The Domestic Cat, Felis catus, as a Model of Hereditary and Infectious Disease

  • Marilyn Menotti-Raymond
  • Stephen J. O’Brien


The domestic cat, currently the most frequent of companion animals, has enjoyed a medical surveillance, as a nonprimate species, second only to the dog. With over 200 hereditary disease pathologies reported in the cat, the clinical and physiological study of these feline hereditary diseases provides a strong comparative medicine opportunity for prevention, diagnostics, and treatment studies in a laboratory setting. Causal mutations have been characterized in 19 felid genes, with the largest representation from lysosomal storage enzyme disorders. Corrective therapeutic strategies for several disorders have been proposed and examined in the cat, including enzyme replacement, heterologous bone marrow transplantation, and substrate reduction therapy. Genomics tools developed in the cat, including the recent completion of the 2-fold whole genome sequence of the cat and genome browser, radiation hybrid map of 1793 integrated coding and microsatellite loci, a 5-cM genetic linkage map, arrayed BAC libraries, and flow sorted chromosomes, are providing resources that are being utilized in mapping and characterization of genes of interest. A recent report of the mapping and characterization of a novel causative gene for feline spinal muscular atrophy marked the first identification of a disease gene purely from positional reasoning. With the development of genomic resources in the cat and the application of complementary comparative tools developed in other species, the domestic cat is emerging as a promising resource of phenotypically defined genetic variation of biomedical significance. Additionally, the cat has provided several useful models for infectious disease. These include feline leukemia and feline sarcoma virus, feline coronavirus, and Type C retroviruses that interact with cellular oncogenes to induce leukemia, lymphoma, and sarcoma.

Key Words

Domestic cat Felis catus Gene therapy Whole genome sequence Radiation hybrid map Knockout model FIV SARS 


  1. 1.
    Vigne JD, Guilaine J, Debue K, Haye L, Gerard P. Early taming of the cat in Cyprus. Science 2004;304(5668):259.PubMedCrossRefGoogle Scholar
  2. 2.
    O’Brien SJ, Menotti-Raymond, Murphy WJ, Yuhki N. The Feline Genome Project. Annu Rev Genet 2002;36:657–686.PubMedCrossRefGoogle Scholar
  3. 3.
    O’Brien SJ. Cats. Curr Biol 2004;14(23):R988–999.PubMedCrossRefGoogle Scholar
  4. 4.
    Sun S, Murphy WJ, Menotti-Raymond M, O’Brien SJ. Integration of the feline radiation hybrid and linkage maps. Mamm Genome 2001;12:436–441.PubMedCrossRefGoogle Scholar
  5. 5.
    Menotti-Raymond M, David VA, Agarwala R, et al. Radiation hybrid mapping of 304 novel microsatellites in the domestic cat genome. Cytogenet Genome Res 2004;102(14):272–276.Google Scholar
  6. 6.
    Menotti-Raymond M, David VA, Lyons LA, et al. A genetic linkage map of microsatellites in the domestic cat (Felis catus). Genomics 1999;57:9–23.PubMedCrossRefGoogle Scholar
  7. 7.
    Murphy WJ, Davis B, David VA, et al. A 1.5 megabase resolution radiation hybrid map of the cat genome and comparative analysis with the canine and human genomes. Genomics 2007;89(2): 189–196.PubMedCrossRefGoogle Scholar
  8. 8.
    Menotti-Raymond M, David VA, Roelke ME, et al. Second-generation integrated genetic linkage/radiation hybrid maps of the domestic cat (Felis catus). J Hered 2003;94(1):95–106.PubMedCrossRefGoogle Scholar
  9. 9.
    Murphy WJ, David VA, Schäffer AA, et al. A third-generation RH map of the domestic cat. Cytogenet Genome Res 2003.Google Scholar
  10. 10.
    Murphy WJ, Sun S, Chen ZQ, Pecon-Slattery J, O’Brien SJ. Extensive conservation of sex chromosome organization between cat and human revealed by parallel radiation hybrid mapping. Genome Res 1999;9(12):1223–1230.PubMedCrossRefGoogle Scholar
  11. 11.
    O’Brien SJ, Nash WG. Genetic mapping in mammals: Chromosome map of domestic cat. Science 1982;216:257–265.PubMedCrossRefGoogle Scholar
  12. 12.
    Murphy WJ, Sun S, Chen Z, et al. A radiation hybrid map of the cat genome: Implications for comparative mapping. Genome Res 2000;10(5):691–702.PubMedCrossRefGoogle Scholar
  13. 13.
    Murphy WJ, Pearks Wilkerson AJ, Raudsepp T, et al. Novel gene acquisition on carnivore Y chromosomes. PLoS Genet 2006;2(3): e43.PubMedCrossRefGoogle Scholar
  14. 14.
    O’Brien SJ, Wienberg J, Lyons LA. Comparative genomics: Lessons from cats. Trends Genet 1997;13:393–399.PubMedCrossRefGoogle Scholar
  15. 15.
