcinoma 



Antigen-presenting cell


Cluster of differentiation


Dendritic cell






Major histocompatibility complex


Natural killer cell


Renal cell carcinoma


Supramolecular activation complex


Cytotoxic T lymphocyte


T-cell receptor


Helper T lymphocyte


Tumor necrosis factor


Regulatory T lymphocyte.


  1. 1.
    Tonegawa S, Steinberg C, Dube S, Bernardini A. Evidence for somatic generation of antibody diversity. Proc Natl Acad Sci USA Oct 1974;71(10):4027–4031.PubMedCrossRefGoogle Scholar
  2. 2.
    Tonegawa S. Somatic generation of antibody diversity. Nature. Apr 14 1983;302(5909): 575–581.PubMedCrossRefGoogle Scholar
  3. 3.
    Toyonaga B, Yanagi Y, Suciu-Foca N, Minden M, Mak TW. Rearrangements of T cell receptor gene YT35 in human DNA from thymic leukaemia T cell lines and functional T cell clones. Nature. Sep 27–Oct 3 1984;311(5984):385–387.PubMedCrossRefGoogle Scholar
  4. 4.
    Chien YH, Gascoigne NR, Kavaler J, Lee NE, Davis MM. Somatic recombination in a murine T cell receptor gene. Nature. May 24–30 1984;309(5966):322–326.PubMedCrossRefGoogle Scholar
  5. 5.
    Owen RD. Immunogenic consequences of vascular anastomoses between bovine twins. Science. 1945;102:400–401.PubMedCrossRefGoogle Scholar
  6. 6.
    Mak TW, Saunders ME. T cell development. The Immune Response: Basic and Clinical Principles. New York: Elsevier Academic Press; 2006:341–372.Google Scholar
  7. 7.
    Zheng B, Han S, Zhu Q, Goldsby R, Kelsoe G. Alternative pathways for the selection of antigen-specific peripheral T cells. Nature. Nov 21 1996;384(6606):263–266.PubMedCrossRefGoogle Scholar
  8. 8.
    Gett AV, Sallusto F, Lanzavecchia A, Geginat J. T cell fitness determined by signal strength. Nat Immunol. Apr 2003;4(4):355–360.PubMedCrossRefGoogle Scholar
  9. 9.
    Mirshahidi S, Huang CT, Sadegh-Nasseri S. Anergy in peripheral memory CD4(+) T cells induced by low avidity engagement of T cell receptor. J Exp Med. Sep 17 2001;194(6): 719–731.PubMedCrossRefGoogle Scholar
  10. 10.
    Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Annu Rev Immunol. 1996;14:233–258.PubMedCrossRefGoogle Scholar
  11. 11.
    Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol. 1994;12: 991–1045.PubMedGoogle Scholar
  12. 12.
    Quill H. Anergy as a mechanism of peripheral T cell tolerance. J Immunol. Feb 15 1996;156(4): 1325–1327.PubMedGoogle Scholar
  13. 13.
    Schwartz RH. T cell anergy. Annu Rev Immunol. 2003;21:305–334.PubMedCrossRefGoogle Scholar
  14. 14.
    Wells AD, Li XC, Li Y, et al. Requirement for T cell apoptosis in the induction of peripheral transplantation tolerance. Nat Med. Nov 1999;5(11):1303–1307.PubMedCrossRefGoogle Scholar
  15. 15.
    Burkly LC, Lo D, Kanagawa O, Brinster RL, Flavell RA. T cell tolerance by clonal anergy in transgenic mice with nonlymphoid expression of MHC class II I-E. Nature. Nov 30 1989;342(6249):564–566.PubMedCrossRefGoogle Scholar
  16. 16.
    Burkly LC, Lo D, Flavell RA. Tolerance in transgenic mice expressing major histocompatibility molecules extrathymically on pancreatic cells. Science. Jun 15 1990;248(4961):1364–1368.PubMedCrossRefGoogle Scholar
  17. 17.
    Ochsenbein AF, Klenerman P, Karrer U, et al. Immune surveillance against a solid tumor fails because of immunological ignorance. Proc Natl Acad Sci USA. Mar 2 1999;96(5): 2233–2238.PubMedCrossRefGoogle Scholar
  18. 18.
    Ohashi PS, Oehen S, Buerki K, et al. Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice. Cell. Apr 19 1991;65(2):305–317.PubMedCrossRefGoogle Scholar
  19. 19.
    Rocha B, Grandien A, Freitas AA. Anergy and exhaustion are independent mechanisms of peripheral T cell tolerance. J Exp Med. Mar 1 1995;181(3):993–1003.PubMedCrossRefGoogle Scholar
  20. 20.
    Reignat S, Webster GJ, Brown D, et al. Escaping high viral load exhaustion: CD8 cells with altered tetramer binding in chronic hepatitis B virus infection. J Exp Med. May 6 2002;195(9):1089–1101.PubMedCrossRefGoogle Scholar
  21. 21.
    Robinson HL. T cells versus HIV-1: fighting exhaustion as well as escape. Nat Immunol. Jan 2003;4(1):12–13.PubMedCrossRefGoogle Scholar
  22. 22.
    Barber DL, Wherry EJ, Masopust D, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. Feb 9 2006;439(7077):682–687.PubMedCrossRefGoogle Scholar
  23. 23.
    Asano M, Toda M, Sakaguchi N, Sakaguchi S. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J Exp Med. Aug 1 1996;184(2): 387–396.PubMedCrossRefGoogle Scholar
  24. 24.
    Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. Feb 14 2003;299(5609):1057–1061.PubMedCrossRefGoogle Scholar
  25. 25.
    Sakaguchi S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol. 2004;22:531–562.PubMedCrossRefGoogle Scholar
  26. ###.
    Annacker O, Pimenta-Araujo R, Burlen-Defranoux O, Bandeira A. On the ontogeny and physiology of regulatory T cells. Immunol Rev. Aug 2001;182:5–17.PubMedCrossRefGoogle Scholar
  27. 27.
    O'Garra A, Vieira P. Regulatory T cells and mechanisms of immune system control. Nat Med. Aug 2004;10(8):801–805.PubMedCrossRefGoogle Scholar
  28. 28.
    Gershon RK, Kondo K. Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology. May 1970;18(5):723–737.PubMedGoogle Scholar
  29. 29.
    Gershon RK, Kondo K. Infectious immunological tolerance. Immunology. Dec 1971;21(6): 903–914.PubMedGoogle Scholar
  30. 30.
    Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. Aug 1 1995;155(3):1151–1164.PubMedGoogle Scholar
  31. 31.
    Thornton AM, Shevach EM. CD4+ CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med. Jul 20 1998;188(2): 287–296.PubMedCrossRefGoogle Scholar
  32. 32.
    Ng WF, Duggan PJ, Ponchel F, et al. Human CD4(+)CD25(+) cells: a naturally occurring population of regulatory T cells. Blood. Nov 1 2001;98(9):2736–2744.PubMedCrossRefGoogle Scholar
  33. 33.
    Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA. CD4+ CD25 high regulatory cells in human peripheral blood. J Immunol. Aug 1 2001;167(3):1245–1253.Google Scholar
  34. 34.
    Fontenot JD, Rudensky AY. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol. Apr 2005;6(4):331–337.PubMedCrossRefGoogle Scholar
  35. 35.
    Ziegler SF. FOXP3: of Mice and Men. Annu Rev Immunol. 2006;24:209–226.PubMedCrossRefGoogle Scholar
  36. 36.
    Yang ZZ, Novak AJ, Stenson MJ, Witzig TE, Ansell SM. Intratumoral CD4+ CD25+ regulatory T cell-mediated suppression of infiltrating CD4+ T cells in B-cell non-Hodgkin lym-phoma. Blood. May 1 2006;107(9):3639–3646.PubMedCrossRefGoogle Scholar
  37. 37.
    Cesana GC, DeRaffele G, Cohen S, et al. Characterization of CD4+ CD25+ regulatory T cells in patients treated with high-dose interleukin-2 for metastatic melanoma or renal cell carcinoma. J Clin Oncol. Mar 1 2006;24(7):1169–1177.PubMedCrossRefGoogle Scholar
  38. 38.
    Onizuka S, Tawara I, Shimizu J, Sakaguchi S, Fujita T, Nakayama E. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res. Jul 1 1999;59(13):3128–3133.PubMedGoogle Scholar
  39. 39.
    Sutmuller RP, van Duivenvoorde LM, van Elsas A, et al. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med. Sep 17 2001;194(6):823–832.PubMedCrossRefGoogle Scholar
  40. 40.
    Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. Sep 2004;10(9): 942–949.PubMedCrossRefGoogle Scholar
  41. 41.
    Ehrlich P. Über den jetzigen Stand der Karzinomforschung. Ned Tijdschr Geneeskd. 1909;5:273–290.Google Scholar
  42. 42.
    Burnet FM. The concept of immunological surveillance. Prog Exp Tumor Res. 1970;13: 1–27.PubMedGoogle Scholar
  43. 43.
    Thomas L. Discussion. In: Lawrence HS, ed. Cellular and Humoral Aspects of Hypertensive States. Vol 1. New York: P.B. Hoeber; 1959;529–532.Google Scholar
  44. 44.
