Bioabsorbable Polymer Applications in Musculoskeletal Fixation and Healing

  • William S. Pietrzak
Part of the Orthopedic Biology and Medicine book series (OBM)


Bioabsorbable internal fixation of hard and soft tissue has gained popularity over the past 20 years, especially in the fields of sports medicine, trauma and craniofacial surgery. This technology continues to coexist with metallic fixation and there is no pretense that, in its current form, it will obsolete metallic devices. The development of bioabsorbable technology requires the dedicated effort of a multidisciplinary team of surgeons, materials scientists and engineers. Expertise in one field, however, does not guarantee a working knowledge in other fields. For instance, some surgeons may be unfamiliar with the nuances of bioabsorbable polymers while some engineers and materials scientists may be unfamiliar with biological concepts such as healing and tissue fixation. The purpose was to develop the necessary background of bioabsorbable fixation in a stepwise fashion as a tool toward understanding for the clinician, engineer and scientist alike. Concepts including basic polymer science, bioabsorbable polymer chemistry and material properties, degradation mechanisms, fixation principals, experimental studies, recent clinical results and a look at what the future may hold are included. The field of bioabsorbable fixation is dynamic and much work remains before the technology reaches its full potential. Papers such as this will help to provide synergy among various specialists to help propel this technology forward.


Internal fixation bioabsorbable biodegradable polymer healing 


  1. 1.
    1. Snyder CC. On the history of the suture. Plast Reconstr Surg 1976;58:401–406.PubMedCrossRefGoogle Scholar
  2. 2.
    2. Sequin F, Texhammar R. AO/ASIF Instrumentation. Springer-Verlag, New York, p. 1981:27–30.Google Scholar
  3. 3.
    3. Ashammakhi N, Suuronen R, Tiainen J, Tormala P, Waris T. Spotlight on naturally absorbable osteofixation devices. J Craniofac Surg 2003;14:247–259.PubMedCrossRefGoogle Scholar
  4. 4.
    4. Busam ML, Esther RJ, Obremskey WT. Hardware removal: indications and expectations. J Am Acad Orthop Surg 2006;14:113–120.PubMedGoogle Scholar
  5. 5.
    5. Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 2000;21:2335–2346.PubMedCrossRefGoogle Scholar
  6. 6.
    6. Hutmacher D, Hurzeler MB, Schliephake H. A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GRB applications. Int J Oral Maxillofac Implants 1996;11: 667–678.PubMedGoogle Scholar
  7. 7.
    7. Pietrzak WS. Principles of development and use of absorbable internal fixation. Tissue Eng 2000;6:425–433.PubMedCrossRefGoogle Scholar
  8. 8.
    8. Burkart SS. The evolution of clinical applications of biodegradable implants in arthroscopic surgery. Biomaterials 2000;21:2631–2634.CrossRefGoogle Scholar
  9. 9.
    9. Pietrzak WS, Sarver DR, Verstynen ML. Bioabsorbable polymer science for the practicing surgeon. 1997;8: 87–91.Google Scholar
  10. 10.
    10. Billmeyer FW. Textbook of Polymer Science. Wiley: Hoboken, NJ, 1984, 3rd Edition.Google Scholar
  11. 11.
    11. Rosen SL. Fundamental principles of polymeric materials. Wiley: Hoboken, NJ, 1993, 2nd Edition.Google Scholar
  12. 12.
    12. Pietrzak WS, Kumar M, Eppley BL. The influence of temperature on the degradation rate of LactoSorb copolymer. J Craniofac Surg 2003;14:176–183.PubMedCrossRefGoogle Scholar
  13. 13.
    13. Vert M, Christel P, Chabot F, Leray J. Bioresorbable plastic materials for bone surgery. In: Macromolecular Biomaterials. Editors: Hastings GW, Ducheyne P, CRC Press, Inc., Boca Raton, 1984,p.119–142.Google Scholar
  14. 14.