    O’Brien SJ, Cevario SJ, Martenson JS, et al. Comparative gene mapping in the domestic cat (Felis catus). J Hered 1997;88(5):408–414.PubMedGoogle Scholar
  16. 16.
    Pontius J, Mullikin J, Smith D, et al. The domestic cat genome sequence annotation and comparative inferences. 2006.Google Scholar
  17. 17.
    Lindblad-Toh K, Wade CM, Mikkelsen TS, et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 2005;438(7069):803–819.PubMedCrossRefGoogle Scholar
  18. 18.
    Margulies EH, Blanchette M, Haussler D, Green ED. Identification and characterization of multi-species conserved sequences. Genome Res 2003;13(12):2507–2518.PubMedCrossRefGoogle Scholar
  19. 19.
    Margulies EH, Vinson JP, Miller W, et al. An initial strategy for the systematic identification of functional elements in the human genome by low-redundancy comparative sequencing. Proc Natl Acad Sci USA 2005;102(13):4795–4800.PubMedCrossRefGoogle Scholar
  20. 20.
    Narfström K. Hereditary progressive retinal atrophy in the Abyssinian cat. J Hered 1983;74:273–276.PubMedGoogle Scholar
  21. 21.
    Parker HG, Kim LV, Sutter NB, et al. Genetic structure of the purebred domestic dog. Science 2004;304(5674):1160–1164.PubMedCrossRefGoogle Scholar
  22. 22.
    Sutter NB, Ostrander EA. Dog star rising: The canine genetic system. Nat Rev Genet 2004;5(12):900–910.PubMedCrossRefGoogle Scholar
  23. 23.
    Morton NE. Linkage disequilibrium maps and association mapping. J Clin Invest 2005;115(6):1425–1430.PubMedCrossRefGoogle Scholar
  24. 24.
    Sutter NB, Eberle MA, Parker HG, et al. Extensive and breedspecific linkage disequilibrium in Canis familiaris. Genome Res 2004;14(12):2388–2396.PubMedCrossRefGoogle Scholar
  25. 25.
    Ostrander EA, Wayne RK. The canine genome. Genome Res 2005;15(12):1706–1716.PubMedCrossRefGoogle Scholar
  26. 26.
    Chase K, Sargan D, Miller K, Ostrander EA, Lark KG. Understanding the genetics of autoimmune disease: Two loci that regulate late onset Addison’s disease in Portuguese Water Dogs. Int J Immunogenet 2006;33(3): 179–184.PubMedCrossRefGoogle Scholar
  27. 27.
    Mellersh CS, Boursnell ME, Pettitt L, etal. Canine RPGRIP1 mutation establishes cone-rod dystrophy in miniature longhaired dachshunds as a homologue of human Leber congenital amaurosis. Genomics 2006;88(3):293–301.PubMedCrossRefGoogle Scholar
  28. 28.
    Driscoll C, O’Brien SJ. Cat domestication age. Science 2006.Google Scholar
  29. 29.
    Menotti-Raymond MA, David VA, Wachter LL, Butler JM, O’Brien SJ. An STR forensic typing system for genetic individualization of domestic cat (Felis catus) samples. J Forensic Sci 2005;50(5): 1061–1070.PubMedCrossRefGoogle Scholar
  30. 30.
    Schmidt-Kuntzel A, Eizirik E, O’Brien SJ, Menotti-Raymond M. Tyrosinase and tyrosinase related protein 1 alleles specify domestic cat coat color phenotypes of the albino and brown loci. J Hered 2005;96(4):289–301.PubMedCrossRefGoogle Scholar
  31. 31.
    Lyons LA, Biller DS, Erdman CA, et al. Feline polycystic kidney disease mutation identified in PKD1. J Am Soc Nephrol 2004;15(10):2548–2555.PubMedCrossRefGoogle Scholar
  32. 32.
    Fyfe JC, Menotti-Raymond M, David VA, et al. An ∼140-kb deletion associated with feline spinal muscular atrophy implies an essential LIX1 function for motor neuron survival. Genome Res 2006;16(9):1084–1090.PubMedCrossRefGoogle Scholar
  33. 33.
    Ishida Y, David VA, Eizirik E, et al. A homozygous single-base deletion in MLPH causes the dilute coat color phenotype in the domestic cat. Genomics 2006;88(6):698–705.PubMedCrossRefGoogle Scholar
  34. 34.
    Imes DL, Geary LA, Grahn RA, Lyons LA. Albinism in the domestic cat (Felis catus) is associated with a tyrosinase (TYR) mutation. Anim Genet 2006;37(2):175–178.PubMedCrossRefGoogle Scholar
  35. 35.
    Lyons LA, Imes DL, Rah HC, Grahn RA. Tyrosinase mutations associated with Siamese and Burmese patterns in the domestic cat (Felis catus). Anim Genet 2005;36(2):119–126.PubMedCrossRefGoogle Scholar
  36. 36.
    Baker H, Smith BF, Martin DR, Foureman P. Molecular diagnosis of gangliosidosis: A model of inherited diseases in pure breeds. In: August JR, Ed. Consultations in Feline Internal Medicine. Philadelphia: W. B. Saunders Company, 2001:615–620.Google Scholar
  37. 37.