    Rygaard J, Povlsen CO. The mouse mutant nude does not develop spontaneous tumours. An argument against immunological surveillance. Acta Pathologica et Microbiologica Scandinavica – Section B, Microbiology & Immunology. Feb 1974;82(1):99–106.Google Scholar
  45. 45.
    Rygaard J, Povlsen CO. Is immunological surveillance not a cell-mediated immune function? Transplantation. Jan 1 1974;17(1):135–136.PubMedCrossRefGoogle Scholar
  46. 46.
    Stutman O. Chemical carcinogenesis in nude mice: comparison between nude mice from homozygous matings and heterozygous matings and effect of age and carcinogen dose. J Natl Cancer Inst. Feb 1979;62(2):353–358.PubMedGoogle Scholar
  47. 47.
    Carrel A. Growth-promoting function of leukocytes. J Exp Med. 1922;36:385–391.PubMedCrossRefGoogle Scholar
  48. 48.
    Fraumeni JF, Jr., Hoover R. Immunosurveillance and cancer: epidemiologic observations. Natl Cancer Inst Monogr. Dec 1977;47:121–126.PubMedGoogle Scholar
  49. 49.
    Prehn RT. An adaptive immune reaction may be necessary for cancer development. Theor Biol Med Model. Feb 3 2006;3(1):6.PubMedCrossRefGoogle Scholar
  50. 50.
    Herberman RB, Holden HT. Natural killer cells as antitumor effector cells. J Natl Cancer Inst. Mar 1979;62(3):441–445.PubMedGoogle Scholar
  51. 51.
    Gidlund M, Orn A, Pattengale PK, Jansson M, Wigzell H, Nilsson K. Natural killer cells kill tumour cells at a given stage of differentiation. Nature. Aug 27 1981;292(5826):848–850.PubMedCrossRefGoogle Scholar
  52. 52.
    Girardi M, Oppenheim DE, Steele CR, et al. Regulation of cutaneous malignancy by gammadelta T cells. Science. Oct 19 2001;294(5542):605–609.PubMedCrossRefGoogle Scholar
  53. 53.
    Girardi M. Immunosurveillance and immunoregulation by gammadelta T cells. J Invest Dermatol. Jan 2006;126(1):25–31.PubMedCrossRefGoogle Scholar
  54. 54.
    Smyth MJ, Thia K Y, Street SE, MacGregor D, Godfrey DI, Trapani JA. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J Exp Med. Sep 4 2000;192(5):755–760.PubMedCrossRefGoogle Scholar
  55. 55.
    Kaplan DH, Shankaran V, Dighe AS, et al. Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA. Jun 23 1998;95(13):7556–7561.PubMedCrossRefGoogle Scholar
  56. 56.
    Ikeda H, Old LJ, Schreiber RD. The roles of IFN gamma in protection against tumor development and cancer immunoediting. Cytokine Growth Factor Rev. Apr 2002;13(2):95–109.PubMedCrossRefGoogle Scholar
  57. 57.
    Lanier LL. A renaissance for the tumor immunosurveillance hypothesis. Nat Med. Nov 2001;7(11):1178–1180.PubMedCrossRefGoogle Scholar
  58. 58.
    Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22:329–360.PubMedCrossRefGoogle Scholar
  59. 59.
    Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immuno-surveillance to tumor escape. Nat Immunol. Nov 2002;3(11):991–998.PubMedCrossRefGoogle Scholar
  60. 60.
    Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. Aug 2004;21(2):137–148.PubMedCrossRefGoogle Scholar
  61. 61.
    Dunn GP, Bruce AT, Sheehan KC, et al. A critical function for type I interferons in cancer immunoediting. Nat Immunol. Jul 2005;6(7):722–729.PubMedCrossRefGoogle Scholar
  62. 62.
    Schreiber RD. Cancer vaccines 2004 opening address: the molecular and cellular basis of cancer immunosurveillance and immunoediting. Cancer Immun. Apr 6 2005;5(Suppl 1):1.PubMedGoogle Scholar
  63. 63.
    Stutman O. Cellular regulation of tumor immunity, an overview. Prog Clin Biol Res. 1983;132B:311–323.PubMedGoogle Scholar
  64. 64.
    Lanzavecchia A, Lezzi G, Viola A. From TCR engagement to T cell activation: a kinetic view of T cell behavior. Cell. Jan 8 1999;96(1):1–4.PubMedCrossRefGoogle Scholar
  65. 65.
    Tooley AJ, Jacobelli J, Moldovan MC, Douglas A, Krummel MF. T cell synapse assembly: proteins, motors and the underlying cell biology. Semin Immunol. Feb 2005;17(1):65–75.PubMedCrossRefGoogle Scholar
  66. 66.
    Viola A, Lanzavecchia A. T cell activation and the dynamic world of rafts. APMIS. Jul 1999;107(7):615–623.PubMedCrossRefGoogle Scholar
  67. 67.
    Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol. 2005;23:515–548.PubMedCrossRefGoogle Scholar
  68. 68.
    Rietz C, Chen L. New B7 family members with positive and negative costimulatory function. Am J Transplant. Jan 2004;4(1):8–14.PubMedCrossRefGoogle Scholar
  69. 69.
    Subudhi SK, Alegre ML, Fu YX. The balance of immune responses: costimulation versus coinhibition. J Mol Med. Mar 2005;83(3):193–202.PubMedCrossRefGoogle Scholar
  70. 70.
    Riley JL, June CH. The CD28 family: a T cell rheostat for therapeutic control of T cell activation. Blood. Jan 1 2005;105(1):13–21.PubMedCrossRefGoogle Scholar
  71. 71.
    Orabona C, Grohmann U, Belladonna ML, et al. CD28 induces immunostimulatory signals in dendritic cells via CD80 and CD86. Nat Immunol. Nov 2004;5(11):1134–1142.PubMedCrossRefGoogle Scholar
  72. 72.
    Fallarino F, Grohmann U, Hwang KW, et al. Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol. Dec 2003;4(12):1206–1212.PubMedCrossRefGoogle Scholar
  73. 73.
    Grohmann U, Orabona C, Fallarino F, et al. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol. Nov 2002;3(11):1097–1101.PubMedCrossRefGoogle Scholar
  74. 74.
    Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol. Sep 2003;3(9):745–756.PubMedCrossRefGoogle Scholar
  75. 75.
    Watts TH. TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol. 2005;23:23–68.PubMedCrossRefGoogle Scholar
  76. 76.
    Croft M. Co-stimulatory members of the TNFR family: keys to effective T cell immunity? Nat Rev Immunol. Aug 2003;3(8):609–620.PubMedCrossRefGoogle Scholar
  77. 77.
    Coyle AJ, Lehar S, Lloyd C, et al. The CD28-related molecule ICOS is required for effective T cell-dependent immune responses. Immunity. Jul 2000;13(1):95–105.PubMedCrossRefGoogle Scholar
  78. 78.
    Beier KC, Hutloff A, Dittrich AM, et al. Induction, binding specificity and function of human ICOS. Eur J Immunol. Dec 2000;30(12):3707–3717.PubMedCrossRefGoogle Scholar
  79. 79.
    McAdam AJ, Chang TT, Lumelsky AE, et al. Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4+ T cells. J Immunol. Nov 1 2000;165(9):5035–5040.PubMedGoogle Scholar
  80. 80.
    Yoshinaga SK, Whoriskey JS, Khare SD, et al. T cell co-stimulation through B7RP-1 and ICOS. Nature. Dec 16 1999;402(6763):827–832.PubMedCrossRefGoogle Scholar
  81. 81.
    Ling V, Wu PW, Finnerty HF, et al. Cutting edge: identification of GL50, a novel B7-like protein that functionally binds to ICOS receptor. J Immunol. Feb 15 2000;164(4): 1653–1657.PubMedGoogle Scholar
  82. 82.
    Wang S, Zhu G, Chapoval AI, et al. Costimulation of T cells by B7-H2, a B7-like molecule that binds ICOS. Blood. Oct 15 2000;96(8):2808–2813.PubMedGoogle Scholar
  83. 83.
    Swallow MM, Wallin JJ, Sha WC. B7h, a novel costimulatory homolog of B7-1 and B7.2, is induced by TNFalpha. Immunity. Oct 1999;11(4):423–432.PubMedCrossRefGoogle Scholar
  84. 84.
    Liang L, Porter EM, Sha WC. Constitutive expression of the B7h ligand for inducible cos-timulator on naive B cells is extinguished after activation by distinct B cell receptor and interleukin 4 receptor-mediated pathways and can be rescued by CD40 signaling. J Exp Med. Jul 1 2002;196(1):97–108.PubMedCrossRefGoogle Scholar
  85. 85.
    Hutloff A, Dittrich AM, Beier KC, et al. ICOS is an inducible T cell co-stimulator structurally and functionally related to CD28. Nature. Jan 21 1999;397(6716):263–266.PubMedCrossRefGoogle Scholar
  86. 86.
    Gonzalo JA, Tian J, Delaney T, et al. ICOS is critical for T helper cell-mediated lung mucosal inflammatory responses. Nat Immunol. Jul 2001;2(7):597–604.PubMedCrossRefGoogle Scholar
  87. 87.