    14. Vainionpaa S, Rokkanen P, Tormala P. Surgical applications of biodegradable polymers in human tissues. Prog Polym Sci 1989;14:679–716.CrossRefGoogle Scholar
  15. 15.
    15. Pietrzak WS, Caminear DS, Perns SV. Mechanical characteristics of an absorbable copolymer internal fixation pin. J Foot Ankle Surg 2002;41:379–388.PubMedCrossRefGoogle Scholar
  16. 16.
    16. Tormala P. Ultra-high strength, self-reinforced absorbable polymeric composites for applications in different disciplines of surgery. Clin Mater 1993;13:35–40.PubMedCrossRefGoogle Scholar
  17. 17.
    17. Simon JA, Ricci JL, Di Cesare PE. Bioresorbable fracture fixation in orthopedics: A comprehensive review. Part I. Basic science and preclinical studies. Am J Orthop 1996;26:665–671.Google Scholar
  18. 18.
    18. Eppley BL, Reilly M. Degradation characteristics of PLLA-PGA bone fixation devices. J Craniofac Surg 1997;8:116–120.PubMedCrossRefGoogle Scholar
  19. 19.
    19. Hovis WD, Watson JT, Bucholz RW. Biochemical and biomechanical properties of bioabsorbable implants used in fracture fixation. Tech Orthopaedics 1998; 13: 123–129.CrossRefGoogle Scholar
  20. 20.
    20. Athanasiou KA, Agrawal CM, Barber FA, Burkhart SS. Orthopaedic applications for PLA-PGA biodegradable copolymers. Arthroscopy 1998;14: 726–737.PubMedCrossRefGoogle Scholar
  21. 21.
    21. Li S. Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J Biomed Mater Res 1999;48:342–353.PubMedCrossRefGoogle Scholar
  22. 22.
    22. Viljanen VV, Lindholm TS. Background of the early development of absorbable fixation devices. Tech Orthopaedics 1998; 13:117–122.CrossRefGoogle Scholar
  23. 23.
    23. Landes CA, Ballon A, Roth C. In-patient versus in vitro degradation of P(L/DL)LA and PLGA. J Biomed Mater Res B Appl Biomater 2006:76:403–411.PubMedGoogle Scholar
  24. 24.
    24. Schakenraad JM, Hardonk MJ, Feijen J, Molenaar I, Nieuwenhuis P. Enzymatic activity toward poly(L-lactic acid) implants. J Biomed Mater Res 1990;24:529–545.PubMedCrossRefGoogle Scholar
  25. 25.
    25. Meyer DC, Fucentese SF, Ruffieux K, Jacob HA, Gerber C. Mechanical Testing of absorbable suture anchors. Arthroscopy 2003;19:188–193.PubMedCrossRefGoogle Scholar
  26. 26.
    26. Pietrzak WS, Sarver DR, Bianchini SD, D'Alessio K. Effect of simulated heating and shaping on mechanical properties of a bioabsorbable fracture plate material. J Biomed Mater Res 1997;38:17–24.PubMedCrossRefGoogle Scholar
  27. 27.
    27. Daniels AU, Chang MKO, Andriano KP, Heller J. Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone. J Appl Biomater 1990;1:57–78.PubMedCrossRefGoogle Scholar
  28. 28.
    28. Rovinsky D, Durkin RC, Otsuka NY. The use of bioabsorbables in the treatment of children's fractures. Tech Orthopaedics 1998; 13: 130–138.CrossRefGoogle Scholar
  29. 29.
    29. Farrar DF, Gillson RK. Hydrolytic degradation of polyglyconate B: the relationship between degradation time, strength and molecular weight. Biomaterials 2002;23:3905–3912.PubMedCrossRefGoogle Scholar
  30. 30.
    30. Powers DL, Sonawala M, Woolf SK, An YH, Hawkins R.Comparison of the biomechanics and histology of two soft-tissue fixators composed of bioabsorbable copolymers. J Biomed Mater Res. 2001;58:486–495.PubMedCrossRefGoogle Scholar
  31. 31.