    Muldoon LL, Neuwelt EA, Pagel MA, Weiss DL. Characterization of the molecular defect in a feline model for type II GM2-gangliosidosis (Sandhoff disease). Am J Pathol 1994;144(5):1109–1118.PubMedGoogle Scholar
  38. 38.
    Martin DR, Krum BK, Varadarajan GS, Hathcock TL, Smith BF, Baker HJ. An inversion of 25 base pairs causes feline GM2 gangliosidosis variant. Exp Neurol 2004;187(1):30–37.PubMedCrossRefGoogle Scholar
  39. 39.
    Martin DR, Cox NR, Morrison NE, et al. Mutation of the GM2 activator protein in a feline model of GM2 gangliosidosis. Acta Neuropathol (Berl) 2005;110(5):443–450.CrossRefGoogle Scholar
  40. 40.
    Fyfe JC, Giger U, Winkle TJV, et al. Glycogen storage disease Type IV: Inherited deficiency of branching enzyme activity in cats. PediatrRes 1992;32:719–725.Google Scholar
  41. 41.
    Fyfe JC, Kurzhals RL. Glycogen storage disease Type IV in Norwegian Forest Cats: Molecular detection of carriers. In: First International Feline Genetic Disease Conference, June 25–28, 1998. Philadelphia, PA: University of Pennsylvania, 1998.Google Scholar
  42. 42.
    Goree M, Catalfamo JL, Aber S, Boudreaux MK. Characterization of the mutations causing hemophilia B in 2 domestic cats. J Vet Intern Med 2005;19(2):200–204.PubMedCrossRefGoogle Scholar
  43. 43.
    Ginzinger DG, Lewis MES, Ma YH, Jones BR, Liu GQ, Jones SD. A mutation in the lipoprotein lipase gene is the molecular basis of chylomicronemia in a colony of domestic cats. J Clin Invest 1996;97:1257–1266.PubMedCrossRefGoogle Scholar
  44. 44.
    Meurs KM, Sanchez X, David RM, et al. A cardiac myosin binding protein C mutation in the Maine Coon cat with familial hypertrophic cardiomyopathy. Hum Mol Genet 2005;14(23):3587–3593.PubMedCrossRefGoogle Scholar
  45. 45.
    Giger U, Tcherneva E, Caverly J, et al. A missense mutation in Nacetylglucosamine-1-phosphotransferase causes mucolipidosis II in domestic shorthair cats. J Vet Intern Med 2006;20:781.Google Scholar
  46. 46.
    Crawley AC, Yogalingam G, Muller VJ, Hopwood JJ. Two mutations within a feline mucopolysaccharidosis type VI colony cause three different clinical phenotypes. J Clin Invest 1998;101(1):109–119.PubMedCrossRefGoogle Scholar
  47. 47.
    Fyfe JC, Kurzhals RL, Lassaline ME, et al. Molecular basis of feline beta-glucuronidase deficiency: An animal model of mucopolysaccharidosis VII. Genomics 1999;58(2):121–128.PubMedCrossRefGoogle Scholar
  48. 48.
    Winand NJ, Edwards M, Pradhan D, Berian CA, Cooper BJ. Deletion of the dystrophin muscle promoter in feline muscular dystrophy. Neuromuscul Disord 1994;4(5–6):433–445.PubMedCrossRefGoogle Scholar
  49. 49.
    Somers KL, Royals MA, Carstea ED, Rafi MA, Wenger DA, Thrall MA. Mutation analysis of feline Niemann-Pick C1 disease. Mol Genet Metab 2003;79(2):99–103.PubMedCrossRefGoogle Scholar
  50. 50.
    Giebel LB, Tripathi RK, King RA, Spritz RA. A tyrosinase gene missense mutation in temperature-sensitive type I oculocutaneous albinism. A human homologue to the Siamese cat and the Himalayan mouse. J Clin Invest 1991;87(3):1119–1122.PubMedCrossRefGoogle Scholar
  51. 51.
    Giger U, Rajpurohit Y, Wang P, et al. Molecular basis of erythrocyte pyruvate kinase (RPK) deficiency in cats. Blood 1997;90:5.Google Scholar
  52. 52.
    Li X, Li W, Wang H, et al. Cats lack a sweet taste receptor. J Nutr 2006;136(7Suppl.):1932S–1934S.PubMedGoogle Scholar
  53. 53.
    den Dunnen JT, Antonarakis SE. Nomenclature for the description of human sequence variations. Hum Genet 2001;109(1):121–124.CrossRefGoogle Scholar
  54. 54.
    Talbot K, Davies KE. Spinal muscular atrophy. Semin Neurol 2001;21(2):189–197.PubMedCrossRefGoogle Scholar
  55. 55.
    Lefebvre S, Burglen L, Reboullet S, et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 1995;80(1):155–165.PubMedCrossRefGoogle Scholar
  56. 56.