    Sperling AI, Bluestone JA. ICOS costimulation: it's not just for TH2 cells anymore. Nat Immunol. Jul 2001;2(7):573–574.PubMedCrossRefGoogle Scholar
  88. 88.
    Khayyamian S, Hutloff A, Buchner K, et al. ICOS-ligand, expressed on human endothelial cells, costimulates Th1 and Th2 cytokine secretion by memory CD4+ T cells. Proc Natl Acad Sci USA. Apr 30 2002;99(9):6198–6203.PubMedCrossRefGoogle Scholar
  89. 89.
    Tafuri A, Shahinian A, Bladt F, et al. ICOS is essential for effective T-helper-cell responses. Nature. Jan 4 2001;409(6816):105–109.PubMedCrossRefGoogle Scholar
  90. 90.
    Dong C, Juedes AE, Temann UA, et al. ICOS co-stimulatory receptor is essential for T cell activation and function. Nature. Jan 4 2001;409(6816):97–101.PubMedCrossRefGoogle Scholar
  91. 91.
    McAdam AJ, Greenwald RJ, Levin MA, et al. ICOS is critical for CD40-mediated antibody class switching. Nature. Jan 4 2001;409(6816):102–105.PubMedCrossRefGoogle Scholar
  92. 92.
    Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. Nov 1992;11(11):3887–3895.PubMedGoogle Scholar
  93. 93.
    Agata Y, Kawasaki A, Nishimura H, et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol. May 1996;8(5):765–772.PubMedCrossRefGoogle Scholar
  94. 94.
    Dong H, Zhu G, Tamada K, Chen L. B7-H1, a third member of the B7 family, co-stimulates T cell proliferation and interleukin-10 secretion. Nat Med. Dec 1999;5(12):1365–1369.PubMedCrossRefGoogle Scholar
  95. 95.
    Latchman Y, Wood CR, Chernova T, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. Mar 2001;2(3):261–268.PubMedCrossRefGoogle Scholar
  96. 96.
    Subudhi SK, Zhou P, Yerian LM, et al. Local expression of B7-H1 promotes organ-specific autoimmunity and transplant rejection. J Clin Invest. Mar 2004;113(5):694–700.PubMedGoogle Scholar
  97. 97.
    Oflazoglu E, Swart DA, Anders-Bartholo P, et al. Paradoxical role of programmed death-1 lig-and 2 in Th2 immune responses in vitro and in a mouse asthma model in vivo. Eur J Immunol. Dec 2004;34(12):3326–3336.PubMedCrossRefGoogle Scholar
  98. 98.
    Del Rio ML, Penuelas-Rivas G, Dominguez-Perles R, Ramirez P, Parrilla P, Rodriguez-Barbosa JI. Antibody-mediated signaling through PD-1 costimulates T cells and enhances CD28-dependent proliferation. Eur J Immunol. Dec 2005;35(12):3545–3560.PubMedCrossRefGoogle Scholar
  99. 99.
    Tseng S Y, Otsuji M, Gorski K, et al. B7-DC, a new dendritic cell molecule with potent cos-timulatory properties for T cells. J Exp Med. Apr 2 2001;193(7):839–846.PubMedCrossRefGoogle Scholar
  100. 100.
    Zhang X, Schwartz JC, Guo X, et al. Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity. Mar 2004;20(3):337–347.PubMedCrossRefGoogle Scholar
  101. 101.
    Liang SC, Latchman YE, Buhlmann JE, et al. Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. Eur J Immunol. Oct 2003;33(10):2706–2716.PubMedCrossRefGoogle Scholar
  102. 102.
    Loke P, Allison JP. PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. Proc Natl Acad Sci USA. Apr 29 2003;100(9):5336–5341.PubMedCrossRefGoogle Scholar
  103. 103.
    Tsushima F, Iwai H, Otsuki N, et al. Preferential contribution of B7-H1 to programmed death-1-mediated regulation of hapten-specific allergic inflammatory responses. Eur J Immunol. Oct 2003;33(10):2773–2782.PubMedCrossRefGoogle Scholar
  104. 104.
    Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T cell apoptosis:a potential mechanism of immune evasion. Nat Med. Aug 2002;8(8):793–800.PubMedGoogle Scholar
  105. 105.
    Ansari MJ, Salama AD, Chitnis T, et al. The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J Exp Med. Jul 7 2003;198(1):63–69.PubMedCrossRefGoogle Scholar
  106. 106.
    Hunter KW, Jr., DuPre S, Redelman D. Microparticulate beta-glucan upregulates the expression of B7-1, B7.2, B7-H1, but not B7-DC on cultured murine peritoneal macrophages. Immunol Lett. Apr 30 2004;93(1):71–78.PubMedCrossRefGoogle Scholar
  107. 107.
    Youngnak P, Kozono Y, Kozono H, et al. Differential binding properties of B7-H1 and B7-DC to programmed death-1. Biochem Biophys Res Commun. Aug 1 2003;307(3):672–677.PubMedCrossRefGoogle Scholar
  108. 108.
    Wang S, Bajorath J, Flies DB, Dong H, Honjo T, Chen L. Molecular modeling and functional mapping of B7-H1 and B7-DC uncouple costimulatory function from PD-1 interaction. J Exp Med. May 5 2003;197(9):1083–1091.PubMedCrossRefGoogle Scholar
  109. 109.
    Shin T, Kennedy G, Gorski K, et al. Cooperative B7-1/2 (CD80/CD86) and B7-DC costimulation of CD4+ T cells independent of the PD-1 receptor. J Exp Med. Jul 7 2003;198(1):31–38.PubMedCrossRefGoogle Scholar
  110. 110.
    Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol. Jul 15 2004;173(2):945–954.PubMedGoogle Scholar
  111. 111.
    Sheppard KA, Fitz LJ, Lee JM, et al. PD-1 inhibits T cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Lett. Sep 10 2004;574(1–3):37–41.PubMedCrossRefGoogle Scholar
  112. 112.
    Okazaki T, Maeda A, Nishimura H, Kurosaki T, Honjo T. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyro-sine phosphatase 2 to phosphotyrosine. Proc Natl Acad Sci USA. Nov 20 2001;98(24):13866–13871.PubMedCrossRefGoogle Scholar
  113. 113.
    Sidorenko SP, Clark EA. The dual-function CD150 receptor subfamily:the viral attraction. Nat Immunol. Jan 2003;4(1):19–24.PubMedCrossRefGoogle Scholar
  114. 114.
    Watanabe N, Gavrieli M, Sedy JR, et al. BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat Immunol. Jul 2003;4(7):670–679.PubMedCrossRefGoogle Scholar
  115. 115.
    Gavrieli M, Watanabe N, Loftin SK, Murphy TL, Murphy KM. Characterization of phos-photyrosine binding motifs in the cytoplasmic domain of B and T lymphocyte attenuator required for association with protein tyrosine phosphatases SHP-1 and SHP-2. Biochem Biophys Res Commun. Dec 26 2003;312(4):1236–1243.PubMedCrossRefGoogle Scholar
  116. 116.
    Carreno BM, Collins M. BTLA:a new inhibitory receptor with a B7-like ligand. Trends Immunol. Oct 2003;24(10):524–527.PubMedCrossRefGoogle Scholar
  117. 117.
    Zang X, Loke P, Kim J, Murphy K, Waitz R, Allison JP. B7x:a widely expressed B7 family member that inhibits T cell activation. Proc Natl Acad Sci USA. Sep 2 2003;100(18):10388–10392.PubMedCrossRefGoogle Scholar
  118. 118.
    Sedy JR, Gavrieli M, Potter KG, et al. B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nat Immunol. Jan 2005;6(1):90–98.PubMedCrossRefGoogle Scholar
  119. 119.
    Gonzalez LC, Loyet KM, Calemine-Fenaux J, et al. A coreceptor interaction between the CD28 and TNF receptor family members B and T lymphocyte attenuator and herpesvirus entry mediator. Proc Natl Acad Sci USA. Jan 25 2005;102(4):1116–1121.PubMedCrossRefGoogle Scholar
  120. 120.
    Croft M. The evolving crosstalk between co-stimulatory and co-inhibitory receptors:HVEM-BTLA. Trends Immunol. Jun 2005;26(6):292–294.PubMedCrossRefGoogle Scholar
  121. 121.
    Compaan DM, Gonzalez LC, Tom I, Loyet KM, Eaton D, Hymowitz SG. Attenuating lymphocyte activity:the crystal structure of the BTLA-HVEM complex. J Biol Chem. Nov 25 2005;280(47):39553–39561.PubMedCrossRefGoogle Scholar
  122. 122.
    Suh WK, Wang SX, Jheon AH, et al. The immune regulatory protein B7-H3 promotes osteoblast differentiation and bone mineralization. Proc Natl Acad Sci USA. Aug 31 2004;101(35):12969–12973.PubMedCrossRefGoogle Scholar
  123. 123.
    Chapoval AI, Ni J, Lau JS, et al. B7-H3:a costimulatory molecule for T cell activation and IFN-gamma production. Nat Immunol. Mar 2001;2(3):269–274.PubMedCrossRefGoogle Scholar
  124. 124.
    Wang L, Fraser CC, Kikly K, et al. B7-H3 promotes acute and chronic allograft rejection. Eur J Immunol. Feb 2005;35(2):428–438.PubMedCrossRefGoogle Scholar
  125. 125.
