Microbiological Theory of Autism in Childhood

  • Steven L. Percival

References

  1. 1.
    Kanner L. Autistic disturbances of affective contact. Nervous child 1943;2:217–250.Google Scholar
  2. 2.
    Lord C, Cook EH, Leventhal BL, Amaral DG. Autism spectrum disorders. Neuron 2000;28:355–363.PubMedCrossRefGoogle Scholar
  3. 3.
    Landa RJ, Holman KC, Garrett-Mayer E. Social and communication development in toddlers with early and later diagnosis of autism spectrum disorders. Arch Gen Psychiatry 2007; 64:853–864.PubMedCrossRefGoogle Scholar
  4. 4.
    Geschwind DH, Levitt P. Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol 2007;17:103–111.PubMedCrossRefGoogle Scholar
  5. 5.
    Richardson AJ, Ross MA. Fatty acid metabolism in neurodevelopmental disorder: a new perspective on associations between attention-deficit/hyperactivitiy disorder dyslexia dys-praxia and the autistic spectrum. Prostaglandins, leukotrienes and essential fatty acids. Prostaglandins Leukot Essent Fatty Acids 2000;63:1–10.PubMedCrossRefGoogle Scholar
  6. 6.
    Rice CE, Baio J, Van Naarden Braun K, Doernberg N, Meaney FJ, Kirby RS. ADDM Network. A public health collaboration for the surveillance of autism spectrum disorders. Paediatr Perinat Epidemiol 2007;21:179–190.PubMedCrossRefGoogle Scholar
  7. 7.
    Kaye JA, Melero-Montes MM, Jick H. Mumps measles and rubella vaccine and the incidence of autism recorded by general practitioners: a time trend analysis. BMJ 2001;322:460–463.PubMedCrossRefGoogle Scholar
  8. 8.
    Little J. Epidemiology of neurodevelopmental disorders in children. Prostaglandins Leukot Essent Fatty Acids 2000;63(1/2):11–20.PubMedCrossRefGoogle Scholar
  9. 9.
    Fombonne E. The prevalence of autism. JAMA 2003;289(1):87–89.PubMedCrossRefGoogle Scholar
  10. 10.
    Comi AM, Zimmerman AW, Frye VH, Law PA, Peeden JN. Familial clustering of autoimmune disorders and evaluation of medical risk factors in autism. J Child Neurol 1999;14: 388–394.PubMedCrossRefGoogle Scholar
  11. 11.
    Herbert MR, Russo JP, Yang S, Roohi J, Blaxill M, Kahler SG, Cremer L, Hatchwell E. Autism and environmental genomics. Neurotoxicology 2006;27:671–684.PubMedCrossRefGoogle Scholar
  12. 12.
    Minshew NJ, Williams DL. The new neurobiology of autism: cortex, connectivity, and neuronal organization. Arch Neurol 2007;64:945–950.PubMedCrossRefGoogle Scholar
  13. 13.
    Pardo CA, Vargas DL, Zimmerman AW. Immunity, neuroglia and neuroinflammation in autism. Int Rev Psychiatry 2005;17:485–495.PubMedCrossRefGoogle Scholar
  14. 14.
    Hornig M, Chian D, Lipkin WI. Neurotoxic effects of postnatal thimerosal are mouse strain dependent. Mol Psychiatry 2004;9:833–845.PubMedCrossRefGoogle Scholar
  15. 15.
    Bigazzi PE. Autoimmunity and heavy metals. Lupus 1994;3:449–453.PubMedCrossRefGoogle Scholar
  16. 16.
    Landa RJ, Holman KC, Garrett-Mayer E. Social and communication development in toddlers with early and later diagnosis of autism spectrum disorders. Arch Gen Psychiatry 2007; 64:853–864.PubMedCrossRefGoogle Scholar
  17. 17.
    Pardo CA, Vargas DL, Zimmerman AW. Immunity, neuroglia and neuroinflammation in autism. Int Rev Psychiatry 2005;17:485–495.PubMedCrossRefGoogle Scholar
  18. 18.
    Ashwood P, Wills S, Van de WJ. The immune response in autism: a new frontier for autism research. J Leukoc Biol 2006;80:1–15.PubMedCrossRefGoogle Scholar
  19. 19.
    Korvatska E, Van de WJ, Anders TF, Gershwin ME. Genetic and immunologic considerations in autism. Neurobiol Dis 2002;9:107–125.PubMedCrossRefGoogle Scholar
  20. 20.
    Licinio J, Alvarado I, Wong ML. Autoimmunity in autism. Mol Psychiatry 2002;7:329.PubMedCrossRefGoogle Scholar
  21. 21.
