Advertisement

Electrical Bone Stimulation

  • Josh Simon
  • Bruce Simon
Part of the Orthopedic Biology and Medicine book series (OBM)

Abstract

Delayed unions and nonunions of long bone fractures are common complications encountered in orthopaedic medicine. Five to 10 percent (300,000 to 600,000) of the 6 million fractures occurring annually in the United States develop some form of compromised union, amounting to an estimated economic loss of $3 billion to $6 billion annually. Electrical stimulation modalities have been employed for decades to promote the healing of delayed unions and nonunions. Although the positive clinical benefi ts of these treatments have been widely reported, electrical stimulation was largely regarded as a “black box” technology. Today, the black box can be replaced with a mechanism of action. This chapter compiles a basic mechanism of action for the effects of electrical stimulation on bone healing. In short, electrical stimulation up-regulates production of mRNA from DNA, which leads to up-regulated expression of growth factors that are benefi cial to the bone healing cascade. Stimulation of cells by these growth factors causes them to proliferate and differentiate, and these events lead to better callus formation, mineralization and vascularization, which in turn provide a better clinical outcome in the form of a faster healing rate, or any healing rate at all, in an area that would not normally heal on its own.

Keywords

Electrical stimulation bone stimulator EBI nonunion delayed union bone healing growth factor osteoinduction 

References

  1. 1.
    1. Praemer A, Furner S, Rice D. Musculoskeletal Conditions in the United States. Park Ridge, IL: American Academy of Orthopaedic Surgeons; 1992.Google Scholar
  2. 2.
    2. Praemer A, Furner S, Rice D. Musculoskeletal Conditions in the United States. 2nd ed. Rosemont, IL: American Academy of Orthopaedic Surgeons; 1999.Google Scholar
  3. 3.
    3. Bassett C. Electrical effects in bone. Sci Am 1965;213(4):18–25.PubMedGoogle Scholar
  4. 4.
    4. Bassett C, Pawluck R, Becker R. Effects of electric currents on bone formation in vivo. Nature 1964;204:652–4.PubMedGoogle Scholar
  5. 5.
    5. Bassett C, Becker R. Generation of electric potentials by bone in response to mechanical stress. Science 1962;137:1063–4.PubMedGoogle Scholar
  6. 6.
    6. Fukada E, Yasuda I. On the piezoelectric effect of bone. J Phy Soc Japan 1957;12:1158.Google Scholar
  7. 7.
    Downey M. Bone growth stimulators: Current concepts. In: Podiatry Management Magazine; 2005.Google Scholar
  8. 8.
    8. Yasuda I. On the piezoelectric property of bone. J Jpn Orthop Surg Soc 1954;28:267–79.Google Scholar
  9. 9.
    9. Rubinacci A, De Ponti A, Shipley A, Samaja M, Karplus E, Jaffe L. Bicarbonate dependence of ion current in damaged bone. Calcif Tissue Int 1996;58:423–8.PubMedGoogle Scholar
  10. 10.
    10. Enzler M, Sumner-Smith G, Waelchli-Suter C, Perren S. Treatment of nonuniting osteotomies with pulsating electromagnetic fields. A controlled animal experiment. Clin Orthop 1984;187:272–6.PubMedGoogle Scholar
  11. 11.
    11. Enzler MA, Waelchli-Suter C, Perren SM. [Prevention of pseudarthrosis using magnetic stimulation? Experimental demonstration of Bassett's method on beagles]. Unfallheilkunde 1980;83(5):188–94.PubMedGoogle Scholar
  12. 12.
    12. de Haas WG, Lazarovici MA, Morrison DM. The effect of low frequency magnetic fields on the healing of the osteotomized rabbit radius. Clinical Orthopaedics & Related Research 1979(145):245–51.Google Scholar
  13. 13.
    13. Fredericks D, Nepola J, Baker J, Abbott J, Simon B. Effects of pulsed electromagnetic fields on bone healing in a rabbit tibial osteotomy model. J Orthop Trauma 2000;14(2):93–100.PubMedGoogle Scholar
  14. 14.
    14. Leisner S, Shahar R, Aizenberg I, Lichovsky D, Levin-Harrus T. The effect of short-duration, high-intensity electromagnetic pulses on fresh ulnar fractures in rats. J Vet Med 2002;49(1):33–7.Google Scholar
  15. 15.