    Suh WK, Gajewska BU, Okada H, et al. The B7 family member B7-H3 preferentially down-regulates T helper type 1-mediated immune responses. Nat Immunol. Sep 2003;4(9):899–906.PubMedCrossRefGoogle Scholar
  126. 126.
    Prasad DV, Nguyen T, Li Z, et al. Murine B7-H3 is a negative regulator of T cells. J Immunol. Aug 15 2004;173(4):2500–2506.PubMedGoogle Scholar
  127. 127.
    Steinberger P, Majdic O, Derdak SV, et al. Molecular characterization of human 4Ig-B7-H3, a member of the B7 family with four Ig-like domains. J Immunol. Feb 15 2004;172(4):2352–2359.PubMedGoogle Scholar
  128. 128.
    Sun M, Richards S, Prasad DV, Mai XM, Rudensky A, Dong C. Characterization of mouse and human B7-H3 genes. J Immunol. Jun 15 2002;168(12):6294–6297.PubMedGoogle Scholar
  129. 129.
    Zhang GB, Dong QM, Xu Y, Yu GH, Zhang XG. B7-H3:another molecule marker for Mo-DCs? Cell Mol Immunol. Aug 2005;2(4):307–311.PubMedGoogle Scholar
  130. 130.
    Sica GL, Choi IH, Zhu G, et al. B7-H4, a molecule of the B7 family, negatively regulates T cell immunity. Immunity. Jun 2003;18(6):849–861.PubMedCrossRefGoogle Scholar
  131. 131.
    Prasad DV, Richards S, Mai XM, Dong C. B7S1, a novel B7 family member that negatively regulates T cell activation. Immunity. Jun 2003;18(6):863–873.PubMedCrossRefGoogle Scholar
  132. 132.
    Schluns KS, Lefrancois L. Cytokine control of memory T cell development and survival. Nat Rev Immunol. Apr 2003;3(4):269–279.PubMedCrossRefGoogle Scholar
  133. 133.
    Marrack P, Bender J, Hildeman D, et al. Homeostasis of alpha beta TCR+ T cells. Nat Immunol. Aug 2000;1(2):107–111.PubMedCrossRefGoogle Scholar
  134. 134.
    Waldmann TA, Dubois S, Tagaya Y. Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes:implications for immunotherapy. Immunity. Feb 2001;14(2):105–110.PubMedGoogle Scholar
  135. 135.
    Minami Y, Kono T, Miyazaki T, Taniguchi T. The IL-2 receptor complex:its structure, function, and target genes. Annu Rev Immunol. 1993;11:245–268.PubMedCrossRefGoogle Scholar
  136. 136.
    Nelson BH. Interleukin-2 signaling and the maintenance of self-tolerance. Curr Dir Autoimmun. 2002;5:92–112.PubMedCrossRefGoogle Scholar
  137. 137.
    Goldsby RA, Kindt TJ, Osborne BA, Kuby J. Immunology. 5th ed. New York:W.H. Freeman and Company; 2003.Google Scholar
  138. 138.
    Sakaguchi S, Sakaguchi N, Shimizu J, et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells:their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev. Aug 2001;182:18–32.PubMedCrossRefGoogle Scholar
  139. 139.
    Sakaguchi S. Naturally arising Foxp3-expressing CD25+ CD4+ regulatory T cells in immu-nological tolerance to self and non-self. Nat Immunol. Apr 2005;6(4):345–352.PubMedCrossRefGoogle Scholar
  140. 140.
    Nelms K, Keegan AD, Zamorano J, Ryan JJ, Paul WE. The IL-4 receptor: signaling mechanisms and biologic functions. Annu Rev Immunol. 1999;17:701–738.PubMedCrossRefGoogle Scholar
  141. 141.
    Constant SL, Bottomly K. Induction of Th1 and Th2 CD4+ T cell responses:the alternative approaches. Annu Rev Immunol. 1997;15:297–322.PubMedCrossRefGoogle Scholar
  142. 142.
    Ma A, Koka R, Burkett P. Diverse Functions of IL-2, IL-15, and IL-7 in lymphoid homeo-stasis. Annu Rev Immunol. Jan 16 2006.Google Scholar
  143. 143.
    Carding SR, Egan PJ. Gammadelta T cells:functional plasticity and heterogeneity. Nat Rev Immunol. May 2002;2(5):336–345.PubMedCrossRefGoogle Scholar
  144. 144.
    Hayday A, Tigelaar R. Immunoregulation in the tissues by gammadelta T cells. Nat Rev Immunol. Mar 2003;3(3):233–242.PubMedCrossRefGoogle Scholar
  145. 145.
    Gately MK, Renzetti LM, Magram J, et al. The interleukin-12/interleukin-12-receptor system:role in normal and pathologic immune responses. Annu Rev Immunol. 1998;16:495–521.PubMedCrossRefGoogle Scholar
  146. 146.
    Whiteside TL. Immune suppression in cancer:effects on immune cells, mechanisms and future therapeutic intervention. Semin Cancer Biol. Feb 2006;16(1):3–15.PubMedCrossRefGoogle Scholar
  147. 147.
    Shimokawara I, Imamura M, Yamanaka N, Ishii Y, Kikuchi K. Identification of lymphocyte subpopulations in human breast cancer tissue and its significance:an immunoperoxidase study with anti-human T- and B-cell sera. Cancer. Apr 1 1982;49(7):1456–1464.PubMedCrossRefGoogle Scholar
  148. 148.
    Demaria S, Volm MD, Shapiro RL, et al. Development of tumor-infiltrating lymphocytes in breast cancer after neoadjuvant paclitaxel chemotherapy. Clin Cancer Res. Oct 2001;7(10):3025–3030.PubMedGoogle Scholar
  149. 149.
    Friedell GH, Betts A, Sommers SC. The prognostic value of blood vessel invasion and lym-phocytic infiltrates in breast carcinoma. Cancer. Feb 1965;18:164–166.PubMedCrossRefGoogle Scholar
  150. 150.
    Takanami I, Takeuchi K, Giga M. The prognostic value of natural killer cell infiltration in resected pulmonary adenocarcinoma. J Thorac Cardiovasc Surg. Jun 2001;121(6):1058–1063.PubMedCrossRefGoogle Scholar
  151. 151.
    Hiraoka K, Miyamoto M, Cho Y, et al. Concurrent infiltration by CD8+ T cells and CD4+ T cells is a favourable prognostic factor in non-small-cell lung carcinoma. Br J Cancer. Jan 30 2006;94(2):275–280.PubMedCrossRefGoogle Scholar
  152. 152.
    Gupta S, Seth SK, Udupa KN, Sen PC, Rastogi BL. Immunological significance of lym-phoreticular infiltration in gastrointestinal cancer. J Surg Oncol. 1981;16(3):205–213.PubMedCrossRefGoogle Scholar
  153. 153.
    Zhou XG, Yu BM, Shen YX. Surgical treatment and late results in 1226 cases of colorectal cancer. Dis Colon Rectum. Apr 1983;26(4):250–256.PubMedCrossRefGoogle Scholar
  154. 154.
    Svennevig JL, Lunde OC, Holter J, Bjorgsvik D. Lymphoid infiltration and prognosis in colorectal carcinoma. Br J Cancer. Mar 1984;49(3):375–377.PubMedCrossRefGoogle Scholar
  155. 155.
    Buckowitz A, Knaebel HP, Benner A, et al. Microsatellite instability in colorectal cancer is associated with local lymphocyte infiltration and low frequency of distant metastases. Br J Cancer. May 9 2005;92(9):1746–1753.PubMedCrossRefGoogle Scholar
  156. 156.
    Coca S, Perez-Piqueras J, Martinez D, et al. The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma. Cancer. Jun 15 1997;79(12):2320–2328.PubMedCrossRefGoogle Scholar
  157. 157.
    Minamoto T, Mai M, Watanabe K, et al. Medullary carcinoma with lymphocytic infiltration of the stomach. Clinicopathologic study of 27 cases and immunohistochemical analysis of the subpopulations of infiltrating lymphocytes in the tumor. Cancer. Sep 1 1990;66(5):945–952.PubMedCrossRefGoogle Scholar
  158. 158.
    Setala LP, Kosma VM, Marin S, et al. Prognostic factors in gastric cancer:the value of vascular invasion, mitotic rate and lymphoplasmacytic infiltration. Br J Cancer. Sep 1996;74(5):766–772.PubMedCrossRefGoogle Scholar
  159. 159.
    Ohno S, Inagawa H, Dhar DK, et al. The degree of macrophage infiltration into the cancer cell nest is a significant predictor of survival in gastric cancer patients. Anticancer Res. Nov-Dec 2003;23(6D):5015–5022.PubMedGoogle Scholar
  160. 160.
    Cuschieri A, Talbot IC, Weeden S. Influence of pathological tumour variables on long-term survival in resectable gastric cancer. Br J Cancer. Mar 4 2002;86(5):674–679.PubMedCrossRefGoogle Scholar
  161. 161.
    Ishigami S, Natsugoe S, Tokuda K, et al. Prognostic value of intratumoral natural killer cells in gastric carcinoma. Cancer. Feb 1 2000;88(3):577–583.PubMedCrossRefGoogle Scholar
  162. 162.