    Torrente F, Ashwood P, Day R, Machado N, Furlano RI, Anthony A, Davies SE, Wakefield AJ, Thomson MA, Walker-Smith JA, Murch SH. Small intestinal enteropathy with epithelial IgG and complement deposition in children with regressive autism. Mol Psychiatry 2002;7:375–382, 334.Google Scholar
  22. 22.
    Everest P. Stress and bacteria: microbial endocrinology. Gut 2007;56(8):1037–1038.PubMedCrossRefGoogle Scholar
  23. 23.
    Buitelaar JK, Willemsen-Swinkels SHN. Autism: current theories regarding its pathogenesis and implications for rational pharmacotherapy. Pediatr Drugs 2000;2:67–81.CrossRefGoogle Scholar
  24. 24.
    Fombonne E, Mazaubrun C. Prevalence of infantile autism in four French regions. Soc Psychiatry Psychiatr Epidemiol 1992;27:203–210.PubMedCrossRefGoogle Scholar
  25. 25.
    Folstein S, Rutter M. Infantile autism: a genetic study of 21 twin pairs. J Child Psychol Psychiatry 1977;18:297–321.PubMedCrossRefGoogle Scholar
  26. 26.
    Ritvo ER, Freeman BJ, Mason-Brothers A, Mo A, Ritvo AM. Concordance for the syndrome of autism in 40 pairs of afflicted twins. Am J Psychiatry 1985;142:74–77.PubMedGoogle Scholar
  27. 27.
    Steffenburg S, Gillberg C, Hellgren L, Anderson L, Gillberg IC, Jakobsson G, Bohman M. A twin study of autism in Denmark Finland Iceland Norway and Sweden. J Child Psychol Psychiatry 1989;3:405–416.CrossRefGoogle Scholar
  28. 28.
    Lauritsen MB, Pedersen CB, Mortensen PB. Effects of familial risk factors and place of birth on the risk of autism: a nationwide register-based study. J Child Psychol Psychiatry 2005;46 (9):963–971.PubMedCrossRefGoogle Scholar
  29. 29.
    Lauritsen M, Ewald H. The genetics of autism. Acta Psychiatr Scand 2001;103:411–427.PubMedCrossRefGoogle Scholar
  30. 30.
    Gilling M, Lauritsen MB, Møller M, Henriksen KF, Vicente A, Oliveira G, Cintin C, Eiberg H, Andersen PS, Mors O, Rosenberg T, Brøndum-Nielsen K, Cotterill RM, Lundsteen C, Ropers HH, Ullmann R, Bache I, Tümer Z, Tommerup N. A 3.2 Mb deletion on 18q12 in a patient with childhood autism and high-grade myopia. Eur J Hum Genet 2008;16(3):312–319.PubMedCrossRefGoogle Scholar
  31. 31.
    Muhle R, Trentacoste SV, Rapin I. The genetics of autism. Pediatrics 2004;113(5):e472–e486.PubMedCrossRefGoogle Scholar
  32. 32.
    Spence SJ. The genetics of autism. Semin Pediatr Neurol 2004;11(3):196–204.PubMedCrossRefGoogle Scholar
  33. 33.
    Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, Yamrom B, Yoon S, Krasnitz A, Kendall J, Leotta A, Pai D, Zhang R, Lee YH, Hicks J, Spence SJ, Lee AT, Puura K, Lehtimäki T, Ledbetter D, Gregersen PK, Bregman J, Sutcliffe JS, Jobanputra V, Chung W, Warburton D, King MC, Skuse D, Geschwind DH, Gilliam TC, Ye K, Wigler M. Strong association of de novo copy number mutations with autism. Science 2007;316(5823):445–449.PubMedCrossRefGoogle Scholar
  34. 34.
    Lopez-Rangel E, Lewis ME. Further evidence for epigenetic influence of MECP2 in Rett, autism and Angelman's syndromes. Clin Genet 2006;69(1):23–25.CrossRefGoogle Scholar
  35. 35.
    Israngkun PP, Newman HAI, Patel ST. Potential biochemical markers for infantile autism. Neurochem Pathol 1986;5:51–70.PubMedCrossRefGoogle Scholar
  36. 36.
    Minderaa RB, Anderson GM, Volkmar FR, Harcherick D, Akkerhuis GW, Cohen DJ. Whole blood serotonin and tryptophan in autism: temporal stability and the effects of medication. J Autism Dev Disord 1989;19:129–136.PubMedCrossRefGoogle Scholar
  37. 37.