    Wirth B, Herz M, Wetter A, et al. Quantitative analysis of survival motor neuron copies: Identification of subtle SMN1 mutations in patients with spinal muscular atrophy, genotype-phenotype correlation, and implications for genetic counseling. Am J Hum Genet 1999;64(5):1340–1356.PubMedCrossRefGoogle Scholar
  57. 57.
    He Q, Lowrie C, Shelton GD, et al. Inherited motor neuron disease in domestic cats: A model of spinal muscular atrophy. Pediatr Res 2005;57(3):324–330.PubMedCrossRefGoogle Scholar
  58. 58.
    Meister G, Fischer U. Assisted RNP assembly: SMN and PRMT5 complexes cooperate in the formation of spliceosomal UsnRNPs. EMBO J 2002;21(21):5853–5863.PubMedCrossRefGoogle Scholar
  59. 59.
    Haskins M, Casal M, Ellinwood NM, Melniczek J, Mazrier H, Giger U. Animal models for mucopolysaccharidoses and their clinical relevance. Acta Paediatr Suppl 2002;91(439):88–97.PubMedCrossRefGoogle Scholar
  60. 60.
    Gilbert DA, O’Brien JS, O’Brien SJ. Chromosomal mapping of lysosomal enzyme structural genes in the domestic cat. Genomics 1988;2:329–336.PubMedCrossRefGoogle Scholar
  61. 61.
    Ellinwood NM, Vite CH, Haskins ME. Gene therapy for lysosomal storage diseases: The lessons and promise of animal models. J Gene Med 2004;6(5):481–506.PubMedCrossRefGoogle Scholar
  62. 62.
    Neufeld EF, Lim TW, Shapiro LJ. Inherited disorders of lysosomal metabolism. Annu Rev Biochem 1975;44:357–376.PubMedCrossRefGoogle Scholar
  63. 63.
    Haskins ME, Jezyk PF, Desnick RJ, McDonough SK, Patterson DF. Alpha-L-iduronidase deficiency in a cat: A model of mucopolysaccharidosis I. Pediatr Res 1979;13(11):1294–1297.PubMedGoogle Scholar
  64. 64.
    Haskins ME, Jezyk PF, Desnick RJ, McDonough SK, Patterson DF. Mucopolysaccharidosis in a domestic short-haired cat—a disease distinct from that seen in the Siamese cat. J Am Vet Med Assoc 1979;175(4):384–387.PubMedGoogle Scholar
  65. 65.
    Spellacy E, Shull RM, Constantopoulos G, Neufeld EF. A canine model of human alpha-L-iduronidase deficiency. Proc Natl Acad Sci USA 1983;80(19):6091–6095.PubMedCrossRefGoogle Scholar
  66. 66.
    Ponder KP, Wang B, Wang P, et al. Mucopolysaccharidosis I cats mount a cytotoxic T lymphocyte response after neonatal gene therapy that can be blocked with CTLA4-Ig. Mol Ther 2006;14(1):5–13.PubMedCrossRefGoogle Scholar
  67. 67.
    Cowell KR, Jezyk PF, Haskins ME, Patterson DF. Mucopolysaccharidosis in a cat. J Am Vet Med Assoc 1976;169(3):334–339.PubMedGoogle Scholar
  68. 68.
    Jezyk PF, Haskins ME, Patterson DF, Mellman WJ, Greenstein M. Mucopolysaccharidosis in a cat with arylsulfatase B deficiency: A model of Maroteaux-Lamy syndrome. Science 1977;198(4319): 834–836.PubMedCrossRefGoogle Scholar
  69. 69.
    Haskins ME, Jezyk PF, Patterson DF. Mucopolysaccharide storage disease in three families of cats with arylsulfatase B deficiency: Leukocyte studies and carrier identification. Pediatr Res 1979; 13(11):1203–1210.PubMedGoogle Scholar
  70. 70.
    Haskins ME, Jezyk PF, Desnick RJ, Patterson DF. Animal model of human disease: Mucopolysaccharidosis VI Maroteaux-Lamy syndrome, arylsulfatase B-deficient mucopolysaccharidosis in the Siamese cat. Am J Pathol 1981;105(2):191–193.PubMedGoogle Scholar
  71. 71.
    Walkley SU, Thrall MA, Haskins ME, et al. Abnormal neuronal metabolism and storage in mucopolysaccharidosis type VI (Maroteaux-Lamy) disease. NeuropatholApplNeurobiol 2005;31(5): 536–544.Google Scholar
  72. 72.
    Yogalingam G, Crawley A, Hopwood JJ, Anson DS. Evaluation of fibroblast-mediated gene therapy in a feline model of mucopolysaccharidosis type VI. Biochim Biophys Acta 1999;1453(2):284–296.PubMedGoogle Scholar
  73. 73.
    Ho TT, Maguire AM, Aguirre GD, et al. Phenotypic rescue after adeno-associated virus-mediated delivery of 4-sulfatase to the retinal pigment epithelium of feline mucopolysaccharidosis VI. J Gene Med 2002;4(6):613–621.PubMedCrossRefGoogle Scholar
  74. 74.