    31. Wiltfang J, Merten HA, Schultze-Mosgau S, Schrell U, Wenzel D, Kessler P. Biodegradable miniplates (LactoSorb): long-term results in infant minipigs and clinical results. J Craniofac Surg 2000;11:239–243.PubMedCrossRefGoogle Scholar
  32. 32.
    32. An YH, Friedman RJ, Powers DL, Draughn RA, Latour RA Jr. Fixation of osteotomies using bioabsorbable screws in the canine femur. Clin Orthop Rel Res 1998;355:300–311.CrossRefGoogle Scholar
  33. 33.
    33. Lajtai G, Schmiedhuber G, Unger F, Aitzetmuller G, Klein M, Noszian I, Orthner E. Bone tunnel remodeling at the site of biodegradable interference screws used for anterior cruciate ligament reconstruction: 5-year follow-up. Arthroscopy 2001;17:597–602.PubMedCrossRefGoogle Scholar
  34. 34.
    34. Fink C, Benedetto KP, Hackl W, Hoser C, Freund MC, Rieger M. Bioabsorbable polyglyconate interference screw fixation in anterior cruciate ligament reconstruction: a prospective computed tomography-controlled study. Arthroscopy 2000;16: 491–498.PubMedCrossRefGoogle Scholar
  35. 35.
    35. Bach FD, Carlier RY, Elis JB, Mompoint DM, Feydy A, Judet O, Beaufils P, Vallee C. Anterior cruciate ligament reconstruction with bioabsorbable polyglycolic acid interference screws: MR imaging follow-up. Radiology 2002;225:541–550.PubMedCrossRefGoogle Scholar
  36. 36.
    36. Edwards RC, Kiely KD, Eppley BL. The fate of resorbable poly-L-lactic/ polyglycolic acid (LactoSorb) bone fixation devices in orthognathic surgery. J Oral Maxillofac Surg 2001;59:19–25.PubMedCrossRefGoogle Scholar
  37. 37.
    37. Eppley BL, Sadove AM. A comparison of resorbable and metallic fixation in healing of calvarial bone grafts. Plast Reconstr Surg 1995:96:316–322.PubMedCrossRefGoogle Scholar
  38. 38.
    38. Caminear DS, Pavlovich R Jr. Pietrzak WS. Fixation of the chevron osteotomy with an absorbable copolymer pin for treatment of hallux valgus deformity. J Foot Ankle Surg 2005:44:203–210.PubMedCrossRefGoogle Scholar
  39. 39.
    Larsen MW, Pietrzak WS, DeLee JC. Fixation of osteochondritis dissecans lesions using poly(L-lactic acid)/poly(glycolic acid) copolymer bioabsorbable screws. Am J Sports Med 33:68–76.Google Scholar
  40. 40.
    40. Gill LH, Martin DF, Coumas JM, Kiebzak GM. Fixation with bioabsorbable pins in chevron bunionectomy. J Bone Joint Surg Am 1997;79:1510–1518.PubMedGoogle Scholar
  41. 41.
    41. Waris E, Ashammakhi N, Kaarela O, Raatikainen T, Vasenius J. Use of bioabsorbable osteofixation devices in the hand. J Hand Surg 2004;29B:590–598.Google Scholar
  42. 42.
    42. Bostman O, Makela EA, Sodergard J, Hirvensalo E, Tormala P, Rokkanen P. Absorbable polyglycolide pins in internal fixation of fractures in children. J Pediatr Orthop 1993;13:242–245.PubMedGoogle Scholar
  43. 43.
    43. Kumar CR, Sood S, Ham S. Complications of bioresorbable fixation systems in pediatric neurosurgery. Childs Nerv Syst 2005;21:205–210.PubMedCrossRefGoogle Scholar
  44. 44.
    44. H. Willenegger. AO/ASIF Instrumentation. Springer-Verlag, New York, 1981. p. 19–24.Google Scholar
  45. 45.
    45. Hofmann GO, Wagner FD. New implant designs for bioresorbable devices in orthopaedic surgery. Clin Mater 1993;14:207–215.PubMedCrossRefGoogle Scholar
  46. 46.