    Anderson GM, Horne WC, Chatterjee D, Cohen DJ. The hyperserotonemia of autism. Ann N Y Acad Sci 1990;600:331–342.PubMedCrossRefGoogle Scholar
  38. 38.
    van der Mast RC, Fekkes D. Serotonin and amino acids: partners in delerium pathophysiolo-gy. Semin Clin Neuropsychiatry 2000;5(2):125–131.PubMedGoogle Scholar
  39. 39.
    Pedersen OS, Lui Y, Reichelt KL. Serotonin-uptake stimulating peptide found in plasma of normal individuals and in some autistic urines. J Peptide Res 1999;53:633–640.CrossRefGoogle Scholar
  40. 40.
    Bell JG, Satgent DR, Tocher DR, Dick JR. Red blood cell fatty acid compositions in a patient with autistic spectrum disorder: a characteristic abnormality in neurodevelopmental disorders? Prostaglandins Leukot Essent Fatty Acids 2000;63(1/2):21–25.PubMedCrossRefGoogle Scholar
  41. 41.
    Peters DA. Prenatal stress: effects on brain biogenic amine and plasma corticosterone levels. Pharamacol Biochem Behav 1982;17(4):721–725.CrossRefGoogle Scholar
  42. 42.
    Scott MM, Deneris ES. Making and breaking serotonin neurons and autism. Int J Dev Neurosci 2005;23:277–285.PubMedCrossRefGoogle Scholar
  43. 43.
    Burgess NK, Sweeten TL, McMahon WM, Fujinami RS. Hyperserotoninemia and altered immunity in autism. J Autism Dev Disord 2006;36:697–704.PubMedCrossRefGoogle Scholar
  44. 44.
    Cook EH. Autism: review of neurochemical investigation. Synapse 1990;6:292–308.PubMedCrossRefGoogle Scholar
  45. 45.
    Lam KS, Aman MG, Arnold LE. Neurochemical correlates of autistic disorder: a review of the literature. Res Dev Disabil 2006;27:254–289.PubMedCrossRefGoogle Scholar
  46. 46.
    McDougle CJ, Scahill L, McCracken JT, Aman MG, Tierney E, Arnold LE, Freeman BJ, Martin A, McGough JJ, Cronin P, Posey DJ, Riddle MA, Ritz L, Swiezy NB, Vitiello B, Volkmar FR, Votolato NA, Walson P. Research Units on Pediatric Psychopharmacology (RUPP) Autism Network. Background and rationale for an initial controlled study of risperi-done. Child Adolesc Psychiatr Clin N Am 2000;9:201–224.PubMedGoogle Scholar
  47. 47.
    Moore ML, Eichner SF, Jones JR. Treating functional impairment of autism with selective serotonin-reuptake inhibitors. Ann Pharmacother 2004;38:1515–1519.PubMedCrossRefGoogle Scholar
  48. 48.
    Posey DJ, Erickson CA, Stigler KA, McDougle CJ. The use of selective serotonin reuptake inhibitors in autism and related disorders. J Child Adolesc Psychopharmacol 2006; 16:181–186.PubMedCrossRefGoogle Scholar
  49. 49.
    Martineau J, Perrot A, Hérault J, Mallet J, Petit E, Sauvage D, Guérin P, Lelord G, Hameury L, Müh J-P. Catecholaminergic metabolism and autism. Dev Med Child Neurol 1994; 36:688–697.PubMedCrossRefGoogle Scholar
  50. 50.
    Garreau B, Barthélémy C, Jouve J, Bruneau N, Müh JP, Lelord G. Urinary homovanillic acid levels of autistic children. Dev Med Child Neurol 1988;30:93–98.PubMedCrossRefGoogle Scholar
  51. 51.
    Dunn AJ. Endotoxin-induced activation of cerebral catecholamine and serotonin metabolism: comparison with interleukin-1. J Pharmacol Exp Ther 1992;261(3):964–969.PubMedGoogle Scholar
  52. 52.
    Dunn AJ, Welch J. Stress- and endotoxin-induced increases in brain tryptophan and serotonin metabolism depend on sympathetic nervous system activity. J Neurochem 1991;57(5): 1615–1622.PubMedCrossRefGoogle Scholar
  53. 53.
    Dunn AJ. Effects of cytokines and infections on brain neurochemistry. Clin Neurosci Res 2006;6(1–2):52–68.PubMedCrossRefGoogle Scholar
  54. 54.
    Ando T, Brown RF, Berg RD, Dunn AJ. Bacterial translocation can increase plasma cortico-sterone and brain catecholamine and indoleamine metabolism. Am J Physiol Regul Integr Comp Physiol 2000;279(6):R2164–2172.PubMedGoogle Scholar
  55. 55.