    Edwards JM, Hillier VF, Lawson RA, Moussalli H, Hasleton PS. Squamous carcinoma of the oesophagus:histological criteria and their prognostic significance. Br J Cancer. Mar 1989;59(3):429–433.PubMedCrossRefGoogle Scholar
  163. 163.
    Ma Y, Xian M, Li J, Kawabata T, Okada S. Interrelations of clinicopathological variables, local immune response and prognosis in esophageal squamous cell carcinoma. Apmis. May 1999;107(5):514–522.PubMedCrossRefGoogle Scholar
  164. 164.
    Schumacher K, Haensch W, Roefzaad C, Schlag PM. Prognostic significance of activated CD8(+) T cell infiltrations within esophageal carcinomas. Cancer Res. May 15 2001;61(10):3932–3936.PubMedGoogle Scholar
  165. 165.
    Nakakubo Y, Miyamoto M, Cho Y, et al. Clinical significance of immune cell infiltration within gallbladder cancer. Br J Cancer. Nov 3 2003;89(9):1736–1742.PubMedCrossRefGoogle Scholar
  166. 166.
    Clemente CG, Mihm MC, Jr., Bufalino R, Zurrida S, Collini P, Cascinelli N. Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer. Apr 1 1996;77(7):1303–1310.PubMedCrossRefGoogle Scholar
  167. 167.
    Hakansson A, Gustafsson B, Krysander L, Hakansson L. Tumour-infiltrating lymphocytes in metastatic malignant melanoma and response to interferon alpha treatment. Br J Cancer. Sep 1996;74(5):670–676.PubMedCrossRefGoogle Scholar
  168. 168.
    Hersey P, Hobbs A, Edwards A, McCarthy WH, McGovern VJ. Relationship between natural killer cell activity and histological features of lymphocyte infiltration and partial regression of the primary tumor in melanoma patients. Cancer Res. Jan 1982;42(1):363–368.PubMedGoogle Scholar
  169. 169.
    Cochran AJ. Histology and prognosis in malignant melanoma. J Pathol. Mar 1969; 97(3):459–468.PubMedCrossRefGoogle Scholar
  170. 170.
    Lauder I, Aherne W. The significance of lymphocytic infiltration in neuroblastoma. Br J Cancer. Aug 1972;26(4):321–330.PubMedCrossRefGoogle Scholar
  171. 171.
    Martin RF, Beckwith JB. Lymphoid infiltrates in neuroblastomas:their occurrence and prognostic significance. J Pediatr Surg. Feb 1968;3(1):161–164.PubMedCrossRefGoogle Scholar
  172. 172.
    Yilmaz T, Hosal AS, Gedikoglu G, Kaya S. Prognostic significance of histopathological parameters in cancer of the larynx. Eur Arch Otorhinolaryngol. 1999;256(3):139–144.Google Scholar
  173. 173.
    Epstein NA, Fatti LP. Prostatic carcinoma:some morphological features affecting prognosis. Cancer. May 1976;37(5):2455–2465.PubMedCrossRefGoogle Scholar
  174. 174.
    Mostofi FK, Sesterhenn I. Plenary lecture: lymphocytic infiltration in relationship to uro-logic tumors. Natl Cancer Inst Monogr. Dec 1978(49):133–141.PubMedGoogle Scholar
  175. 175.
    Evensen JF, Fossa SD, Kjellevold K, Lien HH. Testicular seminoma:histological findings and their prognostic significance for stage II disease. J Surg Oncol. Nov 1987;36(3):166–169.PubMedCrossRefGoogle Scholar
  176. 176.
    Akaza H, Kobayashi K, Umeda T, Niijima T. Surface markers of lymphocytes infiltrating seminoma tissue. J Urol. Dec 1980;124(6):827–828.PubMedGoogle Scholar
  177. 177.
    Parker C, Milosevic M, Panzarella T, et al. The prognostic significance of the tumour infiltrating lymphocyte count in stage I testicular seminoma managed by surveillance. Eur J Cancer. Oct 2002;38(15):2014–2019.PubMedGoogle Scholar
  178. 178.
    Martin LS, Woodruff MW, Webster JH. Testicular seminoma. A review of 179 patients treated over a 50-year period. Arch Surg. Feb 1965;90:306–312.PubMedGoogle Scholar
  179. 179.
    Mihatsch MJ, Rist M, Romppanen T, Rutishauser G. Prognostic significance of peritu-moural inflammation in invasive urothelial bladder carcinoma. Urol Res. Jun 22 1979;7(2):97–102.CrossRefGoogle Scholar
  180. 180.
    Tsujihashi H, Matsuda H, Uejima S, Akiyama T, Kurita T. Immunoresponse of tissue infiltrating lymphocytes in bladder tumors. J Urol. Jun 1989;141(6):1467–1470.PubMedGoogle Scholar
  181. 181.
    Carballido J, Alvarez-Mon M, Solovera OJ, Menendez-Ondina L, Durantez A. Clinical significance of natural killer activity in patients with transitional cell carcinoma of the bladder. J Urol. Jan 1990;143(1):29–33.PubMedGoogle Scholar
  182. 182.
    Honda S, Sakamoto Y, Fujime M, Kitagawa R. Immunohistochemical study of tumor-infiltrating lymphocytes before and after intravesical bacillus Calmette-Guerin treatment for superficial bladder cancer. Int J Urol. Jan 1997;4(1):68–73.PubMedCrossRefGoogle Scholar
  183. 183.
    Sarma KP. The role of lymphoid reaction in bladder cancer. J Urol. Dec 1970;104(6):843–849.PubMedGoogle Scholar
  184. 184.
    Leigh RA, Van Blerk PJ, Horn BK. Lymphocytic infiltration in bladder cancer:a preliminary report. S Afr Med J. Feb 3 1973;47(5):192–194.PubMedGoogle Scholar
  185. 185.
    Igarashi T, Takahashi H, Tobe T, et al. Effect of tumor-infiltrating lymphocyte subsets on prognosis and susceptibility to interferon therapy in patients with renal cell carcinoma. Urol Int. 2002;69(1):51–56.PubMedCrossRefGoogle Scholar
  186. 186.
    Griffith CD, Ellis IO, Bell J, Burns K, Blamey RW. Density of lymphocytic infiltration of primary breast cancer does not affect short-term disease-free interval or survival. J R Coll Surg Edinb. Oct 1990;35(5):289–292.PubMedGoogle Scholar
  187. 187.
    Hartveit F. Breast cancer:poor short-term prognosis in cases with moderate lymphocyte infiltration at the tumour edge:a preliminary report. Oncol Rep. Mar–Apr 1998;5(2):423–426.PubMedGoogle Scholar
  188. 188.
    Treilleux I, Blay JY, Bendriss-Vermare N, et al. Dendritic cell infiltration and prognosis of early stage breast cancer. Clin Cancer Res. Nov 15 2004;10(22):7466–7474.PubMedCrossRefGoogle Scholar
  189. 189.
    Lang JR, Davidorf FH, Baba N. The prognostic significance of lymphocytic infiltration in malignant melanoma of the choroid. Cancer. Nov 1977;40(5):2388–2394.PubMedCrossRefGoogle Scholar
  190. 190.
    de la Cruz PO, Jr., Specht CS, McLean IW. Lymphocytic infiltration in uveal malignant melanoma. Cancer. Jan 1 1990;65(1):112–115.CrossRefGoogle Scholar
  191. 191.
    Johnson SK, Kerr KM, Chapman AD, et al. Immune cell infiltrates and prognosis in primary carcinoma of the lung. Lung Cancer. Jan 2000;27(1):27–35.PubMedCrossRefGoogle Scholar
  192. 192.
    Toomey D, Smyth G, Condron C, et al. Infiltrating immune cells, but not tumour cells, express FasL in non-small cell lung cancer:no association with prognosis identified in 3-year follow-up. Int J Cancer. Jan 20 2003;103(3):408–412.PubMedCrossRefGoogle Scholar
  193. 193.
    Tanaka T, Cooper EH, Anderson CK. Lymphocyte infiltration in bladder carcinoma. Rev Eur Etud Clin Biol. Dec 1970;15(10):1084–1089.PubMedGoogle Scholar
  194. 194.
    Bromwich EJ, McArdle PA, Canna K, et al. The relationship between T-lymphocyte infiltration, stage, tumour grade and survival in patients undergoing curative surgery for renal cell cancer. Br J Cancer. Nov 17 2003;89(10):1906–1908.PubMedCrossRefGoogle Scholar
  195. 195.
    Nakano O, Sato M, Naito Y, et al. Proliferative activity of intratumoral CD8(+) T-lymphocytes as a prognostic factor in human renal cell carcinoma:clinicopathologic demonstration of antitumor immunity. Cancer Res. Jul 1 2001;61(13):5132–5136.PubMedGoogle Scholar
  196. 196.
    Magyarlaki T, Buzogany I, Kaiser L, et al. Prognostic histological and immune markers of renal cell carcinoma. Pathol Oncol Res. 2001;7(2):118–124.PubMedCrossRefGoogle Scholar
  197. 197.
    Kolbeck PC, Kaveggia FF, Johansson SL, Grune MT, Taylor RJ. The relationships among tumor-infiltrating lymphocytes, histopathologic findings, and long-term clinical follow-up in renal cell carcinoma. Mod Pathol. Jul 1992;5(4):420–425.PubMedGoogle Scholar
  198. 198.