    46. Pietrzak WS. Rapid cooling through the glass transition transiently increases ductility of PGA/PLLA copolymers: a proposed mechanism and implications for devices. J Mater Sci Mater Med 2007;18:1753–1763.PubMedCrossRefGoogle Scholar
  47. 47.
    47. Eppley BL, Pietrzak WS. Bioabsorbable plate and screw fixation in craniomaxil-lofacial surgery. In: Biodegradable Polymeric Materials and Their Applications. Vol 2. Applications. Mallapragada S, Narasimhan B, eds. Stevenson Ranch, CA: American Scientific Publishers, 2006, p. 271–306.Google Scholar
  48. 48.
    48. An YH, Woolf SK, Friedman RJ. Pre-clinical in vivo evaluation of orthopaedic bioabsorbable devices. Biomaterials. 2000:21:2635–2652.PubMedCrossRefGoogle Scholar
  49. 49.
    49. Athanasiou KA, Niederauer GG, Agrawal CM. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 1996;17:93-93–102.PubMedCrossRefGoogle Scholar
  50. 50.
    50. Brady JM, Cutright DE, Miller RA, Battistone GC. Resorption rate, route, route of elimination, and ultrastructure of the implant site of polylactic acid in the abdominal wall of the rat. J Biomed Mater Res. 1973;7:155–166.PubMedCrossRefGoogle Scholar
  51. 51.
    51. Cutright DE, Hunsuck EE. The repair of fractures of the orbital floor using biodegradable polylactic acid. Oral Surg Oral Med Oral Pathol 1972;33:28–34.PubMedCrossRefGoogle Scholar
  52. 52.
    52. Powers DL, Sonawala M, Wolf SK, An YH, Hawkins R, Pietrzak WS. Comparison of the biomechanics and histology of two soft-tissue fixators composed of bioabsorbable copolymers. J Biomed Mater Res 2001;58:486–495.PubMedCrossRefGoogle Scholar
  53. 53.
    53. Pietrzak WS, Lessek TP, Perns SV. A bioabsorbable fixation implant for use in proximal interphalangeal joint (hammertoe) arthrodesis: Biomechanical testing in a synthetic bone substrate. J Foot Ankle Saurg 2006;45:288–294.CrossRefGoogle Scholar
  54. 54.
    54. Cristofolini L, Viceconti M, Cappello A, Toni A. Mechanical validation of whole bone composite femur models. J Biomech 1996;29:525–535.PubMedCrossRefGoogle Scholar
  55. 55.
    55. Thompson MS, McCarthy ID, Lidgren L, Ryd L. Compressive and shear properties of commercially available polyurethane foams. J Biomech Eng 2003;125:732–734.PubMedCrossRefGoogle Scholar
  56. 56.
    56. Nurmi JT, Sievanen H, Kannus P, Jarvinen M, Jarvinen TL. Porcine tibia is a poor substitute for human cadaver tibia for evaluating interference screw fixation. Am J Sports Med 2004;32:765–771.PubMedCrossRefGoogle Scholar
  57. 57.
    57. Biomechanical evaluation of a bioabsorbable expansion bolt for hamstring graft fixation in ACL reconstruction: an experimental study in calf tibial bone. Arch Orthop Trauma Surg. 2005;125:577–584.Google Scholar
  58. 58.
    58. Boenisch UW, Faber KJ, Ciarelli M, Steadman JR, Arnoczky SP. Pull-out strength and stiffness of meniscal repair using absorbable arrows or Ti-Cron vertical and horizontal loop sutures. 1999;27:626–631.PubMedGoogle Scholar
  59. 59.
    59. Dervin GF, Downing KJ, Keene GC, McBride DG. Failure strengths of suture versus biodegradable arrow for meniscal repair: an in vitro study. Arthroscopy 1997;13:296–300.PubMedCrossRefGoogle Scholar
  60. 60.
