Decomposition of Human Remains

  • Robert C. Janaway
  • Steven L. Percival
  • Andrew S. Wilson

References

  1. 1.
    Crell FLF. Some experiments on putrefaction. Philos Trans R Soc 1771;61:332–344.CrossRefGoogle Scholar
  2. 2.
    Pringle J. Further experiments on substances resisting putrefaction; with experiments upon the means of hastening and promoting it. Philos Trans R Soc 1749;46:550–558.CrossRefGoogle Scholar
  3. 3.
    Efremov EA. Taphonomy: a new branch of paleontology. Pan Am Geologist 1940;74:81–93.Google Scholar
  4. 4.
    Boddington A, Garland AN, Janaway RC, eds. Death, Decay and Reconstruction. Manchester: Manchester University Press. 1987.Google Scholar
  5. 5.
    Garland AN, Janaway RC. The taphonomy of inhumation burials. In C Roberts, F Lee and J Bintliff eds. Burial Archaeology: Current Research, Methods and Developments, pp. 15–37. Oxford: British Archaeological Reports. 1989.Google Scholar
  6. 6.
    Lyman RL. Vertebrate Taphonomy. Cambridge: Cambridge University Press. 1994.Google Scholar
  7. 7.
    O'Connor T. Taphonomy: From Life to Death and Beyond: The Archaeology of Animal Bones. Stroud: Sutton Publishing, pp. 19–27. 2000.Google Scholar
  8. 8.
    Haglund WD, Sorg MH, eds. Forensic Taphonomy: The Postmortem Fate of Human Remains. Boca Raton: CRC Press. 1997.Google Scholar
  9. 9.
    Haglund WD, Sorg MH. Advances in Forensic Taphonomy: Method, Theory and Archaeological Perspectives. Boca Raton: CRC Press. 2002.Google Scholar
  10. 10.
    Micozzi MS. Postmortem Changes in Human and Animal Remains: A Systematic Approach. Springfield, IL: Charles C. Thomas. 1991.Google Scholar
  11. 11.
    Tibbett M, Carter DO, eds. Soil Analysis in Forensic Taphonomy: Chemical and Biological Effects of Buried Human Remains. Boca Raton: CRC Press, Taylor & Francis. 2008.Google Scholar
  12. 12.
    Rodriguez WC, Bass WM. Decomposition of buried bodies and methods that may aid in their location. J Forensic Sci 1985;30:836–852.PubMedGoogle Scholar
  13. 13.
    Knight B, Simpson K, eds. Simpson's Forensic Medicine. London: Arnold. 1997.Google Scholar
  14. 14.
    Mant AK, ed. Taylor's Principles and Practice of Medical Jurisprudence. London. Churchill Livingstone. 1984.Google Scholar
  15. 15.
    Dix J, Graham M. Time of Death, Decomposition and Identification an Atlas. Boca Raton: CRC Press. 2000.Google Scholar
  16. 16.
    Child AM. Microbiological and Chemical Alteration of Archaeological Mineralised Collagen. Ph.D., University of Wales, Cardiff. 1993.Google Scholar
  17. 17.
    Huffine E, Crews J, Kennedy B, Bomberger K, Zinbo A. Mass identification of persons missing from the break-up of the former Yugoslavia: Structure, function, and role of the International Commission on Missing Persons. Croat Med J 2001;42:271–275.PubMedGoogle Scholar
  18. 18.
    Alonso A, Martin P, Albarran C, Garcia P, de Simon LF, Iturralde MJ, Fernandez-Rodriguez A, Atienza I, Capilla J, Garcia-Hirschfeld J, Martinez P, Vallejo G, Garcia O, Garcia E, Real P, Alvarez D, Leon A, Sancho M. Challenges of DNA profiling in mass disaster investigations. Croat Med J 2005;46:540–548.PubMedGoogle Scholar
  19. 19.
    Gilbert MTP, Bandelt HJ, Hofreiter M, Barnes I. Assessing ancient DNA studies. Trends Ecol Evol 2005;20:541–544.CrossRefPubMedGoogle Scholar
  20. 20.
    Poinar HN, Stankiewicz BA. Protein preservation and DNA retrieval from ancient tissues. Proc Natl Acad Sci USA 1999;69:8426–8431.CrossRefGoogle Scholar
  21. 21.
    Vass AA, Smith RR, Thompson CV, Burnett MN, Wolf DA, Synstelien JA, Dulgerian N, Eckenrode BA. Decompositional odor analysis database. J Forensic Sci 2004;49:760–769.CrossRefPubMedGoogle Scholar
  22. 22.