    15. Sarker AB, Nashimuddin AN, Islam KM, et al. Effect of PEMF on fresh fracture-healing in rat tibia. Bangladesh Medical Research Council Bulletin 1993;19(3):103–12.PubMedGoogle Scholar
  16. 16.
    Bassett CA, Hess K. Synergistic effects of pulsed electromagnetic fields (PEMFs) and fresh canine cancellous bone grafts. In: Orthop Trans; 1984; 1984. p. 341.Google Scholar
  17. 17.
    17. Olmstead M, Ost P, Hohn R. The effect of pulsing electromagnetic fields on bone healing in fresh canine tibial fractures. Parsippany: EBI; 1984.Google Scholar
  18. 18.
    18. Yen-Patton G, Patton W, Beer D, Jacobson B. Endothelial cell response to pulsed electromagnetic fields: stimulation of growth rate and angiogenesis in vitro. J Cell Physiol 1988;134(1):37–46.PubMedGoogle Scholar
  19. 19.
    19. Tepper O, Callaghan M, Chang E, et al. Electromagnetic fields increase in vitro and in vivo angiogenesis through endothelial release of FGF-2. FASEB J 2004;18(11):1231–3.PubMedGoogle Scholar
  20. 20.
    20. Greenough C. The effects of pulsed electromagnetic fields on blood vessel growth in the rabbit ear chamber. J Orthop Res 1992;10(2):256–62.PubMedGoogle Scholar
  21. 21.
    21. Aaron R, Ciombor D. Acceleration of experimental endochondral ossification by biophysical stimulation of the progenitor cell pool. J Orthop Res 1996;14(4):582–9.PubMedGoogle Scholar
  22. 22.
    22. Aaron R, Ciombor D, Jolly G. Stimulation of experimental endochondral ossification by low-energy pulsing electromagnetic fields. J Bone Miner Res 1989;4(2):227–33.PubMedGoogle Scholar
  23. 23.
    23. Ciombor D, Lester G, Aaron R, Neame P, Caterson B. Low frequency EMF regulates chondrocyte differentiation and expression of matrix proteins. J Orthop Res 2002;20(1):40–50.PubMedGoogle Scholar
  24. 24.
    24. Grace K, Revell W, Brookes M. The effects of pulsed electromagnetism on fresh fracture healing: osteochondral repair in the rat femoral groove. Orthopedics 1998;21(3):297–302.PubMedGoogle Scholar
  25. 25.
    25. Inoue N, Ohnishi I, Chen D, Deitz L, Schwardt J, Chao E. Effect of pulsed electromagnetic fields (PEMF) on late-phase osteotomy gap healing in a canine tibial model. J Orthop Res 2002;20(5):1106–14.PubMedGoogle Scholar
  26. 26.
    26. van Roermund P, ter Haar Romeny B, Hoekstra A, et al. Bone growth and remodeling after distraction epiphysiolysis of the proximal tibia of the rabbit. Effect of electromagnetic stimulation. Clin Orthop 1991;266(304–312).PubMedGoogle Scholar
  27. 27.
    27. Fredericks D, Piehl D, Baker J, Abbott J, Nepola J. Effects of pulsed electromagnetic field stimulation on distraction osteogenesis in the rabbit tibial leg lengthening model. J Ped Orthop 2003;23(4):478–83.Google Scholar
  28. 28.
    28. Fredericks D, Abbott J, Nepola J. The effects of pulsed electromagnetic field (PEMF) stimulation on distraction osteogenesis in the rabbit tibial leg-lengthening model. In: Eleventh Annual Meeting of The Orthopaedic Trauma Association; September 29 - October 1; Tampa, FL: Orthopaedic Trauma Association; 1995. p. 48.Google Scholar
  29. 29.
    29. Talylor K, Inoue N, Rafiee B, Tis J, McHale K. Effect of pulsed electromagnetic fields on maturation of regenerate bone in a rabbit limb lengthening model. J Orthop Res 2006;24(1):2–10.Google Scholar
  30. 30.
    30. Fini M, Cadossi R, Cane V, et al. The effect of pulsed electromagnetic fields on the osteointegration of hydroxyapatite implants in cancellous bone: a morphologic and microstructural in vivo study. J Orthop Res 2002;20(4):756–63.PubMedGoogle Scholar
  31. 31.
