Treatment of Industrial Effluents, Municipal Wastes, and Potable Water by Membrane Bioreactors

  • Lawrence K. Wang
  • Ravinder Menon
Part of the Handbook of Environmental Engineering book series (HEE, volume 13)


Membrane bioreactor (MBR) is a biochemical engineering process involving the use of both (a) a suspended growth bioreactor for biochemical reactions (such as fermentation, bio-oxidation, nitrification, and denitrification) and (b) a membrane separator for subsequent solids–liquid separation. In a chemical engineering fermentation process, the solids may be yeasts and the liquid may be an alcohol. In an environmental engineering process, the solids may be activated sludge and the liquid may be the biologically treated water or wastewater. Practically speaking, the membrane separator replaces clarifier, such as sedimentation or dissolved air flotation (DAF) in a conventional suspended growth biological process system. The membrane module can be either submerged in a suspended growth biological bioreactor, or situated outside the bioreactor. This chapter introduces historical development, engineering applications, various MBR process systems, design considerations, and practical environmental engineering applications, such as treatment of dairy industry wastes, landfill leachate, coffee industry wastes, cosmetics industry wastes, municipal waste, and potable water.

Key Words

Membrane bioreactor suspended growth bioreactor fermentation bio-oxidation nitrification denitrification membrane process activated sludge design dairy industry waste landfill leachate coffee industry waste cosmetics industry waste municipal waste potable water MBR 


  1. 1.
    Wang LK, Cheryan M (1995) Application of membrane technology in food industry for clean production. United Nationals Industrial Development Organization (UNIDO) Second International Conference on Waste Minimization and Cleaner Production, Barcelona, Spain. June 7–9, 1995. UNIDO-DTT-8-6-95, Vienna, Austria, p 42.Google Scholar
  2. 2.
    Wang LK, Kropuzek JV, Kounitson U (1995) Case studies of cleaner production and site remediation. Manual No. UNIDO-DTT-5-4-95, United Nationals Industrial Development Organization (UNIDO), Vienna, Austria, p 136.Google Scholar
  3. 3.
    Wang LK, Kopko SP (1997) City of Cape Coral Reverse Osmosis Water Treatment Facility. Technical Report No. PB97-139547, US Department of Commerce, National Technical Information Service, Springfield, VA, p 15.Google Scholar
  4. 4.
    Wang LK, Pereira NC (1986) Handbook of environmental engineering, vol. 3. Humana, Totowa, NJ, p 498.Google Scholar
  5. 5.
    Beer C, Wang LK (1975) Full-scale operations of plug flow activated sludge systems. J New England Water Pollut Control Assoc 9(2):145–173.Google Scholar
  6. 6.
    Wang LK, Wang MHS (1977) Control tests and kinetics of activated sludge process. Water, Air Soil Pollut 8:315–351.CrossRefGoogle Scholar
  7. 7.
    Beer C, Wang LK (1978) Activated sludge systems using nitrate respiration – design considerations. J Water Pollut Control Fed 50(9):2120–2131.Google Scholar
  8. 8.
    Krofta M, Wang LK (1983) Improved biological treatment with a secondary flotation clarifier. Civil Eng Practicing Design Eng 2:307–324. (NTIS-PB82-154196).Google Scholar
  9. 9.
    Wang LK, Aulenbach DB (1986) BOD and nutrient removal by biological A/O process systems. Technical Report #PB88-168430/AS. U.S. Dept. of Commerce, National Technical Information Service, Springfield, VA, p 12.Google Scholar
  10. 10.
    Wang LK (1990) Modern technologies for prevention and control of groundwater contamination. In: Proceedings of New York – New Jersey Environmental Exposition, NYNJEE, Belmont, MA.Google Scholar
  11. 11.
    Wang LK, Wang MHS (1990) An overview of environmental biotechnologies with emphasis on aerobic and anaerobic fluidized bed. In: Proceedings of Annual Convention of CAAPS, Albany, NY.Google Scholar
  12. 12.
    Wang LK (1987) Wastewater treatment by biological-physicochemical two-stage process system. In: Proceedings of the 41st Annual Purdue Industrial Waste Conference, Purdue University, West Lafayette, IN, p 67.Google Scholar
  13. 13.