    Carter DO, Tibbett M. Taphonomic mycota: Fungi with forensic potential. J Forensic Sci 2003;48:168–171.PubMedGoogle Scholar
  23. 23.
    Gill-King H. Chemical and ultrastructural aspects of decomposition. In WD Haglund and MH Sorg eds. Forensic Taphonomy: The Postmortem Fate of Human Remains. Boca Raton: CRC Press, pp. 93–108. 1997.Google Scholar
  24. 24.
    Janssen W. Forensic Histopathology. Berlin: Springer. 1984.Google Scholar
  25. 25.
    Forbes SL. Decomposition chemistry in a burial environment. In M Tibbett and DO Carter eds. Soil Analysis in Forensic Taphonomy. New York: CRC Press, Taylor & Francis, pp. 203–223. 2008.CrossRefGoogle Scholar
  26. 26.
    Evans WED. The Chemistry of Death. Springfield, IL: Charles C. Thomas. 1963.Google Scholar
  27. 27.
    Polson CJ, Gee DJ, Knight B. The Essentials of Forensic Medicine. Oxford: Pergamon Press. 1985.Google Scholar
  28. 28.
    Payen G, Rimoux L, Gueux M, Lery N. Body putrefaction in “ air tight ” burials. IV. Microbiologic findings and environment. Acta Med Leg Soc (Liege) 1988;38:153–163.Google Scholar
  29. 29.
    Janaway RC. The decay of buried human remains and their associated materials. In J Hunter, C Roberts and A Martin eds. Studies in Crime: An Introduction to Forensic Archaeology. London: Batsford, pp. 58–85. 1996.Google Scholar
  30. 30.
    Mann RW, Bass WM, Meadows L. Time since death and decomposition of the human body: variables and case and experimental field studies. J Forensic Sci 1990;35:103–111.PubMedGoogle Scholar
  31. 31.
    Vass AA. Beyond the grave — understanding human decomposition. Microbiol Today 2001;28:190–192.Google Scholar
  32. 32.
    Janaway RC. The preservation of organic materials in association with metal artefacts deposited in inhumation graves. In A Boddington, AN Garland and RC Janaway eds. Death, Decay and Reconstruction: Approaches to Archaeology and Forensic Science. Manchester: Manchester University Press, pp. 127–148. 1987.Google Scholar
  33. 33.
    van Haaren FWJ. Churchyards as sources for water pollution. Moorman s Periodieke Pers 1951;35:167–172.Google Scholar
  34. 34.
    Reynold AE, Cahill GF. Handbook of Physiology: Adipose Tissue. Washington, DC: American Physiological Society. 1965.Google Scholar
  35. 35.
    Gresham GA. A Colour Atlas of Forensic Pathology. London: Wolfe Publishing. 1973.Google Scholar
  36. 36.
    Ambrose SH, Krigbaum J. Bone chemistry and bioarchaeology. J Anthropol Archaeol 2003;22:193–199.CrossRefGoogle Scholar
  37. 37.
    Collins MJ, Nielsen-Marsh CM, Hiller J, Smith CI, Roberts JP, Prigodich RV, Weiss TJ, Csapo J, Millard AR, Turner-Walker G. The survival of organic matter in bone: a review. Archaeometry 2002;44:383–394.CrossRefGoogle Scholar
  38. 38.
    Sealy J. Body tissue chemistry and palaeodiet. In DR Brothwell and AM Pollard eds. A Handbook of Archaeological Sciences. Chichester: Wiley, pp. 269–279. 2001.Google Scholar
  39. 39.
    Kushwaha RKS, Guarro J, eds. Biology of Dermatophytes and other Keratinophilic Fungi. Bilbao: Revista Iberoamericana de Micologia. 2000.Google Scholar
  40. 40.
    Wilson AS. The decomposition of hair in the buried body environment. In M Tibbett and DO Carter eds. Soil Analysis in Forensic Taphonomy: Chemical and Biological Effects of Buried Human Remains. Boca Raton: CRC Press, 2008. pp. 123–151.CrossRefGoogle Scholar
  41. 41.
    Wilson AS, Dodson HI, Janaway RC, Pollard AM, Tobin DJ. Selective biodegradation in hair shafts derived from archaeological, forensic and experimental contexts. Br J Dermatol 2007;157:450–457.CrossRefPubMedGoogle Scholar
  42. 42.
    Aufderheide AC. The Scientific Study of Mummies. Cambridge: Cambridge University Press. 2003.Google Scholar
  43. 43.