    60. Eppley BL, Sadove AM. A comparison of resorbable and metallic fixation in healing of calvarial bone grafts. Plast Reconstr Surg 1995;96:316–322.PubMedCrossRefGoogle Scholar
  61. 61.
    61. Bos RR, Rozema FR, Boering G, Nijenhuis AJ, Pennings AJ, Jansen HW. Boneplates and screws of bioabsorbable poly (L-lactide)–an animal pilot study. Br J Oral Maxillofac Surg 1989;27:467–476.PubMedCrossRefGoogle Scholar
  62. 62.
    62. Porter MD, Anderson MG. Results of bioabsobable fixation of metatarsal osteotomies. Am J Orthop 2004;33:609–611.PubMedGoogle Scholar
  63. 63.
    63. Barca F, Busa R. Austin/chevron osteotomy fixed with bioabsorbable poly-L-lactic acid single screw. J Foot Ankle Surg 1997;36:15–20.PubMedCrossRefGoogle Scholar
  64. 64.
    64. Kaukonen JP, Lamberg T, Korkala O, Pajarinen J. Fixation of syndesmotic ruptures in 38 patients with a malleolar fracture: a randomized study comparing a metallic and a bioabsorbable screw. J Orthop Trauma 2005;19:392–395.PubMedCrossRefGoogle Scholar
  65. 65.
    65. Sinisaari IP, Luthje PM, Mikkonen RH. Ruptured tibio-fibular syndesmosis: comparison of metallic to bioabsorbable fixation. Foot Ankle Int 2002;23:744–778.PubMedGoogle Scholar
  66. 66.
    66. Hovis WD, Kaiser BW, Watson JT, Bucholz RW. Treatment of syndesmotic disruptions of the ankle with bioabsorbable screw fixation. J Bone Joint Surg Am 2002;84-A(1):26–31.PubMedGoogle Scholar
  67. 67.
    67. Miller SD, Carls RJ. The bioresorbable syndesmotic screw: application of polymer technology in ankle fractures. Am J Orthop. 2002;31(1 Suppl):18–21.PubMedGoogle Scholar
  68. 68.
    68. Miller SL, Gladstone JN. Graft selection in anterior cruciate ligament reconstruction. Orthop Clin North Am 2002;33:675–683.PubMedCrossRefGoogle Scholar
  69. 69.
    69. Harilainen A, Sandelin J, Jansson KA. Cross-pin femoral fixation versus metal interference screw fixation in anterior cruciate ligament reconstruction with hamstring tendons: results of a controlled prospective randomized study with 2-year follow-up. Arthroscopy 2005;21:25–33.PubMedCrossRefGoogle Scholar
  70. 70.
    70. Piltz S, Dieckmann R, Meyer L, Strunk P, Plitz W, Lob G. Biomechanical evaluation of a bioabsorbable expansion bolt for hamstring graft fixation in ACL reconstruction: an experimental study in calf tibial bone. Arch Orthop Truama Surg 2005;125:577–584.CrossRefGoogle Scholar
  71. 71.
    71. Brand JC Jr, Nyland J, Caborn DN, Johnson DL. Soft-tissue interference fixation: bioabsorbable screw versus metal screw. Arthroscopy 2005;21:911–916.PubMedCrossRefGoogle Scholar
  72. 72.
    72. Benedetto KP, Fellinger M, Lim TE, Passler JM, Schoen JL, Willems WJ. A new bioabsorbable interference screw: preliminary results of a prospective, multicenter, randomized clinical trial. Arthroscopy 2000;16:41–48.PubMedCrossRefGoogle Scholar
  73. 73.
    73. Hackl W, Fink C, Benedetto KP, Hoser C. [Transplant fixation by anterior cruciate ligament reconstruction. Metal vs. bioabsorbable polyglyconate interference screw. A prospective randomized study of 40 patients] Unfallchirung 2000;103:468–474.CrossRefGoogle Scholar
  74. 74.
    74. Kaeding C, Farr J, Kavanaugh T, Pedroza A. A prospective randomized comparison of bioabsorbable and titanium anterior cruciate ligament interference screws. Arthroscopy 2005;21:147–151.PubMedCrossRefGoogle Scholar
  75. 75.