    Brindle K, Stephenson T (1996) The application of membrane biological reactors for the treatment of wastewaters. Biotechnol Bioeng 49:601.PubMedCrossRefGoogle Scholar
  14. 14.
    Cicek N, Franco JP, Suidan MT, Urbain V (1998) Using a membrane bioreactor to reclaim wastewater. J Am Water Works Assoc 90(11):105.Google Scholar
  15. 15.
    Menon R, Fuchs C (1998) Application of degremont BRM™ membrane bioreactor to the treatment of industrial wastewaters. Membrane Technology Workshop at WEFTEC, Orlando, FL.Google Scholar
  16. 16.
    Chiemchaisri C, Yamamoto K (1993) Biological nutrient removal under low temperatures in a membrane separation bioreactor. Water Sci Technol (G.B.) 28(10):325.Google Scholar
  17. 17.
    Pitre MP, Enegess DN, Unterman R (1999) Bioreactors: the new wave in wastewater treatment. Environ Protect 10(9):30–33.Google Scholar
  18. 18.
    Giese TP (2001) New wastewater treatment technologies. Public Works 132(5):326–332.Google Scholar
  19. 19.
    Zenon Environmental Inc. (2001) Activated sludge without a clarifier. Water Environ Fed 13(9):75.Google Scholar
  20. 20.
    Beaubien A, Trouve E, Urbain V, Amar D, Manem J (1994) Membrane bioreactors offer new solution to old wastewater treatment problems. Environ Solut 34–36.Google Scholar
  21. 21.
    Levy V (1996) The membrane bioreactor and the management of water resources in industry. Presentation at POLLUTEC 96.Google Scholar
  22. 22.
    Urbain V, Benoit R, Manem J (1996) Membrane bioreactor – a new treatment tool. J Am Water Works Assoc 88:75.Google Scholar
  23. 23.
    Kim JS, Lee CH, Chun HD (1998) Comparison of ultrafiltration characteristics between activated sludge and BAC sludge. Water Res (G.B.) 32:3443.CrossRefGoogle Scholar
  24. 24.
    Dollorer J, Wilderer PA (1996) Biological treatment of leachates from hazardous waste landfills using SBBR technology. Water Sci Technol 34:437.CrossRefGoogle Scholar
  25. 25.
    Livingston AG, Freitas dos Santos LM, Pavasant P, Pistikopoulos EN, Strachen LF (1996) Detoxification of industrial wastewaters in an extractive membrane bioreactor. Water Sci Technol 33(1):1.CrossRefGoogle Scholar
  26. 26.
    Strachan LF, Freitas dos Santos LM, Leak DJ, Livingston AG (1996) Minimization of biomass in an extractive membrane bioreactor. Water Sci Technol 34: 273.CrossRefGoogle Scholar
  27. 27.
    Cote P, Buisson H, Praderie M (1998) Immersed membranes activated sludge process applied to the treatment of municipal wastewater. Water Sci Technol (G.B.). 38: 437.CrossRefGoogle Scholar
  28. 28.
    Chang LS, Lee CH, Ahn KH (1999) Membrane filtration characteristics in membrane-coupled activated sludge system – the effect of floc structure on membrane fouling. Sep Sci Technol 34(9):15.CrossRefGoogle Scholar
  29. 29.
    Scott JA, Howell JA, Arnot TC, Smith KL, Brusk M (1996) Enhanced system kla and permeate flux with a ceramic membrane bioreactor. Biotechnol Tech 10(4):287.CrossRefGoogle Scholar
  30. 30.
    Parratiyar MG, Govind R, Bishop DF (1996) Treatment of trichloroethylene (TCE) in a membrane bioreactor. Biotechnol Bioeng 50:57.CrossRefGoogle Scholar
  31. 31.
    Clapp L, Hartono R, Newman M, Park J (1996) Trichloroethylene degradation in a novel membrane bioreactor. The 69th Annual Water Environment Federation Conference, Dallas, TX.Google Scholar
  32. 32.
    Nomura T, Fuji T, Suzuki M (1997) Application of ceramic membrane with hydrophobic skin layer to separation of activated sludge. Water Sci Technol (G.B.) 35(4):137.CrossRefGoogle Scholar
  33. 33.