    Webster WS, Lohse CM, Thompson RH, Dong H, Frigola X, Dicks DL, Sengupta S, Frank I, Leibovich BC, Blute ML, Cheville JC, Kown ED. Mononuclear cell infiltration in clear-cell renal cell carcinoma independently predicts patient survival. Cancer. Jul 1 2006;107(1):46–53.PubMedCrossRefGoogle Scholar
  199. 199.
    Cindolo L, Patard JJ, Chiodini P, et al. Comparison of predictive accuracy of four prognostic models for nonmetastatic renal cell carcinoma after nephrectomy:a multicenter European study. Cancer. Oct 1 2005;104(7):1362–1371.PubMedCrossRefGoogle Scholar
  200. 200.
    Atzpodien J, Royston P, Wandert T, Reitz M. Metastatic renal carcinoma comprehensive prognostic system. Br J Cancer. Feb 10 2003;88(3):348–353.PubMedCrossRefGoogle Scholar
  201. 201.
    Frank I, Blute ML, Cheville JC, Lohse CM, Weaver AL, Zincke H. An outcome prediction model for patients with clear cell renal cell carcinoma treated with radical nephrectomy based on tumor stage, size, grade and necrosis: the SSIGN score. J Urol. Dec 2002;168(6): 2395–2400.PubMedCrossRefGoogle Scholar
  202. 202.
    Kattan MW, Reuter V, Motzer RJ, Katz J, Russo P. A postoperative prognostic nomogram for renal cell carcinoma. J Urol. Jul 2001;166(1):63–67.PubMedCrossRefGoogle Scholar
  203. 203.
    Leibovich BC, Blute ML, Cheville JC, et al. Prediction of progression after radical nephrec-tomy for patients with clear cell renal cell carcinoma: a stratification tool for prospective clinical trials. Cancer. Apr 1 2003;97(7):1663–1671.PubMedCrossRefGoogle Scholar
  204. 204.
    Leibovich BC, Han KR, Bui MH, et al. Scoring algorithm to predict survival after nephrec-tomy and immunotherapy in patients with metastatic renal cell carcinoma: a stratification tool for prospective clinical trials. Cancer. Dec 15 2003;98(12):2566–2575.PubMedCrossRefGoogle Scholar
  205. 205.
    Leibovich BC, Cheville JC, Lohse CM, et al. A scoring algorithm to predict survival for patients with metastatic clear cell renal cell carcinoma: a stratification tool for prospective clinical trials. J Urol. Nov 2005;174(5):1759–1763; discussion 1763.PubMedCrossRefGoogle Scholar
  206. 206.
    Motzer RJ, Bacik J, Schwartz LH, et al. Prognostic factors for survival in previously treated patients with metastatic renal cell carcinoma. J Clin Oncol. Feb 1 2004;22(3):454–463.PubMedCrossRefGoogle Scholar
  207. 207.
    Motzer RJ, Mazumdar M, Bacik J, Berg W, Amsterdam A, Ferrara J. Survival and prognostic stratification of 670 patients with advanced renal cell carcinoma. J Clin Oncol. Aug 1999;17(8):2530–2540.PubMedGoogle Scholar
  208. 208.
    Sorbellini M, Kattan MW, Snyder ME, et al. A postoperative prognostic nomogram predicting recurrence for patients with conventional clear cell renal cell carcinoma. J Urol. Jan 2005;173(1):48–51.PubMedCrossRefGoogle Scholar
  209. 209.
    Storkel S, Thoenes W, Jacobi GH, Lippold R. Prognostic parameters in renal cell carci-noma–a new approach. Eur Urol. 1989;16(6):416–422.PubMedGoogle Scholar
  210. 210.
    Yaycioglu O, Roberts WW, Chan T, Epstein JI, Marshall FF, Kavoussi LR. Prognostic assessment of nonmetastatic renal cell carcinoma: a clinically based model. Urology. Aug 2001;58(2):141–145.PubMedCrossRefGoogle Scholar
  211. 211.
    Zisman A, Pantuck AJ, Dorey F, et al. Improved prognostication of renal cell carcinoma using an integrated staging system. J Clin Oncol. Mar 15 2001;19(6):1649–1657.PubMedGoogle Scholar
  212. 212.
    Kowalczyk D, Skorupski W, Kwias Z, Nowak J. Flow cytometric analysis of tumour-infiltrating lymphocytes in patients with renal cell carcinoma. Br J Urol. Oct 1997;80(4):543–547.PubMedGoogle Scholar
  213. 213.
    Riccobon A, Gunelli R, Ridolfi R, et al. Immunosuppression in renal cancer: differential expression of signal transduction molecules in tumor-infiltrating, near-tumor tissue, and peripheral blood lymphocytes. Cancer Invest. 2004;22(6):871–877.PubMedCrossRefGoogle Scholar
  214. 214.
    Bukowski RM, Rayman P, Uzzo R, et al. Signal transduction abnormalities in T lymphocytes from patients with advanced renal carcinoma: clinical relevance and effects of cytokine therapy. Clin Cancer Res. Oct 1998;4(10):2337–2347.PubMedGoogle Scholar
  215. 215.
    Finke JH, Zea AH, Stanley J, et al. Loss of T cell receptor zeta chain and p56lck in T cells infiltrating human renal cell carcinoma. Cancer Res. Dec 1 1993;53(23):5613–5616.PubMedGoogle Scholar
  216. 216.
    Tartour E, Latour S, Mathiot C, et al. Variable expression of CD3-zeta chain in tumor-infiltrating lymphocytes (TIL) derived from renal-cell carcinoma: relationship with TIL phenotype and function. Int J Cancer. Oct 9 1995;63(2):205–212.PubMedCrossRefGoogle Scholar
  217. 217.
    Igarashi T, Murakami S, Takahashi H, Matsuzaki O, Shimazaki J. Changes on distribution of CD4+/CD45RA- and CD8+/CD11- cells in tumor-infiltrating lymphocytes of renal cell carcinoma associated with tumor progression. Eur Urol. 1992;22(4):323–328.PubMedGoogle Scholar
  218. 218.
    Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol. Apr 2006;6(4):295–307.PubMedCrossRefGoogle Scholar
  219. 219.
    Wei S, Kryczek I, Zou L, et al. Plasmacytoid dendritic cells induce CD8+ regulatory T cells in human ovarian carcinoma. Cancer Res. Jun 15 2005;65(12):5020–5026.PubMedCrossRefGoogle Scholar
  220. 220.
    Van den Hove LE, Van Gool SW, Van Poppel H, et al. Phenotype, cytokine production and cytolytic capacity of fresh (uncultured) tumour-infiltrating T lymphocytes in human renal cell carcinoma. Clin Exp Immunol. Sep 1997;109(3):501–509.PubMedCrossRefGoogle Scholar
  221. 221.
    Banner BF, Burnham JA, Bahnson RR, Ernstoff MS, Auerbach HE. Immunophenotypic markers in renal cell carcinoma. Mod Pathol. Mar 1990;3(2):129–134.PubMedGoogle Scholar
  222. 222.
    Sato E, Olson SH, Ahn J, et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA. Dec 20 2005;102(51):18538–18543.PubMedCrossRefGoogle Scholar
  223. 223.
    Antony PA, Piccirillo CA, Akpinarli A, et al. CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J Immunol. Mar 1 2005;174(5):2591–2601.PubMedGoogle Scholar
  224. 224.
    Chen ML, Pittet MJ, Gorelik L, et al. Regulatory T cells suppress tumor-specific CD8 T cell cyto-toxicity through TGF-beta signals in vivo. Proc Natl Acad Sci USA. Jan 11 2005;102(2):419–424.PubMedCrossRefGoogle Scholar
  225. 225.
    Yang Y, Huang CT, Huang X, Pardoll DM. Persistent Toll-like receptor signals are required for reversal of regulatory T cell-mediated CD8 tolerance. Nat Immunol. May 2004;5(5):508–515.PubMedCrossRefGoogle Scholar
  226. 226.
    Schleypen JS, Von Geldern M, Weiss EH, et al. Renal cell carcinoma-infiltrating natural killer cells express differential repertoires of activating and inhibitory receptors and are inhibited by specific HLA class I allotypes. Int J Cancer. Oct 10 2003;106(6):905–912.PubMedCrossRefGoogle Scholar
  227. 227.
    Schleypen JS, Baur N, Kammerer R, et al. Cytotoxic markers and frequency predict functional capacity of natural killer cells infiltrating renal cell carcinoma. Clin Cancer Res. Feb 1 2006;12(3 Pt 1):718–725.PubMedCrossRefGoogle Scholar
  228. 228.
    Lowdell MW, Craston R, Samuel D, et al. Evidence that continued remission in patients treated for acute leukaemia is dependent upon autologous natural killer cells. Br J Haematol. Jun 2002;117(4):821–827.PubMedCrossRefGoogle Scholar
  229. 229.
    Liljefors M, Nilsson B, Hjelm Skog AL, Ragnhammar P, Mellstedt H, Frodin JE. Natural killer (NK) cell function is a strong prognostic factor in colorectal carcinoma patients treated with the monoclonal antibody 17–1A. Int J Cancer. Jul 10 2003;105(5):717–723.PubMedCrossRefGoogle Scholar
  230. 230.