    Santoro T, Stotzky G. Sorption between microorganisms and clay minerals as determined by the electrical sensing zone particle analyzer. Can J Microbiol 1968;14:299–307.CrossRefPubMedGoogle Scholar
  44. 44.
    Tomita K. On the production of hydroxy fatty acids and fatty acid oligomers in the course of adipocere formation. Nippon Hoigaku Zasshi — Jpn J Leg Med 1984;38:257–272.Google Scholar
  45. 45.
    Nanikawa R. Über die Bestandteile von natürlichen und experimentell hergestellten Leichen-wachsen. Z Rechtsmed 72:194–202. 1973.CrossRefPubMedGoogle Scholar
  46. 46.
    Takatori T, Ishiguro N, Tarao H, Matsumiya H. Microbial production of hydroxy and oxo fatty acids by several microorganisms as a model of adipocere formation. Forensic Sci Int 1986;32:5–11.CrossRefPubMedGoogle Scholar
  47. 47.
    Henderson J. Factors determining the state of preservation of human remains. In A Boddington, AN Garland and RC Janaway eds. Death, Decay and Reconstruction: Approaches to Archaeology and Forensic Science. Manchester: Manchester University Press, pp. 43–54. 1987.Google Scholar
  48. 48.
    Mellen PF, Lowry MA, Micozzi MS. Experimental observations on adipocere formation. J Forensic Sci 1993;38:91–93.PubMedGoogle Scholar
  49. 49.
    O'Brien TG, Kuehner AC. Waxing grave about adipocere: soft tissue change in an aquatic context. J Forensic Sci 2007;52:294–301.CrossRefPubMedGoogle Scholar
  50. 50.
    Pfeiffer S, Milne S, Stevenson RM. The natural decomposition of adipocere. J Forensic Sci 1998;43:368–370.PubMedGoogle Scholar
  51. 51.
    Fiedler S, Graw M. Decomposition of buried corpses, with special reference to the formation of adipocere. Naturwissenschaften 2003;90:291–300.CrossRefPubMedGoogle Scholar
  52. 52.
    Forbes SL, Stuart BH, Dent BB. The effect of the method of burial on adipocere formation. Forensic Sci Int 2005;154:44–52.CrossRefPubMedGoogle Scholar
  53. 53.
    Vane CH, Trick JK. Evidence of adipocere in a burial pit from the foot and mouth epidemic of 1967 using gas chromatography-mass spectrometry. Forensic Sci Int 2005;154:19–23.CrossRefPubMedGoogle Scholar
  54. 54.
    Martins MT, Pellizari VH, Pacheco A, Myaki DM, Adams C, Bossolan NR, Mendes JM, Hassuda S. Bacteriological quality of groundwaters in cemeteries. Rev Saude Publica 1991;25:47–52.CrossRefPubMedGoogle Scholar
  55. 55.
    Rothschild MA, Schmidt V, Schneider V. Adipocere — problems in estimating the length of time since death. Med Law 1996;15:329–335.PubMedGoogle Scholar
  56. 56.
    Craig OE, Love GD, Isaksson S, Taylor G, Snape CE. Stable carbon isotopic characterisation of free and bound lipid constituents of archaeological ceramic vessels released by solvent extraction, alkaline hydrolysis and catalytic hydropyrolysis. J Anal Appl Pyrol 2004;71:613–634.CrossRefGoogle Scholar
  57. 57.
    Heron C, Evershed RP, Goad LJ. Effects of migration of soil lipids on organic residues associated with buried potsherds. J Archaeol Sci 1997;18:641–659.CrossRefGoogle Scholar
  58. 58.
    Waksman SA, Starkey RL. The Soil and the Microbe. New York: Wiley. 1931.Google Scholar
  59. 59.
    Hare PE. Organic geochemistry of bone and its relation to the survival of bone in the natural environment. In AK Behrensmeyer and AP Hill eds. Fossils in the Making: Vertebrate Taphonomy and Paleoecology. Chicago: University of Chicago Press, pp. 208–219. 1976.Google Scholar
  60. 60.
    Hedges REM. Potential information from archaeological bone, its recovery and preservation. In K Starling and D Watkinson eds. Archaeological Bone, Antler and Ivory. London: UKIC, pp. 22–23. 1987.Google Scholar
  61. 61.
    O'Connor TP. On the structure, chemistry and decay of bone, antler and ivory. In K Starling and D Watkinson eds. Archaeological Bone, Ivory and Antler. London: UKIC, pp. 6–8. 1987.Google Scholar
  62. 62.