    Choo KH, Lee CH (1998) Hydrodynamic behavior of anaerobic biosolids during crossflow filtration in the membrane anaerobic bioreactor. Water Res (G.B.). 32:3387.CrossRefGoogle Scholar
  34. 34.
    van Dijk L, Roncken GCG (1997) Membrane bioreactor for wastewater treatment: the state of the art and new developments. Water Sci Technol (G.B.) 35(10):35.CrossRefGoogle Scholar
  35. 35.
    Guender B, Krauth K (1998) Replacement of secondary clarification by membrane separation – results with plate and hollow fiber modules. Water Sci Technol (G.B.). 38:383.CrossRefGoogle Scholar
  36. 36.
    Yamamoto K, Hiasa M, Mahmood T, Matsuo T (1989) Direct solid–liquid separation using hollow-fiber membrane in an activated sludge aeration tank. Water Sci Technol (G.B.) 21:43.Google Scholar
  37. 37.
    Choo KH, Stensel HD (1998) Sequencing batch membrane bioreactor treatment: nitrogen removal and membrane fouling evaluation. Water Environ Res 72(4):490–498.CrossRefGoogle Scholar
  38. 38.
    Williams D (1997) Membrane treat wastewater and leachate. Pollut Eng 29(1):20–21.Google Scholar
  39. 39.
    Hensel J, Mills T (2002) High and lows across the industry: 2002 executive forecast. Environ Protect 13(1):12–14.Google Scholar
  40. 40.
    Freeman S, Leitner GF, Crook J, Vernon W (2002) A clear advantage. Water Environ Technol 14(1):16–21.Google Scholar
  41. 41.
    Abbott K, Alpor H (2001) Protection from organic fouling. Environ Protect 12(6):34.Google Scholar
  42. 42.
    Suwa Y, Suzuki T, Toyohara H, Yamagishi T, Urushigawa Y (1992) Single-stage nitrogen removal by an activated-sludge process with crossflow filtration. Water Res (G.B.). 26:1149.CrossRefGoogle Scholar
  43. 43.
    van Loosdrecht MCM, Henze M (1999) Maintenance, endogenous respiration, lysis, decay and predation. Water Sci Technol (G.B.) 39(1):107.CrossRefGoogle Scholar
  44. 44.
    US Filter (2003) Immersed membrane bioreactor system. Water Eng Manage 150(1):4.Google Scholar
  45. 45.
    Pearson D (2003) Raisin producer’s new process cuts wastewater and odors. Water Eng Manage 150(1):26–29.Google Scholar
  46. 46.
    Oreskovich R, Contestables J, Flat K, Watson IC, Rifleman J (2003) Reverse osmosis anion-filtration water plant. Water Eng Manage 150(1): 10–19.Google Scholar
  47. 47.
    Hudkins JM, Schnidt HE (2009) Wastewater Membrane Bioreactors – An Emerging Technology for the Development of a Reclaimed Water Supply.
  48. 48.
    Sheindorf GN, Stahl N, Tenenbaum A, Levinsky Y (2003) Membrane bioreactors for final treatment of wastewater. Water Sci Technol 48(8):103–110.PubMedGoogle Scholar
  49. 49.
    Wang LK, Wu Z (2009) Activated sludge processes. In: Wang LK, Pereira NC, Hung YT, Shammas NK (eds) Biological treatment processes. Humana Press, Inc., Totowa, NJ, USA, pp 207–282.CrossRefGoogle Scholar
  50. 50.
    Glastra M, Dijk HV, Verberk J (2004) Prospects of Membrane Bioreactors in Water Supply. Berichte aus dem IWW Rheinisch-Westfalisches Institut fur Wasserforschung gemeinnutzige, Gmbtt Band 37b, Mulheim an der Rhur, 2002, ISSN 0941-0961.Google Scholar
  51. 51.
    Wang LK, Li Y (2009) Sequencing batch reactors. In: Wang LK, Pereira NC, Hung YT, Shammas NK (eds) Biological treatment processes. Humana Press, Inc., Totowa, NJ, pp 459–512.CrossRefGoogle Scholar
  52. 52.
    Shammas NK, Wang LK (2009) Emerging suspended growth biological processes. In: Wang LK, Shammas NK, Hung YT (eds) Advanced biological treatment processes. Humana Press, Inc., Totowa, NJ, pp. 619–648.CrossRefGoogle Scholar
  53. 53.