    Hyland K, Beaman BL, LeWitt PA, DeMaggio AJ. Monoamine changes in the brain of BALB/c mice following sub-lethal infection with Nocardia asteroides (GUH-2). Neurochem Res 2000;25(4):443–448.PubMedCrossRefGoogle Scholar
  56. 56.
    'Eufemia P, Celli M, Finocchiaro R, Pacifico L, Viozzi L, Zaccagnini M, Cardi E, Giardini O. Abnormal intestinal permeability in children with autism. Acta Paediatr 1996; 85:1076–1079.CrossRefGoogle Scholar
  57. 57.
    Reichelt K-L, Ekrem J, Scott H. Gluten milk proteins and autism: dietary intervention effects on behaviour and peptide secretion. J Appl Nutr 1990;42(1):1–11.Google Scholar
  58. 58.
    Alberti A, Pirrone P, Elia M, Waring RH, Romano C. Sulphation deficit in ‘low functioning’ autistic children: a pilot study. Biol Psychiatry 1999;46(3):420–424.PubMedCrossRefGoogle Scholar
  59. 59.
    Le Couteur A, Trygstad O, Evered C, Gillberg C, Rutter M. Infantile autism and urinary excretion of peptides and protein-associated peptide complexes. J Autism Dev Disord 1988;18:181–190.PubMedCrossRefGoogle Scholar
  60. 60.
    Gilberg C, Trygstad O, Foss I. Childhood psychosis and urinary excretion of peptides and protein-associated complexes. J Autism Dev Disord 1982;12 (3):229–241.PubMedCrossRefGoogle Scholar
  61. 61.
    Trygstad OE, Reichelt KL, Foss I, Edminson PD, Saelid G, Bremer J, Hole K, Ørbeck H, Johansen JH, Bøler JB, Titlestad K, Opstad PK. Patterns of peptides and protein-associated-peptide complexes in psychiatric disorders. Br J Psychiatry 1980;136:59–72.PubMedCrossRefGoogle Scholar
  62. 62.
    Zioudrou C, Streaty RA, Klee WA. Opioid peptides derived from food proteins. J Biol Chem 1979;254:2446–2449.PubMedGoogle Scholar
  63. 63.
    Huebner FR, Lieberman KW, Rubino RP, Wall JS. Demonstration of high opioid-like activity in isolated peptides from wheat gluten hydrolysates. Peptides 1984;5:1139–1147.PubMedCrossRefGoogle Scholar
  64. 64.
    Lottspeich F, Henschen A, Brantl V, Teschemacher H. Novel opioid peptides derived from casein (beta-casomorphins) III Synthetic peptides corresponding to components from bovine casein peptone. Hoppe Seyler's Z Physiol Chem 1990;361:1835–1839.Google Scholar
  65. 65.
    Reichelt WH, Knivsberg A-M, Nodland M, Stensrud M, Reichelt KL. Urinary peptide levels and patterns in autistic children from seven countries and the effect of dietary intervention after 4 years. Dev Brain Dysfunct 1997;10:44–55.Google Scholar
  66. 66.
    Reichelt KL, Knivsberg A-M, Lind G, Nodland M. Brain Dysfunct 1991;4:308–319.Google Scholar
  67. 67.
    Reichelt KL, Hole K, Hamberger A, Saelid G, Edminsson PD, Braestrup C, Lingjaerde O, Orbeck H. Biologically active peptide-containing fractions in schizophrenia and childhood autism. Adv Biochem Psychopharmacol 1986;28:627–643.Google Scholar
  68. 68.
    Wakefield AJ, Anthony A, Murch SH, Thomson M, Montgomery DSM, Davies S, O'Leary JJ, Berelowitz M, Walker-Smith JA. Enterocolitis in children with developmental disorders. Am J Gastroenterol 2000;95(9):2285–2295.PubMedCrossRefGoogle Scholar
  69. 69.
    Horvath K, Papadimitriou JC, Rabsztyn A, Drachenberg C, Tildon JT. Gastrointestinal abnormalities in children with autistic disorder. J Pediatr 1999;135:559–563.PubMedCrossRefGoogle Scholar
  70. 70.
    Brandtzaeg P, Baekkevold ES, Farstad IN, Jahnsen FL, Johansen FE, Nilsen EM, Yamanaka T. Regional specialization in the mucosal immune system: what happens in the microcom-partments? Immunol Today 1999;20:141–151.PubMedCrossRefGoogle Scholar
  71. 71.
    MacDermott RP. Immunology of inflammatory bowel disease. Curr Opin Gastroenterol 1999;14:54–67.Google Scholar
  72. 72.