    75. Hersekli MA, Akpinar S, Ozalay M, Ozkoc G, Cesur N, Uysal M, Pourbagher A, Tandogan RN. Tunnel enlargement after arthroscopic anterior cruciate ligament reconstruction: comparison of bone-patellar tendon-bone and hamstring autografts. Adv Ther 2004;21:123–131.PubMedCrossRefGoogle Scholar
  76. 76.
    76. Robinson J, Huber C, Jaraj P, Colombet P, Allard M, Meyer P. Reduced bone tunnel enlargement post hamstring ACL reconstruction with poly-l-lactic acid/hydroxyapatite bioabsorbable screws. Knee 2006;13:127–131.PubMedCrossRefGoogle Scholar
  77. 77.
    77. Baums MH, Zelle BA, Schultz W, Ernstberger T, Klinger HM. Intraarticular migration of a broken biodegradable interference screw after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2006;14:865–868.PubMedCrossRefGoogle Scholar
  78. 78.
    78. Krappel FA, Bauer E, Harland U. The migration of a BioScrew® as differential diagnosis of knee pain, locking after ACL reconstruction: a report of two cases. Arch Orthop Trauma Surg 2006;126:615–620.PubMedCrossRefGoogle Scholar
  79. 79.
    79. Lembeck B, Wulker N. Severe cartilage damage by broken poly-L-lactic acid (PLLA) interference screw after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 2005;13:283–286.PubMedCrossRefGoogle Scholar
  80. 80.
    80. Barber FA, Herbert MA, Richards DP. Load to failure testing of new meniscal repair devices. Arthroscopy 2004;20:45–50.PubMedCrossRefGoogle Scholar
  81. 81.
    81. Oberlander MA, Chisar MA. Meniscal repair using the Polysorb meniscal stapler XLS. Arthroscopy 2005;21:1148e1–1148e5.CrossRefGoogle Scholar
  82. 82.
    82. Barber FA, Johnson DH, Halbrecht JL. Arthroscopic meniscal repair using the BioStinger. Arthroscopy 2005;21:744–750.PubMedCrossRefGoogle Scholar
  83. 83.
    83. Farng E, Sherman O. Meniscal repair devices: a clinical and biomechanical literature review. Arthroscopy 2004;20:273–286.PubMedCrossRefGoogle Scholar
  84. 84.
    Gliatis J, Kouzelis A, Panagopoulos A, Lambiris E. Chondral injury due to migration of a Mitek RapidLoc meniscal repair implant after successful meniscal repair: a case report. Knee Surg Sports Traumatol Arthrosc 2004Google Scholar
  85. 85.
    Chondral injury due to migration of a Mitek RapidLoc meniscal repair implant after successful meniscal repair: a case report. Knee Surg Sports Traumatol Arthrosc 2005;13:280–282.Google Scholar
  86. 86.
    86. Page SM, Stern PJ. Complications and range of motion following plate fixation of metacarpal and phalangeal fractures. J Hand Surg 1998;28:827–832.Google Scholar
  87. 87.
    87. Hughes TB. Bioabsorbable implants in the treatment of hand fractures: an update. Clin Orthop Relat Res 2006;445:169–174.PubMedGoogle Scholar
  88. 88.
    88. Waris E, Ninkovic M, Harpf C, Ninkovic M, Ashammakhi N. Self-reinforced bioabsorbable miniplates for skeletal fixation in complex hand injury: three case reports. J Hand Surg [Am] 2004;29:452–457.CrossRefGoogle Scholar
  89. 89.
    89. Kujala S, Raatikainen T, Kaarela O, Aschammakhi N, Ryhanen J. Successful treatment of scaphoid fractures and nonunions using bioabsorbable screws: report of six cases. J Hand Surg [Am] 2004;29:68–73.CrossRefGoogle Scholar
  90. 90.