    Wang LK (2008) Application of Membrane Separation Technologies in Food Processing Industry. Technical paper presented at 2008 National Engineers Week, Practicing Institute of Engineering, Foundation for Engineering Education, and NYS Society of Professional Engineers, Marriott, Albany, NY, February 14–15.Google Scholar
  54. 54.
    Wang LK (2008) Development and Applications of Membrane Bioreactor Technologies. Technical paper presented at 2008 National Engineers Week, Practicing Institute of Engineering, Foundation for Engineering Education, and NYS Society of Professional Engineers, Marriott Albany, NY, February 14–15.Google Scholar
  55. 55.
    Mustacchi R, Knowles CJ, Li H, Skibar W, Sunderland G, Dalrymple I, Jackman SA (2005) The effect of whole Cell immobilisation on the biotransformation of benzonitrile and the use of direct electric current for enhanced product removal. Biotechnology and Bioengineering. 91(4): 436–440. August 2005.CrossRefGoogle Scholar
  56. 56.
    Gryta M, Morawski AW, Tiomaszewska M (2000) Ethanol production in membrane distillation bioreactor. Catalysis Today 56: 159–165.CrossRefGoogle Scholar
  57. 57.
    Ergas SJ, Rheinheimer DE (2004) Drinking water denitrification using a membrane bioreactor. Water Res 38:3225–3232.PubMedCrossRefGoogle Scholar
  58. 58.
    Pennsylvania State University (2008) DBP Precursor Removal by Membrane Bioreactor Technology. Pennsylvania State University, PA.Google Scholar
  59. 59.
    Li XY, Chu HP (2003) Membrane bioreactor for the drinking water treatment polluted surface water supplies. Water Res 37:4781–4791.PubMedCrossRefGoogle Scholar
  60. 60.
    Matos CT, Velizarov S, Reis MAM, Grespo JG (2008) Removal of bromate from drinking water using the ion exchange membrane bioreactor concept. Environ Sci Technol 42(20):7702–7708.PubMedCrossRefGoogle Scholar
  61. 61.
    Banks CJ, Heaven S (2008) Development of a coarse membrane bioreactor for two-stage anaerobic digestion of biodegradable municipal waste. In: Proceedings of the 5th IWA International Symposium on Anaerobic Digestion of Wastes and Energy Crops, Hammamet, Tunisia, May 25–28.Google Scholar
  62. 62.
    Carnation WWTP, King County, Washington (2008) Carnation Wastewater Treatment – Membrane Bioreactor. Technical paper presented at the 23rd Water Reuse Symposium, Dallas, TX, September 8.Google Scholar
  63. 63.
    Manigas L (2008) Use of Membrane Bioreactors for the Bioremediation of Groundwater Polluted by Chlorinated Compounds. PhD. Thesis, Universita degli Studi di Cagliari, November 6,
  64. 64.
    Copeland A, Cole K, Barrows R, Pyne JC (2007) The Design Elements of State-of-the-art Treatment Technology: MBR Wastewater Treatment Systems. Technical paper presented at the 2007 Virginia AWWA/WEA Water JAM.Google Scholar
  65. 65.
    Aqua-Aerobic Systems, Inc. (2008) Membrane system coupled with batch reactor. Water Online Newsletter, June 24.Google Scholar
  66. 66.
    Wang LK, Wang MHS (2009) Chemical and Biochemical Technologies for Environmental Infrastructure Sustainability. Technical paper presented at 2009 National Engineers Week, Practicing Institute of Engineering, Foundation for Engineering Education, and NYS Society of Professional Engineers, Marriott, Albany, NY, February 5–6.Google Scholar
  67. 67.
    Wang LK, Shammas NK, Selke WA, Aulenbach DB (eds) (2010) Flotation technology. Humana Press, Totowa, NJ. 680 P.Google Scholar
  68. 68.
    General Electric (2008) GE’s ZeeWeed Membrane Bioreactor Technology Selected for One of North America’s Largest Wastewater Plant Upgrades and Expansions. General Electric Co., Schenectady, NY. February.
  69. 69.
    Guglielmi G, Andreottola G (2010) Selection and design of membrane bioreactors in environmental bioengineering. In: Wang LK, Ivanov V, Tay JH, Hung YT (eds) Environmental biotechnology. Humana Press, Totowa NJ, USA. PP 439–516.Google Scholar
  70. 70.