    Caradonna L, Amati L, Magrone T, Pellegrino NM, Jirillo E, Caccavo D. Enteric bacteria lipopolysaccharides and related cyotokines in inflammatory bowel disease: biological and clinical significance. J Endotoxin Res 2000;6(3):205–214.PubMedGoogle Scholar
  73. 73.
    Sellon RK, Tonkonogy S, Schultz M, Dieleman LA, Grenther W, Balish E, Rennick DM, Sartor RB. Resident enteric bacteria are necessary for the development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immunol 1998; 66:5524–5231.Google Scholar
  74. 74.
    Ohno Y, Lee J, Fusunyan RD, MacDermott RP, Sanderson IR. Macrophage inflammatory protein-2: chromosomal regulation in rat small intestinal epithelial cells. Proc Natl Acad Sci USA 1997;94:10279–10284.PubMedCrossRefGoogle Scholar
  75. 75.
    Caradonna L, Amati L, Lella P, Jirillo E, Caccavo D. Phagocytosis killing lymphocyte-mediated antibacterial activity serum autoantibodies and plasma endotoxin in inflammatory bowel disease. Am J Gastroenterol 2000;95:1495–1502.PubMedCrossRefGoogle Scholar
  76. 76.
    Wellmann W, Fink PC, Benner F, Schmidt FW. Endotoxaemia in active Crohn's disease treatment with whole gut irrigation and 5-aminosalicylic acid. Gut 1986;27:814–820.PubMedCrossRefGoogle Scholar
  77. 77.
    Wyatt J, Vogelsang H, Hub LW, Waldhoe T, Lochs H. Intestinal permeability and the prediction of relapse in Crohn's disease. Lancet 1993;341:1437–1439.PubMedCrossRefGoogle Scholar
  78. 78.
    Fabia R, Ar'Rajab A, Johansson ML, Andersson R, Willén R, Jeppsson B, Molin G, Beng-mark S. Impairment of bacterial flora in human ulcerative colitis and experimental colitis in the rat. Digestion 1993;54:248–255.PubMedCrossRefGoogle Scholar
  79. 79.
    Favier C, Neut C, Milon C, Cortot A, Colombel JF, Milon J. Fecal (-D-galactosidase production and bifidobacteria are decreased in Crohn's disease. Dig Dis Sci 1997;42:817–822.PubMedCrossRefGoogle Scholar
  80. 80.
    De Simone C, Ciardi A, Grassi A, Lambert Gardini S, Tzantzoglou S, Trinchieri V, Moretti S, Jirillo E. Effect of Bifidobacterium bifidium and Lactobacillus acidophilus on gut mucosa and peripheral blood B lymphocytes. Immunopharmacol Immunotoxicol 1992;14:331–340.PubMedCrossRefGoogle Scholar
  81. 81.
    Gionchetti P, Rizzello F, Venturi A, et al. Maintenance treatment of chronic pouchitis: a randomized placebo-controled double-blind trial with a new probiotic preparation. Gastroen-terology 1998;114:G4037 p A985.Google Scholar
  82. 82.
    Coffey MJ, Phare SM, Peters-Golden M. Prolonged exposure to lipopolysaccharide inhibits macrophage 5-lipoxygenase metabolism via induction of nitric oxide synthesis. J Immunol 2000;165(7):3592–3598.PubMedGoogle Scholar
  83. 83.
    Middleton SJ, Shorthouse M, Hunter JO. Increased nitric oxide synthesis in ulcerative colitis. Lancet 1993;341:465–466.PubMedCrossRefGoogle Scholar
  84. 84.
    Jourd'heuil D, Morise Z, Conner EM, Grisham MB. Oxidants transcription factors and intestinal inflammation. J Clin Gastroenterol 1997;25:561–572.CrossRefGoogle Scholar
  85. 85.
    Pitcher MC, Beatty ER, Gibson GR, et al. Incidence and activities of sulphate-reducing bacteria in patients with ulcerative colitis. Gut 1995;36:A63.Google Scholar
  86. 86.
    Pitcher MC, Cummings JH. Hydrogen sulphide: a bacterial toxin in ulcerative colitis? Gut 1996;39:1–4.PubMedCrossRefGoogle Scholar
  87. 87.
    Pitcher MC, Beatty ER, Cummings JH. The contribution of sulphate reducing bacteria and 5-aminosalicylic acid to faecal sulphide in patients with ulcerative colitis. Gut 2000; 46(1):64–72.PubMedCrossRefGoogle Scholar
  88. 88.