    31. Fini M, Giavaresi G, Giardino R, Cavani F, Cadossi R. Histomorphometric and mechanical analysis of the hydroxyapatite-bone interface after electromagnetic stimulation: an experimental study in rabbits. J Bone Joint Surg 2006;88(1):123–8.Google Scholar
  32. 32.
    32. Shimizu T, Zerwekh J, Videman T, et al. Bone ingrowth into porous calcium phosphate ceramics: influence of pulsing electromagnetic field. J Orthop Res 1988;6(2):248–58.PubMedGoogle Scholar
  33. 33.
    Aaron R, Ciombor D. Interim report on the effects of the osteoarthritis signal in human osteoarthritic cartilage in organ culture. Unpublished Report Generated for EBI, LP 1996.Google Scholar
  34. 34.
    34. Aaron R, Wang S, Ciombor D. Upregulation of basal TGFbeta1 levels by EMF coincident with chondrogenesis–implications for skeletal repair and tissue engineering. J Orthop Res 2002;20(2):233–40.PubMedGoogle Scholar
  35. 35.
    35. Chang K, Hong-Shong Chang W, Yu Y, Shih C. Pulsed electromagnetic field stimulation of bone marrow cells derived from ovariectomized rats affects osteoclast formation and local factor production. Bioelectromagnetics 2004;25(2):134–41.PubMedGoogle Scholar
  36. 36.
    36. Chang K, Chang W, Wu M, Shih C. Effects of different intensities of extremely low frequency pulsed electromagnetic fields on formation of osteoclast-like cells. Bioelectromagnetics 2003;24(6):431–9.PubMedGoogle Scholar
  37. 37.
    37. Spadaro J, Bergstrom W. In vivo and in vitro effects of a pulsed electromagnetic field on net calcium flux in rat calvarial bone. Calcif Tissue Int 2002;70(6):496–502.PubMedGoogle Scholar
  38. 38.
    38. Chang K, Chang W, Huanga S, Huanga S, Shih C. Pulsed electromagnetic fields stimulation affects osteoclast formation by modulation of osteoprotegerin, RANK ligand and macrophage colony-stimulating factor. J Orthop Res 2005;23(6):1308–14.PubMedGoogle Scholar
  39. 39.
    39. Shankar V, Simon B, Bax C, et al. Effects of electromagnetic stimulation on the functional responsiveness of isolated rat osteoclasts. J Cell Physiol 1998;176(3):537–44.PubMedGoogle Scholar
  40. 40.
    40. De Ponti A, Villa I, Boniforti F, Rubinacci A. Ionic currents at the growth plate of intact bone: Occurrence and ionic dependence. Electro Magnetobiology 1996;15(1):37–48.Google Scholar
  41. 41.
    41. Aaron R, Boyan B, Ciombor D, Schwartz Z, Simon B. Stimulation of growth factor synthesis by electric and electromagnetic fields. Clin Orthop 2004;419:30–7.PubMedGoogle Scholar
  42. 42.
    42. Aaron R, Ciombor D. Synergistic effects of growth factors and pulsed fields on proteoglycan synthesis in articular cartilage. J Cell Biol 1991;115:448A.Google Scholar
  43. 43.
    43. Fitzsimmons R, Ryaby J, Magee F, Baylink D. IGF-II receptor number is increased in TE-85 osteosarcoma cells by combined magnetic fields. J Bone Miner Res 1995;10(5):812–9.PubMedGoogle Scholar
  44. 44.
    44. Fitzsimmons RJ, Baylink DJ. Growth factors and electromagnetic fields in bone. Clin Plast Surg 1994;21(3):401–6.PubMedGoogle Scholar
  45. 45.
    45. Fitzsimmons RJ, Ryaby JT, Mohan S, Magee FP, Baylink DJ. Combined magnetic fields increase insulin-like growth factor-II in TE-85 human osteosarcoma bone cell cultures. Endocrinology 1995;136(7):3100–6.PubMedGoogle Scholar
  46. 46.
    46. Guerkov H, Lohmann C, Liu Y, et al. Pulsed electromagnetic fields increase growth factor release by nonunion cells. Clin Orthop 2001;384:265–79.PubMedGoogle Scholar
  47. 47.
    47. Kubota K, Yoshimura N, Yokota M, Fitzsimmons RJ, Wikesjo ME. Overview of effects of electrical stimulation on osteogenesis and alveolar bone. J Periodontol 1995;66(1):2–6.PubMedGoogle Scholar
  48. 48.