    King County, Washington (2010) Advanced Treatment Technology at Brightwater, Washington. King County, Washington, USA.
  71. 71.
    Chen W, Sun FY, Wang XM, Li XY (2010) A Membrane bioreactor for an innovative biological nitrogen removal process. Water Sci Technol 61(3):671–6.PubMedCrossRefGoogle Scholar
  72. 72.
    Yigit NO, Civelekogla G, Cinar O, Kitis M (2010) Filterability of membrane bioreactor sludge: impacts of polyelectrolytes and mixing with conventional activated sludge. Water Sci Technol 61(3):659–669.PubMedCrossRefGoogle Scholar
  73. 73.
    Kippax V (2010) Importance of air scour in membrane bioreactor system. Water World 2(30).
  74. 74.
    Kang CW, Hua JS, Lou J, Liu W, Jordan E (2008) Bridging the bap between membrane bioreactor pilot and plant studies. J Membr Sci 325:861–871.CrossRefGoogle Scholar
  75. 75.
    Cui ZF, Chang S, Fane AG (2003) The use of gas bubbling to enhance membrane processes. J Membr Sci 221:1–35.CrossRefGoogle Scholar
  76. 76.
    Zenon Membrane Solutions. (2010) Cauley Creek Water Reclamation Facility. Zenon Membrane Solutions, Oakville, Ontario, Canada. GE Water & Process Technologies, Schenectady, NY, USA.
  77. 77.
    Zenon Membrane Solutions (2010) Australian Golf Course Recycles Municipal Wastewater with Onsite ZeeWeed MBR. Zenon Membrane Solutions, Oakville, Ontario, Canada. GE Water & Process Technologies, Schenectady, NY, USA.
  78. 78.
    Zenon Membrane Solutions (2010) Vancouver Convention & Exhibition Centre. Zenon Membrane Solutions, Oakville, Ontario, Canada. GE Water & Process Technologies, Schenectady, NY, USA.
  79. 79.
    Zenon Membrane Solutions (2010) Johns Creek Environmental Campus. Zenon Membrane Solutions, Oakville, Ontario, Canada. GE Water & Process Technologies, Schenectady, NY, USA.
  80. 80.
    Zenon Membrane Solutions (2010) Corona Wastewater Treatment Plant. Zenon Membrane Solutions, Oakville, Ontario, Canada. GE Water & Process Technologies, Schenectady, NY, USA.
  81. 81.
    GE Water & Process Technologies (2010) Membrane Bioreactor Design Considerations. GE Water & Process Technologies, Schenectady, NY, USA.
  82. 82.
    Fane AG (2002) Membrane bioreactors: design and operational options. Filtration Sep 39(5):26–29.CrossRefGoogle Scholar
  83. 83.
    Van Bentem AGN, Petri CP, Schyns PFT (2007) Membrane Bioreactors: Operation and Results of an MBR Wastewater Treatment Plant. International Water Association. 120.Google Scholar
  84. 84.
    Judd S, Jefferson B (eds) (2003) Membranes for industrial wastewater recovery and re-use. Elsevier Science New York, NY. p 308.Google Scholar
  85. 85.
    Wang LK, Hung YT, Shammas NK (eds) (2010) Handbook of advanced industrial and hazardous waste treatment. CRC Press, New York, NY. 1378 p.Google Scholar
  86. 86.
    Wang LK, Shammas NK, Hung YT (eds) (2009) Advanced biological treatment processes. Humana Press, Totowa, NJ. 737 pages.Google Scholar
  87. 87.
    Wang LK, Tay JH, Tay STL, Hung YT (eds) (2010) Environmental bioengineering. Humana Press, Totowa, NJ. pp. 378–380.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Lawrence K. Wang
    • 1
    • 2
    • 3
  • Ravinder Menon
    • 4
  1. 1.Lenox Institute of Water TechnologyLenoxUSA
  2. 2.Krofta Engineering CorporationLenoxUSA
  3. 3.Zorex CorporationNew YorkUSA
  4. 4.Industrial Biological Systems ONDEO Degremont, Inc. (formerly Infilco Degremont, Inc.)RichmondUSA

Personalised recommendations