    Von Endt DW, Ortner DJ. Experimental effects of bone size and temperature on bone diagenesis. J Archaeol Sci 1984;11:247–253.CrossRefGoogle Scholar
  63. 63.
    Cronyn JM. The Elements of Archaeological Conservation. London: Routledge. 1990.CrossRefGoogle Scholar
  64. 64.
    Child AM, Pollard AM. Microbial attack on collagen. In E Pernicka and GA Wagner eds. Archaeometry'90, Basel: Birkhauser Verlag, pp. 617–625. 1991.Google Scholar
  65. 65.
    Garlick JD. Buried bone: the experimental approach in the study of nitrogen content and blood group activity. In DR Brothwell and E Higgs eds. Science in Archaeology. London: Thames & Hudson, pp. 503–512. 1969.Google Scholar
  66. 66.
    Rottlander RCA. Variation in the chemical composition of bone as an indicator of climatic change. J Archaeol Sci 1976;3:83–88.CrossRefGoogle Scholar
  67. 67.
    Beeley JG, Lunt DA. The nature of the biochemical changes in softened dentine from archaeological sites. J Archaeol Sci 1980;7:371–377.CrossRefGoogle Scholar
  68. 68.
    Collins MJ, Waite ER, Van Duin ACT. Predicting protein decomposition: the case of aspartic-acid racemization kinetics. Philos Trans R Soc Lond B 1999;354:51–64.CrossRefGoogle Scholar
  69. 69.
    Nielsen-Marsh C, Gernaey A, Turner-Walker G, Hedges R, Pike A, Collins M. The chemical degradation of bone. In M Cox and S Mays eds. Human Osteology in Archaeology and Forensic Science. London: Greenwich Medical Media, pp. 439–454. 2000.Google Scholar
  70. 70.
    Gennard DE. Forensic Entomology: An Introduction. Chichester: Wiley. 2007.Google Scholar
  71. 71.
    Rodriguez WC, Bass WM. Insect activity and its relationship to decay rates of human cadavers in East Tennessee. J Forensic Sci 1983;28:423–432.Google Scholar
  72. 72.
    Smith KGV. A Manual of Forensic Entomology. Ithaca: Cornell University Press. 1987.Google Scholar
  73. 73.
    Reeve J, Adams M, eds. The Spitalfields Project: Across the Styx, Volume 1 — The Archaeology. York: Council for British Archaeology. 1993.Google Scholar
  74. 74.
    Haglund WD. Dogs and coyotes: postmortem involvement with human remains. In WD Haglund and MH Sorg eds. Forensic Taphonomy: The Postmortem Fate of Human Remains. Boca Raton: CRC Press, pp. 367–381. 1997.Google Scholar
  75. 75.
    Haglund WD. Rodents and human remains. In WD Haglund and MH Sorg eds. Forensic Taphonomy: The Postmortem Fate of Human Remains. Boca Raton: CRC Press, pp. 405–414. 1997.Google Scholar
  76. 76.
    Wilson AS, Janaway RC, Holland AD, Dodson HI, Baran E, Pollard AM, Tobin DJ. Modelling the buried human body environment in upland climes using three contrasting field sites. Forensic Sci Int 2007;169:6–18.CrossRefPubMedGoogle Scholar
  77. 77.
    Wells C. Pseudopathology. In DR Brothwell and A Sandison eds. Diseases in Antiquity. Springfield, IL: Charles C. Thomas, pp. 5–19. 1967.Google Scholar
  78. 78.
    Wedl C. Ueber einen Zahnbein und Knochen keinenden. Pilz Sber Akad Wiss Wein 1864;50:171–193.Google Scholar
  79. 79.
    Hackett CJ. Microscopical focal destruction (tunnels) in excavated human bone. Med Sci Law 1981;21:243–265.PubMedGoogle Scholar
  80. 80.
    Hillson S. Teeth. Cambridge: Cambridge University Press. 1986.Google Scholar
  81. 81.
    Jans MME, Nielsen-Marsh CM, Smith CI, Collins MJ, Kars H. Characterisation of microbial attack on archaeological bone. J Archaeol Sci 2004;31:87–95.CrossRefGoogle Scholar
  82. 82.
    Sagara N, Yamanaka T, Tibbett M. Soil fungi associated with graves and latrines: toward a forensic mycology. In M Tibbett and DO Carter eds. Soil Analysis in Forensic Taphonomy: Chemical and Biological Effects of Buried Human Remains. Boca Raton: CRC Press, Taylor & Francis, pp. 67–107. 2008.CrossRefGoogle Scholar
  83. 83.