    Pilla L, Squarcina P, Coppa J, et al. Natural killer and NK-Like T cell activation in colorectal carcinoma patients treated with autologous tumor-derived heat shock protein 96. Cancer Res. May 1 2005;65(9):3942–3949.PubMedCrossRefGoogle Scholar
  231. 231.
    Vakkila J, Lotze MT. Inflammation and necrosis promote tumour growth. Nat Rev Immunol. Aug 2004;4(8):641–648.PubMedCrossRefGoogle Scholar
  232. 232.
    de Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development. Nat Rev Cancer. Jan 2006;6(1):24–37.PubMedCrossRefGoogle Scholar
  233. 233.
    Wahl LM, Kleinman HK. Tumor-associated macrophages as targets for cancer therapy. J Natl Cancer Inst. Nov 4 1998;90(21):1583–1584.PubMedCrossRefGoogle Scholar
  234. 234.
    Sengupta S, Lohse CM, Cheville JC, et al. The preoperative erythrocyte sedimentation rate is an independent prognostic factor in renal cell carcinoma. Cancer. Jan 15 2006;106(2):304–312.PubMedCrossRefGoogle Scholar
  235. 235.
    Srigley JR, Hutter RV, Gelb AB, et al. Current prognostic factors – renal cell carcinoma: Workgroup No. 4. Union Internationale Contre le Cancer (UICC) and the American Joint Committee on Cancer (AJCC). Cancer. Sep 1 1997;80(5):994–996.PubMedCrossRefGoogle Scholar
  236. 236.
    Hop WC, van der WerfQQQMessing BH. Prognostic indexes for renal cell carcinoma. Eur J Cancer. Jun 1980;16(6):833–840.PubMedGoogle Scholar
  237. 237.
    Donskov F, Hokland M, Marcussen N, Torp Madsen HH, von der Maase H. Monocytes and neutrophils as ‘bad guys’ for the outcome of interleukinQQQ2 with and without histamine in metastatic renal cell carcinoma – results from a randomised phase II trial. Br J Cancer. Jan 30 2006;94(2):218–226.PubMedCrossRefGoogle Scholar
  238. 238.
    Negrier S, Escudier B, Gomez F, et al. Prognostic factors of survival and rapid progression in 782 patients with metastatic renal carcinomas treated by cytokines: a report from the Groupe Francais d'Immunotherapie. Ann Oncol. Sep 2002;13(9):1460–1468.PubMedCrossRefGoogle Scholar
  239. 239.
    Hermann GG, Geertsen PF, von der Maase H, Zeuthen J. InterleukinQQQ2 dose, blood monocyte and CD25+ lymphocyte counts as predictors of clinical response to interleukinQQQ2 therapy in patients with renal cell carcinoma. Cancer Immunol Immunother. 1991;34(2):111–114.PubMedCrossRefGoogle Scholar
  240. 240.
    Sinha P, Clements VK, Miller S, OstrandQQQRosenberg S. Tumor immunity: a balancing act between T cell activation, macrophage activation and tumorQQQinduced immune suppression. Cancer Immunol Immunother. Nov 2005;54(11):1137–1142.PubMedCrossRefGoogle Scholar
  241. 241.
    Donskov F, Middleton M, Fode K, et al. Two randomised phase II trials of subcutaneous interleukinQQQ2 and histamine dihydrochloride in patients with metastatic renal cell carcinoma. Br J Cancer. Oct 3 2005;93(7):757–762.PubMedCrossRefGoogle Scholar
  242. 242.
    Schendel DJ, Frankenberger B, Jantzer P, et al. Expression of B7QQQ1 (CD80) in a renal cell carcinoma line allows expansion of tumorQQQassociated cytotoxic T lymphocytes in the presence of an alloresponse. Gene Ther. Dec 2000;7(23):2007–2014.PubMedCrossRefGoogle Scholar
  243. 243.
    Jung D, Hilmes C, Knuth A, Jaeger E, Huber C, Seliger B. Gene transfer of the CoQQQstimulatory molecules B7QQQ1 and B7QQQ2 enhances the immunogenicity of human renal cell carcinoma to a different extent. Scand J Immunol. Sep 1999;50(3):242–249.PubMedCrossRefGoogle Scholar
  244. 244.
    Dessureault S, Graham F, Gallinger S. B7QQQ1 gene transfer into human cancer cells by infection with an adenovirusQQQB7 (AdQQQB7) expression vector. Ann Surg Oncol. May 1996;3(3):317–324.PubMedCrossRefGoogle Scholar
  245. 245.
    Frankenberger B, Pohla H, Noessner E, et al. Influence of CD80, interleukinQQQ2, and interQQQleukinQQQ7 expression in human renal cell carcinoma on the expansion, function, and survival of tumorQQQspecific CTLs. Clin Cancer Res. Mar 1 2005;11(5):1733–1742.PubMedCrossRefGoogle Scholar
  246. 246.
    Bain C, Merrouche Y, Puisieux I, Duc A, Colombo MP, Favrot M. B7QQQ1 gene transduction of human renalQQQcellQQQcarcinoma cell lines restores the proliferative response and cytotoxic function of allogeneic T cells. Int J Cancer. Sep 17 1996;67(6):769–776.PubMedCrossRefGoogle Scholar
  247. 247.
    Wang YC, Zhu L, McHugh R, et al. Induction of autologous tumorQQQspecific cytotoxic TQQQlymphocyte activity against a human renal carcinoma cell line by B7QQQ1 (CD8O) costimulation. J Immunother Emphasis Tumor Immunol. Jan 1996;19(1):1–8.PubMedGoogle Scholar
  248. 248.
    Antonia SJ, Seigne J, Diaz J, et al. Phase I trial of a B7QQQ1 (CD80) gene modified autologous tumor cell vaccine in combination with systemic interleukinQQQ2 in patients with metastatic renal cell carcinoma. J Urol. May 2002;167(5):1995–2000.PubMedCrossRefGoogle Scholar
  249. 249.
    Antonia SJ, Seigne JD. B7QQQ1 geneQQQmodified autologous tumorQQQcell vaccines for renalQQQcell carcinoma. World J Urol. Apr 2000;18(2):157–163.PubMedCrossRefGoogle Scholar
  250. 250.
    Lauerova L, Dusek L, Spurny V, et al. Relation of prenephrectomy CD profiles and serum cytokines to the disease outcome and response to IFNQQQalpha/ILQQQ2 therapy in renal cell carcinoma patients. Oncol Rep. MayQQQJun 2001;8(3):685–692.PubMedGoogle Scholar
  251. 251.
    Alatrash G, Hutson TE, Molto L, et al. Clinical and immunologic effects of subcuQQQtaneously administered interleukinQQQ12 and interferon alfaQQQ2b: phase I trial of patients with metastatic renal cell carcinoma or malignant melanoma. J Clin Oncol. Jul 15 2004;22(14):2891–2900.PubMedCrossRefGoogle Scholar
  252. 252.
    Verra N, de Jong D, Bex A, et al. Infiltration of activated dendritic cells and T cells in renal cell carcinoma following combined cytokine immunotherapy. Eur Urol. Sep 2005;48(3):527–533.PubMedGoogle Scholar
  253. 253.
    Siebels M, Meyer G, Habicht A, Meuer SC, Moebius U. Simultaneous ligation of CD5 and CD28 with monoclonal antibodies restores impaired immunostimulatory function in human renal cell carcinoma. Urol Res. Oct 2001;29(5):330–337.PubMedCrossRefGoogle Scholar
  254. 254.
    Thompson JA, Figlin RA, SifriQQQSteele C, Berenson RJ, Frohlich MW. A phase I trial of CD3/ CD28QQQactivated T cells (Xcellerated T cells) and interleukinQQQ2 in patients with metastatic renal cell carcinoma. Clin Cancer Res. Sep 1 2003;9(10 Pt 1):3562–3570.PubMedGoogle Scholar
  255. 255.
    Marshall JL, Gulley JL, Arlen PM, et al. Phase I study of sequential vaccinations with fowlpoxQQQCEA(6D)QQQTRICOM alone and sequentially with vacciniaQQQCEA(6D)QQQTRICOM, with and without granulocyteQQQmacrophage colonyQQQstimulating factor, in patients with carciQQQnoembryonic antigenQQQexpressing carcinomas. J Clin Oncol. Feb 1 2005;23(4):720–731.PubMedCrossRefGoogle Scholar
  256. 256.
    Dipaola R, Plante M, Kaufman H, et al. A Phase I Trial of Pox PSA vaccines (PROSTVAC(R)QQQVF) with B7QQQ1, ICAMQQQ1, and LFAQQQ3 coQQQstimulatory molecules (TRICOMtrade mark) in patients with prostate cancer. J Transl Med. 2006;4:1.PubMedCrossRefGoogle Scholar
  257. 257.
    Perkins D, Wang Z, Donovan C, et al. Regulation of CTLAQQQ4 expression during T cell activation. J Immunol. Jun 1 1996;156(11):4154–4159.PubMedGoogle Scholar
  258. 258.
    Noel PJ, Boise LH, Thompson CB. Regulation of T cell activation by CD28 and CTLA4. Adv Exp Med Biol. 1996;406:209–217.PubMedGoogle Scholar
  259. 259.
    Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH. Loss of CTLAQQQ4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLAQQQ4. Immunity. Nov 1995;3(5): 541–547.PubMedCrossRefGoogle Scholar
  260. 260.
    van Elsas A, Hurwitz AA, Allison JP. Combination immunotherapy of B16 melanoma using antiQQQcytotoxic T lymphocyteQQQassociated antigen 4 (CTLAQQQ4) and granulocyte/macrophage colonyQQQstimulating factor (GMQQQCSF)QQQproducing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med. Aug 2 1999;190(3):355–366.PubMedCrossRefGoogle Scholar
  261. 261.
    Ribas A, Camacho LH, LopezQQQBerestein G, et al. Antitumor activity in melanoma and antiQQQself responses in a phase I trial with the antiQQQcytotoxic T lymphocyteQQQassociated antigen 4 monoclonal antibody CPQQQ675,206. J Clin Oncol. Dec 10 2005;23(35):8968–8977.PubMedCrossRefGoogle Scholar
  262. 262.
    Yang JC, Beck KE, Blansfield JA, Tran KQ, Lowy I, Rosenberg SA. Tumor regression in patients with metastatic renal cancer treated with a monoclonal antibody to CTLA4 (MDXQQQ010). Journal of Clinical Oncology, 2005 ASCO Annual Meeting Proceedings. 2005 2005;23(16Suppl).Google Scholar
  263. 263.
    Beck KE, Blansfield JA, Tran KQ, et al. Enterocolitis in patients with cancer after antibody blockade of cytotoxic TQQQlymphocyteQQQassociated antigen 4. J Clin Oncol. May 20 2006;24(15):2283–2289.PubMedCrossRefGoogle Scholar
  264. 264.
    Maker AV, Attia P, Rosenberg SA. Analysis of the cellular mechanism of antitumor responses and autoimmunity in patients treated with CTLAQQQ4 blockade. J Immunol. Dec 1 2005;175(11):7746–7754.PubMedGoogle Scholar
  265. 265.
    Reuben JM, Lee BN, Li C, et al. Biologic and immunomodulatory events after CTLAQQQ4 blockade with ticilimumab in patients with advanced malignant melanoma. Cancer. Jun 1 2006;106(11):2437–2444.PubMedCrossRefGoogle Scholar
  266. 266.
    Vitetta ES, Ghetie VF. Immunology. Considering therapeutic antibodies. Science. Jul 21 2006;313(5785):308–309.PubMedCrossRefGoogle Scholar
  267. 267.
    Phan GQ, Yang JC, Sherry RM, et al. Cancer regression and autoimmunity induced by cytoQQQtoxic T lymphocyteQQQassociated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA. Jul 8 2003;100(14):8372–8377.PubMedCrossRefGoogle Scholar
  268. 268.
    Maker AV, Phan GQ, Attia P, et al. Tumor regression and autoimmunity in patients treated with cytotoxic T lymphocyteQQQassociated antigen 4 blockade and interleukin 2: a phase I/II study. Ann Surg Oncol. Dec 2005;12(12):1005–1016.PubMedCrossRefGoogle Scholar
  269. 269.
    Hirano F, Kaneko K, Tamura H, et al. Blockade of B7QQQH1 and PDQQQ1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res. Feb 1 2005;65(3): 1089–1096.PubMedGoogle Scholar
  270. 270.
    Thompson RH, Gillett MD, Cheville JC, et al. Costimulatory molecule B7QQQH1 in primary and metastatic clear cell renal cell carcinoma. Cancer. Nov 15 2005;104(10):2084–2091.PubMedCrossRefGoogle Scholar
  271. 271.
    Thompson RH, Webster WS, Cheville JC, et al. B7QQQH1 glycoprotein blockade: a novel strategy to enhance immunotherapy in patients with renal cell carcinoma. Urology. Nov 2005;66(5 Suppl):10–14.PubMedCrossRefGoogle Scholar
  272. 272.
    Thompson RH, Gillett MD, Cheville JC, et al. Costimulatory B7QQQH1 in renal cell carcinoma patients: indicator of tumor aggressiveness and potential therapeutic target. Proc Natl Acad Sci USA. Dec 7 2004;101(49):17174–17179.PubMedCrossRefGoogle Scholar
  273. 273.
    Thompson RH, Kuntz SM, Leibovich BC, et al. Tumor B7QQQH1 is associated with poor prognosis in renal cell carcinoma patients with longQQQterm followQQQup. Cancer Res. Apr 1 2006;66(7):3381–3385.PubMedCrossRefGoogle Scholar
  274. 274.
    Blank C, Kuball J, Voelkl S, et al. Blockade of PDQQQL1 (B7QQQH1) augments human tumorQQQspecific T cell responses in vitro. Int J Cancer. Feb 15 2006.Google Scholar
  275. 275.
    He L, Zhang G, He Y, Zhu H, Zhang H, Feng Z. Blockade of B7QQQH1 with sPDQQQ1 improves immunity against murine hepatocarcinoma. Anticancer Res. Sep–Oct 2005;25(5):3309–3313.PubMedGoogle Scholar
  276. 276.
    Strome SE, Dong H, Tamura H, et al. B7QQQH1 blockade augments adoptive T cell immunoQQQtherapy for squamous cell carcinoma. Cancer Res. Oct 1 2003;63(19):6501–6505.PubMedGoogle Scholar
  277. 277.
    Curiel TJ, Wei S, Dong H, et al. Blockade of B7QQQH1 improves myeloid dendritic cellQQQmediated antitumor immunity. Nat Med. May 2003;9(5):562–567.PubMedCrossRefGoogle Scholar
  278. 278.
    Krambeck AE, Thompson RH, Dong H, et al. B7QQQH4 expression in renal cell carcinoma and tumor vasculature: associations with cancer progression and survival. Proc Natl Acad Sci USA. Jul 5 2006;103(27):10391–10396.PubMedCrossRefGoogle Scholar
  279. 279.
    Diegmann J, Junker K, Gerstmayer B, et al. Identification of CD70 as a diagnostic biomarker for clear cell renal cell carcinoma by gene expression profiling, realQQQtime RTQQQPCR and immunohistochemistry. Eur J Cancer. Aug 2005;41(12):1794–1801.PubMedCrossRefGoogle Scholar
  280. 280.
    Junker K, Hindermann W, von Eggeling F, Diegmann J, Haessler K, Schubert J. CD70: a new tumor specific biomarker for renal cell carcinoma. J Urol. Jun 2005;173(6): 2150–2153.PubMedCrossRefGoogle Scholar
  281. 281.
    Law CL, Gordon KA, Toki BE, et al. Lymphocyte activation antigen CD70 expressed by renal cell carcinoma is a potential therapeutic target for antiQQQCD70 antibodyQQQdrug conjugates. Cancer Res. Feb 15 2006;66(4):2328–2337.PubMedCrossRefGoogle Scholar
  282. 282.
    Vlasveld LT, Hekman A, VythQQQDreese FA, et al. A phase I study of prolonged continuous infusion of low dose recombinant interleukinQQQ2 in melanoma and renal cell cancer. Part II: immunological aspects. Br J Cancer. Sep 1993;68(3):559–567.PubMedCrossRefGoogle Scholar
  283. 283.
    Lee JK, Seki N, Sayers TJ, et al. Constitutive expression of functional CD40 on mouse renal cancer cells: induction of Fas and FasQQQmediated killing by CD40L. Cell Immunol. Jun 2005;235(2):145–152.PubMedCrossRefGoogle Scholar
  284. 284.
    Kluth B, Hess S, Engelmann H, Schafnitzel S, Riethmuller G, Feucht HE. Endothelial expression of CD40 in renal cell carcinoma. Cancer Res. Mar 1 1997;57(5):891–899.PubMedGoogle Scholar
  285. 285.
    Murphy WJ, Welniak L, Back T, et al. Synergistic antiQQQtumor responses after administration of agonistic antibodies to CD40 and ILQQQ2: coordination of dendritic and CD8+ cell responses. J Immunol. Mar 1 2003;170(5):2727–2733.PubMedGoogle Scholar
  286. 286.
    Wood AJ, Darbyshire J. Injury to research volunteers – the clinicalQQQresearch nightmare. N Engl J Med. May 4 2006;354(18):1869–1871.PubMedCrossRefGoogle Scholar
  287. 287.
    Baluna R, Vitetta ES. Vascular leak syndrome: a side effect of immunotherapy. Immunopharmacology. Oct 1997;37(2–3):117–132.PubMedCrossRefGoogle Scholar
  288. 288.
    Sanderson K, Scotland R, Lee P, et al. Autoimmunity in a phase I trial of a fully human antiQQQcytotoxic TQQQlymphocyte antigenQQQ4 monoclonal antibody with multiple melanoma peptides and Montanide ISA 51 for patients with resected stages III and IV melanoma. J Clin Oncol. Feb 1 2005;23(4):741–750.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Brant A. Inman
    • 1
  • Xavier Frigola
    • 2
  • Haidong Dong
    • 2
  • James C. Yang
    • 3
  • Eugene D. Kwon
    • 1
  1. 1.Department of UrologyMayo ClinicRochester
  2. 2.Department of ImmunologyMayo ClinicRochester
  3. 3.National Cancer InstituteNational Institutes of HealthBethesda

Personalised recommendations