    Neufeld EF, Muenzer J. The mucopolysaccharidoses. In: Scriver CR, Beaudet AL, Sly WS, Vallee D, Eds. The Metabolic and Molecular Basis of Inherited Disease, 6th ed. New York: McGraw-Hill Book Co., 1995:2465–2495.Google Scholar
  75. 75.
    Haskins ME, Desnick RJ, DiFerrante N, Jezyk PF, Patterson DF. Beta-glucuronidase deficiency in a dog: A model of human mucopolysaccharidosis VII. Pediatr Res 1984;18(10):980–984.PubMedGoogle Scholar
  76. 76.
    Gitzelmann R, Bosshard NU, Superti-Furga A, et al. Feline mucopolysaccharidosis VII due to beta-glucuronidase deficiency. Vet Pathol 1994;31(4):435–443.PubMedGoogle Scholar
  77. 77.
    Vite CH, Passini MA, Haskins ME, Wolfe JH. Adeno-associated virus vector-mediated transduction in the cat brain. Gene Ther 2003;10(22):1874–1881.PubMedCrossRefGoogle Scholar
  78. 78.
    Thomas GH, Beaudet AL. Disorders of glycoprotein degradation: α-Mannosidosis, β-mannosidosis, sialidosis, aspartylglucosaminuria, and carbohydrate-deficient glycoprotein syndrome. In: Scriver CR, Beaudet AL, Sly WA, Valle D, Eds. The Molecular and Metabolic Bases for Inherited Disease, 6th ed. New York: McGraw-Hill Book Co., 1995:2529–2561.Google Scholar
  79. 79.
    Burditt LJ, Chotai K, Hirani S, Nugent PG, Winchester BG, Blakemore WF. Biochemical studies on a case of feline mannosidosis. Biochem J 1980;189(3):467–473.PubMedGoogle Scholar
  80. 80.
    Walkley SU, Thrall MA, Dobrenis K, et al. Bone marrow transplantation corrects the enzyme defect in neurons of the central nervous system in a lysosomal storage disease. Proc Natl Acad Sci USA 1994;91(8):2970–2974.PubMedCrossRefGoogle Scholar
  81. 81.
    Haskins M, Abkowitz J, Aguirre G, et al. Bone marrow transplantation in animal models of lysosomal storage diseases. In: Ringden O, Hobbs J, Stewart C, Eds. Correction of Genetic Diseases by Transplantation. London: Cogent Press, 1997:1–11.Google Scholar
  82. 82.
    Vite CH, McGowan JC, Niogi SN, et al. Effective gene therapy for an inherited CNS disease in a large animal model. Ann Neurol 2005;57(3):355–364.PubMedCrossRefGoogle Scholar
  83. 83.
    Brunzell JD. Familial lipoprotein lipase deficiency and other causes of the chylomicronemia syndrome. In: Scriver CR, Beaudet AL, Sly WS, Valle D, Eds. Metabolic Basis of Inherited Disease, 6th ed. New York: McGraw-Hill Book Co., 1995:1913–1932.Google Scholar
  84. 84.
    Ross CJ, Twisk J, Bakker AC, et al. Correction of feline lipoprotein lipase deficiency with adeno-associated virus serotype 1-mediated gene transfer of the lipoprotein lipase S447X beneficial mutation. Hum Gene Ther 2006;17(5):487–499.PubMedCrossRefGoogle Scholar
  85. 85.
    Neuwelt EA, Johnson WG, Blank NK, et al. Characterization of a new model of GM2 gangliosidosis (Sandhoff’s disease) in Korat cats. J Clin Invest 1985;76(2):482–490.PubMedCrossRefGoogle Scholar
  86. 86.
    Gravel RA. The GM2 gangliosidoses. In: Scriver CR, Beaudet AL, Sly WS, Valle D, Eds. The Metabolic and Molecular Bases of Inherited Diseases, 6th ed. New York: McGraw-Hill Book Co., 1995:2839–2879.Google Scholar
  87. 87.
    Yamato O, Matsunaga S, Takata K, et al. GM2-gangliosidosis variant 0 (Sandhoff-like disease) in a family of Japanese domestic cats. Vet Rec 2004;155(23):739–744.PubMedGoogle Scholar
  88. 88.
    Mazrier H, Van Hoeven M, Wang P, et al. Inheritance, biochemical abnormalities, and clinical features of feline mucolipidosis II: The first animal model of human I-cell disease. J Hered 2003;94(5): 363–373.PubMedCrossRefGoogle Scholar
  89. 89.
    Gaschen F, Jaggy A, Jones B. Congenital diseases of feline muscle and neuromuscular junction. J Feline Med Surg 2004;6(6):355–366.PubMedCrossRefGoogle Scholar
  90. 90.
    Malik R, Mepstead K, Yang F, Harper C. Hereditary myopathy of Devon Rex cats. J Small Anim Pract 1993;34:539–546.Google Scholar
  91. 91.
    Hickford FH, Jones BR, Gething MA, Pack R, Alley MR. Congenital myotonia in related kittens. J Small Anim Pract 1998;39(6): 281–285.PubMedCrossRefGoogle Scholar
  92. 92.