    Gotteland M, Cruchet Muñoz S, Araya Quezada M, Espinoza Madariaga J, Brunser Tesarschü O. Intestinal permeability in the first year of life. The effect of diarrhea. An Esp Pediatr 1998;49(2):125–128.PubMedGoogle Scholar
  89. 89.
    Cohly HH, Panja A. Immunological findings in autism. Int Rev Neurobiol 2005;71:317–341.PubMedCrossRefGoogle Scholar
  90. 90.
    Fujinami RS, Oldstone MB, Wroblewska Z, Frankel ME, Koprowski H. Molecular mimicry in virus infections: cross reaction of measles virus phosphoprotein or of herpes simplex viral protein with human intermediate filaments. Proc Natl Acad Sci USA 1983;80(8):2346–2350.PubMedCrossRefGoogle Scholar
  91. 91.
    Comi AM, Zimmerman AW, Frye VH, Law PA, Peeden JN. Familial clustering of autoimmune disorders and evaluation of medical risk factors in autism. J Child Neurol 1999; 14:388–394.PubMedCrossRefGoogle Scholar
  92. 92.
    Sweeten TL, Bowyer SL, Posey DJ, Halberstadt GM, McDougle CJ. Increased prevalence of familial autoimmunity in probands with pervasive developmental disorders. Pediatrics 2003;112:e420.PubMedCrossRefGoogle Scholar
  93. 93.
    Money J, Bobrow NA, Clarke FC. Autism and autoimmune disease: a family study. J Autism Child Schizophr 1971;1:146–160.PubMedCrossRefGoogle Scholar
  94. 94.
    Ginn LR, Lin JP, Plotz PH, Bale SJ, Wilder RL, Mbauya A. Familial autoimmunity in pedigrees of idiopathic inflammatory myopathy patients suggests common genetic risk factors for many autoimmune diseases. Arthritis Rheum 1998;41:400–405.PubMedCrossRefGoogle Scholar
  95. 95.
    Kozlovskaia GV, Kliushnik TP, Goriunova AV, Turkova IL, Kalinina MA, Sergienko NS. Nerve growth factor auto-antibodies in children with various forms of mental dysontogenesis and in schizophrenia high risk group. Zh Nevropatol Psihiatr S S Korsakova 2000;100:50–52.Google Scholar
  96. 96.
    Singh VK, Rivas WH. Prevalence of serum antibodies to caudate nucleus in autistic children. Neurosci Lett 2004;355:53–56.PubMedCrossRefGoogle Scholar
  97. 97.
    Silva SC, Correia C, Fesel C, Barreto M, Coutinho AM, Marques C. Autoantibody repertoires to brain tissue in autism nuclear families. J Neuroimmunol 2004;152:176–182.PubMedCrossRefGoogle Scholar
  98. 98.
    Croen LA, Grether JK, Yoshida CK, Odouli R, Van de Water J. Maternal autoimmune diseases, asthma and allergies, and childhood autism spectrum disorders: a case-control study. Arch Pediatr Adolesc Med 2005;159(2):151–157.PubMedCrossRefGoogle Scholar
  99. 99.
    Yuki N. Current cases in which epitope mimicry is considered a component cause of autoimmune disease: Guillain–Barré syndrome. Cell Mol Life Sci 2000;57:527–533.PubMedCrossRefGoogle Scholar
  100. 100.
    Cunningham MW, McCormack JM, Talaber LR, Harley JB, Ayoub EM, Muneer RS, Chun LT, Reddy DV. Human monoclonal antibodies reactive with antigens of the group A Streptococcus and human heart. J Immunol 1988;141:2706–2760.Google Scholar
  101. 101.
    Jones DB, Coulson AF, Duff GW. Sequence homologies between hsp60 and autoantigens. Immunol Today 1993;14:115–118.PubMedCrossRefGoogle Scholar
  102. 102.
    Rose NR, Mackay IR. Molecular mimicry: a critical look at exemplary instances in human diseases. Cell Mol Life Sci 2000;57:542–551.PubMedCrossRefGoogle Scholar
  103. 103.
    Ebringer RW, Cawdell DR, Cowling P, Ebringer A. Sequential studies in ankylosing spondylitis: association of Klebsiella pneumoniae with active disease. Ann Rheum Dis 1978;37:146–151.PubMedCrossRefGoogle Scholar
  104. 104.
    Shoenfeld Y, Aron-Maor A. Vaccination and autoimmunity – ‘vaccinosis’: a dangerous liaison? J Autoimmun 2000;14:1–10.PubMedCrossRefGoogle Scholar
  105. 105.
    Goodacre JA, Brownlie CED, Ross DA. Bacterial superantigens in autoimmune arthritis Br J Rheumatol 1994;33:413–419.PubMedCrossRefGoogle Scholar
  106. 106.