    Morse D, Duncan J, Stoutamire J. Handbook of Forensic Archaeology and Anthropology. Tallahassee, FL: Bill's Book Store. 1983.Google Scholar
  84. 84.
    Warren CP. Plants as decomposition vectors of skeletal human remains. Proc Indiana Acad Sci 1976;85:65.Google Scholar
  85. 85.
    Mant AK. Knowledge acquired from post-war exhumations. In A Boddington, AN Garland and RC Janaway eds. Death, Decay and Reconstruction: Approaches to Archaeology and Forensic Science. Manchester: Manchester University Press, pp. 65–78. 1987.Google Scholar
  86. 86.
    Mant AK. A Study in Exhumation — Data. MD, University of London, London. 1950.Google Scholar
  87. 87.
    Mant AK. Recent work on post-mortem changes and timing death. In K Simpson ed. Modern Trends in Forensic Medicine. London: Butterworths, pp. 147–162. 1953.Google Scholar
  88. 88.
    Payne JA. A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecology 1965;46:592–602.CrossRefGoogle Scholar
  89. 89.
    Payne JA, King EW. Insect succession and decomposition of pig carcasses in water. J Georgia Entomol Soc 1972;7:153–162.Google Scholar
  90. 90.
    Payne JA, King EW, Beinhart G. Arthropod succession and decomposition of buried pigs. Nature 1968;219:1180–1181.CrossRefPubMedGoogle Scholar
  91. 91.
    Bass WM. Outdoor decomposition rates in Tennessee. In WD Haglund and MH Sorg eds. Forensic Taphonomy: The Postmortem Fate of Human Remains. London: CRC Press, pp. 181–186. 1997.Google Scholar
  92. 92.
    Turner RL. Important factors in soil burial test applied to rotproofed textiles. In AJ Walters and H-v-d Plas eds. The Biodeterioration of Materials. Essex, A.H. Walters, H-vd Plas, H. Eleonora. Barking: Applied Science Publishers, pp. 218–226. 1972.Google Scholar
  93. 93.
    Hopkins DW, Wiltshire PEJ, Turner BD. Microbial characteristics of soils from graves: an investigation at the interface of soil microbiology and forensic science. Appl Soil Ecol 2000;14:283–288.CrossRefGoogle Scholar
  94. 94.
    Schoenen D. Decomposition from the public health viewpoint with special reference to interference with natural biological disintegration processes in burial underground. Schriftenr Ver Wasser Boden Lufthyg 2003;65:1–74.Google Scholar
  95. 95.
    Carter DO, Yellowlees D, Tibbett M. Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 2007;94:12–24.CrossRefPubMedGoogle Scholar
  96. 96.
    Turner B, Wiltshire P. Experimental validation of forensic evidence: a study of the decomposition of buried pigs in a heavy clay soil. Forensic Sci Int 1999;101:113–122.CrossRefPubMedGoogle Scholar
  97. 97.
    Turner RC. Discovery and excavation of the Lindow bodies. In IM Stead, JB Bourke and DR Brothwell eds. Lindow Man: The Body in the Bog. London: British Museum Press, pp. 10–13. 1986.Google Scholar
  98. 98.
    Prokop O. Forensische Medizin. Berlin: Volk und Gesundheit. 1966.Google Scholar
  99. 99.
    Schoenen D. Wachsleichenbildung: ein mikrobielles Problem. Wasser Boden 2002;54:12–15.Google Scholar
  100. 100.
    Berg S, Mueller B, Schleyer F. Leichenveränderungen, Todeszeitbestimmung im fröhpost-mortalen Intervall: Leichenzersetzung und -zerstörung. In B Mueller ed. Gerichtliche Medizin. Berlin: Springer, pp. 45–106. 1975.Google Scholar
  101. 101.
    Vass AA, Barshick SA, Sega G, Caton J, Skeen JT, Love JC, Synstelien JA. Decomposition chemistry of human remains: a new methodology for determining the postmortem interval. J Forensic Sci 2002;47:542–553.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Robert C. Janaway
    • 1
  • Steven L. Percival
    • 1
    • 2
  • Andrew S. Wilson
    • 1
  1. 1.School of Life SciencesUniversity of BradfordBradford, West YorkshireUK
  2. 2.West Virginia University Schools of Medicine and DentistryMorgantownUSA

Personalised recommendations