    Toll J, Cooper B, Altschul M. Congenital myotonia in 2 domestic cats. J Vet Intern Med 1998;12(2):116–119.PubMedCrossRefGoogle Scholar
  93. 93.
    O’Brien DP, Johnson GC, Liu LA, et al. Laminin alpha 2 (merosin)deficient muscular dystrophy and demyelinating neuropathy in two cats. J Neurol Sci 2001;189(1–2):37–43.PubMedCrossRefGoogle Scholar
  94. 94.
    Hoffman EP, Brown RH Jr, Kunkel LM. Dystrophin: The protein product of the Duchenne muscular dystrophy locus. Cell 1987;51(6):919–928.PubMedCrossRefGoogle Scholar
  95. 95.
    Gaschen FP, Hoffman EP, Gorospe JR, et al. Dystrophin deficiency causes lethal muscle hypertrophy in cats. J Neurol Sci 1992; 110(1–2): 149–159.PubMedCrossRefGoogle Scholar
  96. 96.
    Koenig M, Monaco AP, Kunkel LM. The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 1988;53(2):219–226.PubMedCrossRefGoogle Scholar
  97. 97.
    Anderson JE, Bressler BH, Ovalle WK. Functional regeneration in the hindlimb skeletal muscle of the mdx mouse. J Muscle Res Cell Motil 1988;9(6):499–515.PubMedCrossRefGoogle Scholar
  98. 98.
    Carpenter JL, Hoffman EP, Romanul FC, et al. Feline muscular dystrophy with dystrophin deficiency. Am J Pathol 1989;135(5): 909–919.PubMedGoogle Scholar
  99. 99.
    Shelton GD. Muscular dystrophies: Expanding our knowledge in companion animals. Vet J 2004;168(1):6–8.PubMedGoogle Scholar
  100. 100.
    Marian AJ, Roberts R. The molecular genetic basis for hypertrophic cardiomyopathy. J Mol Cell Cardiol 2001;33(4):655–670.PubMedCrossRefGoogle Scholar
  101. 101.
    Casal M, Haskins M. Large animal models and gene therapy. Eur J Hum Genet 2006;14(3):266–272.PubMedCrossRefGoogle Scholar
  102. 102.
    Simonaro CM, Haskins ME, Abkowitz JL, et al. Autologous transplantation of retrovirally transduced bone marrow or neonatal blood cells into cats can lead to long-term engraftment in the absence of myeloablation. Gene Ther 1999;6(1):107–113.PubMedCrossRefGoogle Scholar
  103. 103.
    Eckhorn R, Wilms M, Schanze T, et al. Visual resolution with retinal implants estimated from recordings in cat visual cortex. Vision Res 2006;46(17):2675–2690.PubMedCrossRefGoogle Scholar
  104. 104.
    Ryugo DK, Kretzmer EA, Niparko JK. Restoration of auditory nerve synapses in cats by cochlear implants. Science 2005; 310(5753):1490–1492.PubMedCrossRefGoogle Scholar
  105. 105.
    Colledge WH, Abella BS, Southern KW, et al. Generation and characterization of a delta F508 cystic fibrosis mouse model. Nat Genet 1995;10(4):445–452.PubMedCrossRefGoogle Scholar
  106. 106.
    McCray PB Jr, Zabner J, Jia HP, Welsh MJ, Thorne PS. Efficient killing of inhaled bacteria in DeltaF508 mice: Role of airway surface liquid composition. Am J Physiol 1999;277(1Pt. 1):L183–190.PubMedGoogle Scholar
  107. 107.
    Li Z, Engelhardt JF. Progress toward generating a ferret model of cystic fibrosis by somatic cell nuclear transfer. Reprod Biol Endocrinol 2003;1:83.PubMedCrossRefGoogle Scholar
  108. 108.
    Li Z, Sun X, Chen J, et al. Cloned ferrets produced by somatic cell nuclear transfer. Dev Biol 2006;293(2):439–448.PubMedCrossRefGoogle Scholar
  109. 109.
    Wilmut I, Beaujean N, de Sousa PA, et al. Somatic cell nuclear transfer. Nature 2002;419(6907):583–586.PubMedCrossRefGoogle Scholar
  110. 110.
    Lai L, Kolber-Simonds D, Park KW, et al. Production of alpha-1,3 galactosyltransferase knockout pigs by nuclear transfer cloning. Science 2002;295(5557): 1089–1092.PubMedCrossRefGoogle Scholar
  111. 111.
    Sendai Y, Sawada T, Urakawa M, et al. alpha1,3-Galactosyltransferase-gene knockout in cattle using a single targeting vector with loxP sequences and cre-expressing adenovirus. Transplantation 2006;81(5):760–766.PubMedCrossRefGoogle Scholar
  112. 112.
    Shin T, Kraemer D, Pryor J, et al. A cat cloned by nuclear transplantation. Nature 2002;415(6874):859.PubMedCrossRefGoogle Scholar
  113. 113.
    Gomez MC, Pope CE, Giraldo A, et al. Birth of African wildcat cloned kittens born from domestic cats. Cloning Stem Cells 2004;6(3):247–258.PubMedGoogle Scholar
  114. 114.