    Wakefield AJ, Murch SH, Anthony A, Linnell J, Casson DM, Malik M, Berelowitz M, Dhillon AP, Thomson MA, Harvey P, Valentine A, Davies SE, Walker-Smith JA. Ileal-lymphoid-nodular-hyperplasia non-specific colitis and pervasive developmental disorder in children. Lancet 1998;351:637–641.PubMedCrossRefGoogle Scholar
  107. 107.
    Chen W, Landau S, Sham P, Fombonne E. No evidence for links between autism, MMR and measles virus. Psychol Med 2004;34(3):543–553.PubMedCrossRefGoogle Scholar
  108. 108.
    Riedel DD, Kaufmann SH. Differential tolerance induction by lipoarabinomannan and lipopolysaccharide in human macrophages. Microbes Infect 2000;2(5):463–471.PubMedCrossRefGoogle Scholar
  109. 109.
    Bass MP, Menold MM, Wolpert CM, Donnelly SL, Ravan SA, Hauser ER, Maddox LO, Vance JM, Abramson RK, Wright HH, Gilbert JR, Cuccaro ML, DeLong GR, Pericak-Vance MA. Genetic studies in autistic disorder and chromosome 15. Neurogenetics 2000;2(4):219– 226.PubMedCrossRefGoogle Scholar
  110. 110.
    Saunders NR, Knott GW, Dziegielewska KM. Barriers in the immature brain. Cell Mol Neurobiol 2000;20(1):29–40.PubMedCrossRefGoogle Scholar
  111. 111.
    Jones EA, Schafer DF, Ferenci P, Pappas SC. The GABA hypothesis of hepatic encephalop-athy: current status. Yale J Biol Med 1984;57:301–316.PubMedGoogle Scholar
  112. 112.
    Friedman HM, Macarak EJ, MacGregor RR, Wolfe J, Kefalides NA. Virus infection of endothelial cells. J Infect Dis 1981;143(2):266–273.PubMedGoogle Scholar
  113. 113.
    Minuk GY. Gamma-aminobutyric acid (GABA) production by eight common bacterial pathogens. Scand J Infect Dis 1986;18:465–467.PubMedCrossRefGoogle Scholar
  114. 114.
    Feleder C, Arias P, Refojo S, Nacht S, Moguilevsky JA. Age-related differences in the effects of bacterial endotoxin (LPS) upon the release of LHRH gonadotropins and hypotha-lamic inhibitory amino acid neurotransmitters measured in tissues explanted form intact male rats. Exp Clin Endocrinol Diab 2000;108:220–227.CrossRefGoogle Scholar
  115. 115.
    Vancassel S, Durand G, Barthélémy C, Lejeune B, Martineau J, Guilloteau D, Andrès C, Chalon S. Plasma fatty acid levels in autistic children. Prostaglandins Leukot Essent Fatty Acids 2001;65(1):1–7.PubMedCrossRefGoogle Scholar
  116. 116.
    Bennett CN, Horrobin DF. Gene targets related to phospholipid and fatty acid metabolism in schizophrenia and other psychiatric disorders: an update. Prostaglandins Leukot Essent Fatty Acids 2000;63(1/2):47–59.PubMedCrossRefGoogle Scholar
  117. 117.
    Bell JG, MacKinlay EE, Dick JR, MacDonald DJ, Boyle RM, Glen AC. Essential fatty acids and phospholipase A2 in autistic spectrum disorders. Prostaglandins Leukot Essent Fatty Acids 2004;71(4):201–204.PubMedCrossRefGoogle Scholar
  118. 118.
    Piven J, Tsai G, Nehme E, Coyle JT, Chase GA, Folstein SE. Platelet serotonin a possible marker for familial autism J Autism Dev Disord 1991;21:51–59.PubMedCrossRefGoogle Scholar
  119. 119.
    Ross MA. Could oxidative stress be a factor in neurodevelopmental disorders? Prostaglan-dins Leukot Essent Fatty Acids 2000;63(1/2):61–63.CrossRefGoogle Scholar
  120. 120.
    Stordy BJ. Dyslexia attention deficit disorder dyspraxia: do fatty acid supplements help? Dyslexia Rev 1997;9:5–7.Google Scholar
  121. 121.
    Archelos JJ, Hartung H-P. Pathogenic role of autoantibodies in neurological diseases. Trends Neurosci 2000;23:317–327.PubMedCrossRefGoogle Scholar
  122. 122.
    Pudelkewicz C, Seufert J, Holman RT. Requirements of the female rat for linoleic and linolenic acids. J Nutr 1968;94:138–146.PubMedGoogle Scholar
  123. 123.