    90. Lionelli GT, Korentager RA. Biomechanical failure of metacarpal fracture resorbable plate fixation. Ann Plast Surg 2002;49:202–206.PubMedCrossRefGoogle Scholar
  91. 91.
    91. Gangopadhyay S, Ravi K, Packer G. Dorsal plating of unstable distal radius fractures using a bio-absorbable plating system and bone substitute. J Hand Surg [Br] 2005;31:93–100.Google Scholar
  92. 92.
    92. Mittal R, Morley J, Dinopoulos H, Drakoulakis EG, Vermani E, Giannoudis PV. Use of bio-absorbable implants for stabilization of distal radius fractures: the United Kingdom patients' perspective. Injury 2005;36:333–338.PubMedCrossRefGoogle Scholar
  93. 93.
    93. Vaccaro AR, Carrino JA, Venger BH, Albert T, Kelleher PM, Hilibrand A, Singh K. Use of a bioabsorbable anterior cervical plate in the treatment of cervical degenerative and traumatic disc disruption. J Neurosurg 2002;97(4 Suppl):473–480.PubMedGoogle Scholar
  94. 94.
    94. Vaccaro AR, Singh K, Haid R, Kitchel S, Wuisman P, Taylor W, Branch C, Garfin S. The use of bioabsorbable implants in the spine. Spine J 2003;3:227–237.PubMedCrossRefGoogle Scholar
  95. 95.
    95. Park MS, Aryan HE, Ozgur BM, Jandial R, Taylor WR. Stabilization of anterior cervical spine with bioabsorbable polymer in one- and two-level fusions. Neurosurgery 2004;54:631–635.PubMedCrossRefGoogle Scholar
  96. 96.
    96. Brunon J, Duthel R, Fotso MJ, Tudor C. [Anterior osteosynthesis of the cervical spine by phusiline bioresorbable screws and plates. Initial results apropos of 5 cases] Neurochirugie 1994;40:196–202.Google Scholar
  97. 97.
    97. McBirnie JM, Minianci A, Miniaci SL. Arthroscopic repair of full-thickness rotator cuff tears using bioabsorbable tacks. Arthroscopy 2005;21:1421–1427.PubMedCrossRefGoogle Scholar
  98. 98.
    98. Freedman KB, Smith AP, Romeo AA, Cole BJ, Bach BR. Open Bakart repair versus arthroscopic repair with transglenoid sutures or bioabsorbable tacks for recurrent anterior instability of the shoulder. A meta-analysis. Am J Sports Med 2004;32:1520–1527.PubMedCrossRefGoogle Scholar
  99. 99.
    99. Magee T, Shapiro M, Hewell G, Williams D. Complications of rotator cuff surgery in which bioabsorbable anchors are used. Am J Roentgenol 2003;181:1227–1231.Google Scholar
  100. 100.
    100. Cummins CA, Strickland S, Appleyard RC, Szomor ZL, Marshall J, Murrell GAC. Arthroscopy 2003;19:239–248.PubMedCrossRefGoogle Scholar
  101. 101.
    101. Eppley BL, Morales L, Wood R, Pensler J, Goldstein J, Havlik RJ, Habal M, Losken A, Williams JK, Burnstein F, Rozzelle AA, Sadove AM. Resorbable PLLA-PGA plate and screw fixation in pediatric craniofacial surgery: clinical experience in 1883 patients. Plast Reconstr Surg 2004;114:850–856.PubMedCrossRefGoogle Scholar
  102. 102.
    102. Papay FA, Hardy S, Morales L Jr., Walker M, Enlow D. “False” migration of rigid fixation appliances in pediatric craniofacial surgery. J Craniofac Surg 1995;6: 309–313.PubMedCrossRefGoogle Scholar
  103. 103.
    103. Beck J, Parent A, Angel MF. Chronic headache as a sequela of rigid fixation for craniosynostosis. J Craniofac Surg 2002;13:327–330.PubMedCrossRefGoogle Scholar
  104. 104.
    104. Duke BJ, Mouchantat RA, Ketch LL, Winston KR. Transcranial migration of microfixation plates and screws. Case report. Pediatr Neurosurg 1996;25:31–34.PubMedCrossRefGoogle Scholar
  105. 105.