    Yin XJ, Lee HS, Lee YH, et al. Cats cloned from fetal and adult somatic cells by nuclear transfer. Reproduction 2005;129(2): 245–249.PubMedCrossRefGoogle Scholar
  115. 115.
    Gomez MC, Pope CE, Dresser BL. Nuclear transfer in cats and its application. Theriogenology 2006;66(1):72–81.PubMedCrossRefGoogle Scholar
  116. 116.
    Murphy WJ, Menotti-Raymond M, Lyons LA, Thompson ME, O’Brien SJ. Development of a feline whole-genome radiation hybrid panel and comparative mapping of human chromosome 12 and 22 loci. Genomics 1999;57:1–8.PubMedCrossRefGoogle Scholar
  117. 117.
    Nash WG, Menninger JC, Wienberg J, Padilla-Nash HM, O’Brien SJ. The pattern of phylogenomic evolution of the Canidae. Cytogenet Cell Genet 2001;95:210–224.PubMedCrossRefGoogle Scholar
  118. 118.
    Wienberg J, Stanyon R, Nash WG, et al. Conservation of human vs. feline genome organization revealed by reciprocal chromosome painting. Cytogenet Cell Genet 1997;77:211–217.PubMedGoogle Scholar
  119. 119.
    Silvers WK. The Coal Colors of Mice: A Model for Mammalian Gene Action and Interaction. New York: Springer-Verlag, 1979.Google Scholar
  120. 120.
    Fleischman RA. From white spots to stem cells: The role of the Kit receptor in mammalian development. Trends Genet 1993;9: 285–290.PubMedCrossRefGoogle Scholar
  121. 121.
    Jackson IJ. Molecular and developmental genetics of mouse coat color. Annu Rev Genet 1994;28:189–217.PubMedCrossRefGoogle Scholar
  122. 122.
    Vella CM, Robinson R. Robinson’s Genetics for Cat Breeders and Veterinarians, 4th ed. Boston, MA: Butterworth-Heinemann, 1999.Google Scholar
  123. 123.
    Hardy WD, Essex M, McClelland A J. Feline Leukemia Virus. New York: Elsevier, 1980.Google Scholar
  124. 124.
    Hardy WD. Feline oncoretroviruses. In: Levy JA, Ed. Viruses: The Retroviridae. New York: Plenum, 1993.Google Scholar
  125. 125.
    O’Brien SJ, Troyer J, Roelke M, Marker L, Pecon-Slattery J. Plagues and adaptation: Lessons from the Felidae models for SARS and AIDS. Biol Conserv 2006;131(2):255–267.CrossRefGoogle Scholar
  126. 126.
    Pedersen NC. The feline immunodeficiency virus. In: Levy JA, Ed. Viruses: The Retroviridae. New York: Plenum, 1993:181–228.Google Scholar
  127. 127.
    Willett BJ, Flynn JN, Hosie MJ. FIV infection of the domestic cat: An animal model for AIDS. Immunol Today 1997;18(4):182–189.PubMedCrossRefGoogle Scholar
  128. 128.
    Paillot R, Richard S, Bloas F, et al. Toward a detailed characterization of feline immunodeficiency virus-specific T cell immune responses and mediated immune disorders. Vet Immunol Immunopathol 2005;106(1–2):1–14.PubMedGoogle Scholar
  129. 129.
    Olmsted RA, Langley R, Roelke ME, et al. Worldwide prevalence of lentivirus infection in wild feline species: Epidemiologic and phylogenetic aspects. J Virol 1992;66(10):6008–6018.PubMedGoogle Scholar
  130. 130.
    Brown EW, Yuhki N, Packer C, O’Brien SJ. A lion lentivirus related to feline immunodeficiency virus: Epidemiologic and phylogenetic aspects. J Virol 1994;68(9):5953–5968.PubMedGoogle Scholar
  131. 131.
    Carpenter MA, O’Brien SJ. Coadaptation and immunodeficiency virus: Lessons from the Felidae. Curr Opin Genet Dev 1995;5(6):739–745.PubMedCrossRefGoogle Scholar
  132. 132.
    Troyer JL, Pecon-Slattery J, Roelke ME, Black L, Packer C, O’Brien SJ. Patterns of feline immunodeficiency virus multiple infection and genome divergence in a free-ranging population of African lions. J Virol 2004;78(7):3777–3791.PubMedCrossRefGoogle Scholar
  133. 133.
    Troyer JL, Pecon-Slattery J, Roelke ME, et al. Seroprevalence and genomic divergence of circulating strains of feline immunodeficiency virus among Felidae and Hyaenidae species. J Virol 2005;79(13):8282–8294.PubMedCrossRefGoogle Scholar
  134. 134.
    O’Brien SJ. Genomic prospecting. Nat Med 1995;1(8):742–744.PubMedCrossRefGoogle Scholar
  135. 135.
    Smirnova N, Troyer JL, Schissler J, Terwee J, Poss M, VandeWoude S. Feline lentiviruses demonstrate differences in receptor repertoire and envelope structural elements. Virology 2005;342(1):60–76.PubMedCrossRefGoogle Scholar
  136. 136.