    Khan M, Contreras M, Singh I. Endotoxin-induced alterations of lipid and fatty acid compositions in rat liver peroxisomes. J Endotoxin Res 2000;6(1):41–50.PubMedCrossRefGoogle Scholar
  124. 124.
    Balsinde J, Balboa MA, Dennis EA. Group IV cytosolic phospholipase A2 activation by diacylglycerol pyrophosphate in murine P388D1 macrophages. Ann NY Acad Sci 2000;905:11–15.PubMedCrossRefGoogle Scholar
  125. 125.
    Morton RS, Dongari-Bagtzoglou AI. Cyclooxygenase-2 is upregulated in inflamed gingival tissues. J Periodontol 2001;72(4):461–469.PubMedCrossRefGoogle Scholar
  126. 126.
    Rice D, Barone S. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 2000;108:511–533.PubMedCrossRefGoogle Scholar
  127. 127.
    Takahashi H, Arai S, Tanaka-Taya K, Okabe N. Autism and infection/immunization episodes in Japan. Jpn J Infect Dis 2001;54:78–79.PubMedGoogle Scholar
  128. 128.
    Yamashita Y, Fujimoto C, Nakajima E, Isagai T, Matsuishi T. Possible association between congenital cytomegalovirus infection and autistic disorder. J Autism Dev Disord 2003;33:355–459.CrossRefGoogle Scholar
  129. 129.
    Libbey JE, Coon HH, Kirkman NJ, Sweeten TL, Miller JN, Lainhart JE, McMahon WM, Fujinami RS. Are there altered antibody responses to measles, mumps, or rubella viruses in autism? J Neurovirol 2007;13(3):252–259.PubMedCrossRefGoogle Scholar
  130. 130.
    Libbey JE, Coon HH, Kirkman NJ, Sweeten TL, Miller JN, Stevenson EK, Lainhart JE, McMahon WM, Fujinami RS. Are there enhanced MBP autoantibodies in autism? J Autism Dev Disord 2008;38(2):324–332.PubMedCrossRefGoogle Scholar
  131. 131.
    Libbey JE, Sweeten TL, McMahon WM, Fujinami RS. Autistic disorder and viral infections. J Neurovirol 2005;11(1):1–10.PubMedCrossRefGoogle Scholar
  132. 132.
    Singh VK, Lin SX, Yang VC. Serological association of measles virus and human herpesvi-rus-6 with brain autoantibodies in autism. Clin Immunol Immunopathol 1998;89(1):105– 108.PubMedCrossRefGoogle Scholar
  133. 133.
    Nicolson GL, Gan R, Nicolson NL, Haier J. Evidence for Mycoplasma sp, Chlamydia pneunomiae, and human herpes virus-6 coinfections in the blood of patients with autistic spectrum disorders. J Neurosci Res 2007;85(5):1143–1148.PubMedCrossRefGoogle Scholar
  134. 134.
    Bolte ER. Autism and Clostridium tetani. Med Hypotheses 1998;51:133–144.PubMedCrossRefGoogle Scholar
  135. 135.
    Brook I. Clostridial infection in children. J Med Microbiol 1995;42:78–82.PubMedCrossRefGoogle Scholar
  136. 136.
    Finegold SM, Molitoris D, Song Y, Liu C, Vaisanen ML, Bolte E, McTeague M, Sandler R, Wexler H, Marlowe EM, Collins MD, Lawson PA, Summanen P, Baysallar M, Tomzynski TJ, Read E, Johnson E, Rolfe R, Nasir P, Shah H, Haake DA, Manning P, Kaul A. Gastrointestinal microflora studies in late-onset autism. Clin Infect Dis 2002;35:S6–S16.PubMedCrossRefGoogle Scholar
  137. 137.
    Song Y, Liu C, Finegold SY. Real-time PCR quantification of clostridia in feces of autistic children. Appl Environ Micobiol 2004;70:6459–6465.CrossRefGoogle Scholar
  138. 138.
    Finegold SM. Therapy and epidemiology of autism-clostridial spores as key elements. Med Hypotheses 2008;70(3):508–511.PubMedCrossRefGoogle Scholar
  139. 139.
    Martirosian G. Anaerobic intestinal microflora in pathogenesis of autism? Postepy Hig Med Dosw 2004;58:349–351.Google Scholar
  140. 140.
    Parracho HM, Bingham MO, Gibson GR, McCartney AL. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J Med Microbiol 2005;54:987–991.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Steven L. Percival
    • 1
  1. 1.Global Development CentreConvaTec, LimitedFlintshireUK

Personalised recommendations