    48. Lohmann C, Schwartz Z, Liu Y, et al. Pulsed electromagnetic field stimulation of MG63 osteoblast-like cells affects differentiation and local factor production. J Orthop Res 2000;184(4):637–46.Google Scholar
  49. 49.
    49. Lohmann C, Schwartz Z, Liu Y, et al. Pulsed electromagnetic field stimulation of MLO-Y4 osteocyte-like cells enhances PGE2 and TGF-BETA 1 production. J Orthop Res 2003;21(2):326–34.PubMedGoogle Scholar
  50. 50.
    50. Ryaby J, Fitzsimmons R, Khin N, Baylink D. The role of insulin-like growth factor II in magnetic field regulation of bone formation. Bioelectrochem Bioenerg 1994;35:87–91.Google Scholar
  51. 51.
    Aaron R, Ciombor D, Bolander M. Modulation of gene expression in experimental endochondral ossification by pusling electromagnetic fields. In: Transactions of the Bioelectrical Repair and Growth Society; Cleveland, OH; 1989.Google Scholar
  52. 52.
    52. Adey WR. Biological effects of electromagnetic fields. Journal of Cellular Biochemistry 1993;51(4):410–6.PubMedGoogle Scholar
  53. 53.
    53. Blank M, Findl E. Mechanistic Approaches to Interactions of Electric and Electromagnetic Fields with Living Systems. New York: Plenum Press; 1987.Google Scholar
  54. 54.
    54. Blank M, Soo L. Na, K-ATPase activity as a model for the effects of EMF on cells. In: Blank M, ed. Proceedings of the First World Congress for Electricity and Magnetism in Biology and Medicine. San Francisco: San Francisco Press; 1990.Google Scholar
  55. 55.
    55. Bond J, Weyth N. Membranes, electromagnetic fields, and critical phenomena. In: Blank M, Findl E, eds. Mechanistic Approaches to Interactions of Elecrtric and Electromagnetic Fields with Living Systems. New York: Plenum Press; 1987.Google Scholar
  56. 56.
    56. Brighton C, Wang W, Seldes R, Zhang G, Pollack S. Signal transduction in electrically stimulated bone cells. J Bone Joint Surg 2001;83-A(10):1514–23.PubMedGoogle Scholar
  57. 57.
    57. Cain CD, Adey WR, Luben RA. Evidence that pulsed electromagnetic fields inhibit coupling of adenylate cyclase by parathyroid hormone in bone cells. J Bone Miner Res 1987;2(5):437–41.PubMedGoogle Scholar
  58. 58.
    Cain CD, Donato N, Byus C, Adey WR, Luben RA. Pulsed electromagnetic field modifies cAMP metabolism and ornithine decarboxylase activity in primary bone cells. In: IEE International Conference on Electromagnetic Fields in Medicine and Biology; 1985; London; 1985. p. 9.Google Scholar
  59. 59.
    59. Chiabrera A, Bianco B, Moggia E, Kaufman J. Zeeman-Stark modeling of the RF EMF interaction with ligand binding. Bioelectromagnetics 2000;21:312–24.PubMedGoogle Scholar
  60. 60.
    60. Chiabrera A, Grattarola M, Viviani R. Interaction between electromagnetic fields and cells: microelectrophoretic effect on ligands and surface receptors. Bioelectromagnetics 1984;5(2):173–91.PubMedGoogle Scholar
  61. 61.
    61. Cossarizza A, Angioni S, Petraglia F, et al. Exposure to low frequency pulsed electromagnetic fields increases interleukin-1 and interleukin-6 production by human peripheral blood mononuclear cells. Experimental Cell Research 1993;204(2): 385–7.PubMedGoogle Scholar
  62. 62.
    62. Cossarizza A, Monti D, Bersani F, et al. Extremely low frequency pulsed electromagnetic fields increase interleukin-2 (IL-2) utilization and IL-2 receptor expression in mitogen-stimulated human lymphocytes from old subjects. FEBS Letters 1989;248(1–2):141–4.PubMedGoogle Scholar
  63. 63.
    63. De Mattei M, Gagliano N, Moscheni C, et al. Changes in polyamines, c-myc and c-fos gene expression in osteoblast-like cells exposed to pulsed electromagnetic fields. Bioelectromagnetics 2005;26(3):207–14.PubMedGoogle Scholar
  64. 64.