    Holmes KV. SARS-associated coronavirus. N Engl J Med 2003;348(20):1948–1951.PubMedCrossRefGoogle Scholar
  137. 137.
    Rota PA, Oberste MS, Monroe SS, et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 2003;300(5624):1394–1399.PubMedCrossRefGoogle Scholar
  138. 138.
    Snijder EJ, Bredenbeek PJ, Dobbe JC, et al. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 2003;331(5):991–1004.PubMedCrossRefGoogle Scholar
  139. 139.
    Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev 2005;69(4):635–664.PubMedCrossRefGoogle Scholar
  140. 140.
    Lun ZR, Qu LH. Animal-to-human SARS-associated coronavirus transmission? Emerg Infect Dis 2004;10(5):959.PubMedGoogle Scholar
  141. 141.
    Wu D, Tu C, Xin C, et al. Civets are equally susceptible to experimental infection by two different severe acute respiratory syndrome coronavirus isolates. J Virol 2005;79(4):2620–2625.PubMedCrossRefGoogle Scholar
  142. 142.
    Abbott A. Pet theory comes to the fore in fight against SARS. Nature 2003;423(6940):576.PubMedGoogle Scholar
  143. 143.
    Martina BE, Haagmans BL, Kuiken T, et al. Virology: SARS virus infection of cats and ferrets. Nature 2003;425(6961):915.PubMedCrossRefGoogle Scholar
  144. 144.
    Parrish CR. The emergence and evolution of canine parvovirus—an example of recent host range mutation. Virology 1994;5:121–132.Google Scholar
  145. 145.
    Roelke-Parker ME, Munson L, Packer C, et al. A canine distemper virus epidemic in Serengeti lions (Panthera leo). Nature 1996;379(6564):441–445.PubMedCrossRefGoogle Scholar
  146. 146.
    Ewald PW. Plague Time: How Stealth Infections Cause Cancer, Heart Disease, and Other Deadly Ailments. New York: The Free Press, 2000.Google Scholar
  147. 147.
    Duke K. Germany says people in areas with bird flu should keep cats indoors. Br Med J 2006;332(7541):568.CrossRefGoogle Scholar
  148. 148.
    van Riel D, Munster VJ, de Wit E, et al. H5N1 virus attachment to lower respiratory tract. Science 2006;312(5772):399.PubMedCrossRefGoogle Scholar
  149. 149.
    Rimmelzwaan GF, van Riel D, Baars M, et al. Influenza A virus (H5N1) infection in cats causes systemic disease with potential novel routes of virus spread within and between hosts. Am J Pathol 2006;168(1):176–183.PubMedCrossRefGoogle Scholar
  150. 150.
    Kuiken T, Rimmelzwaan G, van Riel D, et al. Avian H5N1 influenza in cats. Science 2004;306(5694):241.PubMedCrossRefGoogle Scholar
  151. 151.
    Kuiken T, Fouchier R, Rimmelzwaan G, Osterhaus A, Roeder P. Feline friend or potential foe? Nature 2006;440(7085):741–742.PubMedCrossRefGoogle Scholar
  152. 152.
    O’Brien SJ, Cevario SJ, Martenson JS, et al. Comparative gene mapping in the domestic cat (Felis catus). J Hered 1997;88:408–414.PubMedGoogle Scholar
  153. 153.
    Rettenberger G, Klett C, Zechner U, et al. ZOO-FISH analysis: Cat and human karyotypes closely resemble the putative ancestral mammalian karyotype. Chromosome Res 1995;3:479–486.PubMedCrossRefGoogle Scholar
  154. 154.
    Pecon Slattery J, O’Brien SJ. Patterns of Y and X chromosome DNA sequence divergence during the Felidae radiation. Genetics 1998;148(3):1245–1255.Google Scholar
  155. 155.
    Johnson WE, O’Brien SJ. Phylogenetic reconstruction of the Felidae using 16S rRNA and NADH-5 mitochondrial genes. J Mol Evol 1997;44(Suppl. 1):S98–S116.PubMedCrossRefGoogle Scholar
  156. 156.
    Lopez JV, Cevario S, O’Brien SJ. Complete nucleotide sequence of the domestic cat (Felis catus) mitochondrial genome and a transposed mtDNA tandem repeat (Numt) in the nuclear genome. Genomics 1996;33:229–246.PubMedCrossRefGoogle Scholar
  157. 157.
    Yuhki N, Beck T, Stephens RM, Nishigaki Y, Newmann K, O’Brien SJ. Comparative genome organization of human, murine, and feline MHC class II region. Genome Res 2003;13(6A):1169–1179.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2008

Authors and Affiliations

  • Marilyn Menotti-Raymond
    • 1
  • Stephen J. O’Brien
    • 2
  1. 1.Laboratory of Genomic DiversityNational Cancer Institute-FrederickFrederick
  2. 2.National Cancer Institute-Frederick, Fort DetrickFrederick

Personalised recommendations