    105. Goldberg DS, Bartlett S, Yu JC, Hunter JV, Whitaker LA. Critical review of microfixation in pediatric craniofacial surgery. 1995;6:301–307.Google Scholar
  106. 106.
    106. Berryhill WE, Rimell FL, Ness J, Marentette L, Haines SJ. Fate of rigid fixation in pediatric craniofacial surgery. Otolaryngol Head Neck Surg 1999;121:269–273.PubMedCrossRefGoogle Scholar
  107. 107.
    107. Barone CM, Jimenez DF. Special considerations in pediatric cranial fixation: a technical overview. J Craniomaxillofac Trauma 1996;2:42–47.PubMedGoogle Scholar
  108. 108.
    108. Pietrzak WS, Verstynen ML, Sarver DR. Bioabsorbable fixation devices: status for the craniomaxillofacial surgeon. J Craniofac Surg 1997;8:92–96.PubMedCrossRefGoogle Scholar
  109. 109.
    109. Eppley BL. Use of resorbable plate and screw fixation in pediatric craniofacial surgery. Operative Tech Plast Surg 2003;9:36–45.CrossRefGoogle Scholar
  110. 110.
    110. Eppley BL, Li M. Long spanning resorbable plates in cranial vault reconstruction. J Craniofac Surg 2003;14:89–91.PubMedCrossRefGoogle Scholar
  111. 111.
    111. Eppley BL. Repair of midfacial fractures using resorbable plates and screws. Operative Tech Otolaryngology Head-Neck Surg 2002;13:287–292.Google Scholar
  112. 112.
    112. Eppley BL. Zygomaticomaxillary fracture repair with resorbable plates and screws. J Craniofac Surg 2000;11:377–385.PubMedCrossRefGoogle Scholar
  113. 113.
    113. Eppley BL. Use of a resorbable fixation technique for maxillary fractures. J Craniofac Surg 1998;9:317–321.PubMedCrossRefGoogle Scholar
  114. 114.
    114. Edwards RC, Kiely KD, Eppley BL. Fixation of bimaxillary osteotomies with resorbable plates and screws: initial experience in 20 consecutive cases. J Oral Maxillofac Surg 2001;59:271–276.PubMedCrossRefGoogle Scholar
  115. 115.
    115. Eppley BL, Coleman JJ 3rd, Sood R, Ha RY, Sadove AM. Resorbable screw fixation technique for endoscopic brow and midfacial lifts. Plast Reconstr Surg 1998;102:241–243.PubMedCrossRefGoogle Scholar
  116. 116.
    116. Ahn DK, Sims CD, Randolf MA, O'Connor D, Butler PE, Amarante MT, Yaremchuk MJ. Craniofacial skeletal fixation using biodegradable plates and cyanoacrylate glue. Plast Reconsr Surg 1997;99:1508–1515.CrossRefGoogle Scholar
  117. 117.
    117. Makinen TJ, Veiranto M, Knuuti J, Jalava J, Tormala P, Aro HT. Efficacy of bioabsorbable antibiotic containing bone screw in the prevention of biomaterial-related infection due to Staphylocuccus aureus. Bone 2005;36:292–299.PubMedCrossRefGoogle Scholar
  118. 118.
    118. Tieline L, Puolakkainen P, Pohjonen T, Rautavuori J, Tormala P, Rokkanen P. The effect of transforming growth factor-beta1, released from a bioabsorbable self-reinforced polylactide pin, on a bone defect. Biomaterials 2002;23:3817–3823.PubMedCrossRefGoogle Scholar
  119. 119.
    119. Bleach NC, Nazhat SN, Tanner KE, Kellomaki M, Tormala P. Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate–polylactide composites. Biomaterials 2002;23:1579–1585PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • William S. Pietrzak
    • 1
    • 2
  1. 1.Department of BioengineeringUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Biomet, Inc.WarsawIN

Personalised recommendations