    64. Farndale RW, Maroudas A, Marsland TP. Effects of low-amplitude pulsed magnetic fields on cellular ion transport. Bioelectromagnetics 1987;8(2):119–34.PubMedGoogle Scholar
  65. 65.
    65. Farndale RW, Murray JC. The action of pulsed magnetic fields on cyclic AMP levels in cultured fibroblasts. Biochim Biophys Acta 1986;881(1):46–53.PubMedGoogle Scholar
  66. 66.
    66. Fitzsimmons RJ, Ryaby JT, Magee FP, Baylink DJ. Combined magnetic fields increased net calcium flux in bone cells. Calcif Tissue Int 1994;55(5):376–80.PubMedGoogle Scholar
  67. 67.
    67. Goodman E, Greenebaum B, Marron M, Carrick K. Effects of intermittent electromagnetic fields on mitosis and respiration. J Bioelectricity 1984;3:57.Google Scholar
  68. 68.
    68. Goodman E, Sharpe P, Greenebaum B, Marron M. Pulsed magnetic fields alter the cell surface. FEBS Letters 1986;199(2):275–8.PubMedGoogle Scholar
  69. 69.
    69. Karabakhtsian R, Broude N, Shalts N, Kochlatyi S, Goodman R, Henderson A. Calcium is necessary in the cell response to EM fields. FEBS Letters 1994;349(1):1–6.PubMedGoogle Scholar
  70. 70.
    Luben RA. Gene expression of parathyroid hormone (PTH) receptors and functionally related antigens in bone cells: desensitization with hormones and electromagnetic fields (EF). In: Transactions of the Bioelectrical Repair and Growth Society; Washington, DC; 1988. p. 20.Google Scholar
  71. 71.
    71. Luben RA. Effects of low-energy electromagnetic fields (pulsed and DC) on membrane signal transduction processes in biological systems. Health Physics 1991;61(1):15–28.PubMedGoogle Scholar
  72. 72.
    72. Luben RA, Cain CD, Chen M, Rosen D, Adey WR. Effects of electromagnetic stimuli on bone and bone cells in vitro: inhibition of responses to parathyroid hormone by low-energy low-frequency fields. Proc Natl Acad Sci USA 1982;79:4180.PubMedGoogle Scholar
  73. 73.
    73. McLeod BR, Liboff AR, Smith SD. Electromagnetic gating in ion channels. J Theor Biol 1992;158(1):15–31.PubMedGoogle Scholar
  74. 74.
    74. Satake T. [Effect of pulsed electromagnetic fields (PEMF) on osteoblast-like cells. Alterations of intracellular Ca2+]. Kanagawa Shigaku 1990;24(4):692–701.PubMedGoogle Scholar
  75. 75.
    75. Smith O, Goodman E, Greenebaum B, Tipnis P. An increase in the negative surface charge of U937 cells exposed to a pulsed magnetic field. Bioelectromagnetics 1991;12(3):197–202.PubMedGoogle Scholar
  76. 76.
    76. Varani K, Gessi S, Merighi S, et al. Effect of low frequency electromagnetic fields on A2A adenosine receptors in human neutrophils. Brit J Pharmacol 2002;136(1):57–66.Google Scholar
  77. 77.
    77. Bodamyali T, Bhatt B, Hughes F, et al. Pulsed electromagnetic fields simultaneously induce osteogenesis and upregulate transcription of bone morphogenetic proteins 2 and 4 in rat osteoblasts in vitro. Biochem Biophys Res Commun 1998;250(2):458–61.PubMedGoogle Scholar
  78. 78.
    78. Aaron R, Ciombor DM, Wang S, Simon B. Clinical Biophysics: The Promotion of Skeletal Repair by Physical Forces. Ann NY Acad Sci 2006;1068:513–31.PubMedGoogle Scholar
  79. 79.
    79. Nagai M, Ota M. Pulsating electromagnetic field stimulates mRNA expression of bone morphogenetic protein-2 and -4. J Dent Res 1994;73(10):1601–5.PubMedGoogle Scholar
  80. 80.
    80. Yajima A, Ochi M, Hirose Y. Effects of pulsing electromagnetic fields on gene expression of bone morphogenetic proteins in human osteoblastic cell line in vitro. J Bone Miner Res 1996;11(Suppl 1):381.Google Scholar
  81. 81.
    81. Blank M, Goodman R. Electromagnetic fields may act directly on DNA. J Cell Biochem 1999;75(3):369–74.PubMedGoogle Scholar
  82. 82.
    82. Blank M, Goodman R. Electromagnetic initiation of transcription at specific DNA sites. J Cell Biochem 2001;81(4):689–92.PubMedGoogle Scholar
  83. 83.
    83. Blank M, Goodman R. Initial interactions in electromagnetic field-induced biosynthesis. J Cell Physiol 2004;199(3):359–63.PubMedGoogle Scholar
  84. 84.
    84. Jin M, Blank M, Goodman R. ERK1/2 phosphorylation, induced by electromagnetic fields, diminishes during neoplastic transformation. J Cell Biochem 2000;78(3):371–9.PubMedGoogle Scholar
  85. 85.
    85. Black J. Electrical Stimulation: Its Role in Growth, Repair, and Remodelling of the Musculoskeletal System. New York: Praeger; 1986.Google Scholar
  86. 86.
    86. Brighton C, Pfeffer G, Pollack S. In vivo growth plate stimulation in various capacitively coupled electrical fields. J Orthop Res 1983;1(1):42–9.PubMedGoogle Scholar
  87. 87.
    87. Black J, Balligand M, Nunamaker D, Brighton C. Electrical stimulation of fresh fractures: Faradic stimulation of tibial osteotomies in the dog. In: 31st Annual Meeting of the Orthopeadic Research Society; Las Vegas, NV: Orthopaedic Research Society; 1985. p. 29.Google Scholar
  88. 88.
    88. Chang W, Hwang I, Liu H. Enhancement of fracture healing by specific pulsed capac-itively-coupled electric field stimulation. Front Med Biol Eng 1991;3(1):57–64.PubMedGoogle Scholar
  89. 89.
    89. Rijal K, Kashimoto O, Sakurai M. Effect of capacitively coupled electric fields on an experimental model of delayed union of fracture. J Orthop Res 1994;12(2):262–7.PubMedGoogle Scholar
  90. 90.
    90. Carter EJ, Vresilovic E, Pollack S, Brighton C. Field distributions in vertebral bodies of the rat during electrical stimulation: a parametric study. IEEE Trans Biomed Eng 1989;36(3):333–45.PubMedGoogle Scholar
  91. 91.
    91. Brighton C, Luessenhop C, Pollack S, Steinberg D, Petrik M, Kaplan F. Treatment of castration-induced osteoporosis by a capacitively coupled electrical signal in rat vertebrae. J Bone Joint Surg Am 1989;71(2):228–36.PubMedGoogle Scholar
  92. 92.
    Leussenhop C, Brighton C, Pollack S. Treatement of castration-induced osteoporosis with a 60 kHz capacitively coupled electrical signal. In: Transactions of the Bioelectrical Repair and Growth Society; Toronto, Canada; 1987. p. 80.Google Scholar
  93. 93.
    93. Brighton C, Okereke E, Pollack S, Clark C. In vitro bone-cell response to a capacitively coupled electrical field. The role of field strength, pulse pattern, and duty cycle. Clin Orthop 1992;285:255–62.PubMedGoogle Scholar
  94. 94.
    94. Fitzsimmons R, Farley J, Adey W, Baylink D. Frequency dependence of increased cell proliferation, in vitro, in exposures to a low-amplitude, low-frequency electric field: evidence for dependence on increased mitogen activity released into culture medium. J Cell Phys 1989;139(3):586–91.Google Scholar
  95. 95.
    95. Fitzsimmons R, Strong D, Mohan S, Baylink D. Low-amplitude, low-frequency electric field-stimulated bone cell proliferation may in part be mediated by increased IGF-II release. J Cell Physiol 1992;150(1):84–9.PubMedGoogle Scholar
  96. 96.
    96. Armstrong P, Brighton C, Star A. Capacitively coupled electrical stimulation of bovine growth plate chondrocytes grown in pellet form. J Orthop Res 1988;6(2):265–71.PubMedGoogle Scholar
  97. 97.
    97. Brighton C, Jensen L, Pollack S, Tolin B, Clark C. Proliferative and synthetic response of bovine growth plate chondrocytes to various capacitively coupled electrical fields. J Orthop Res 1989;7(5):759–65.PubMedGoogle Scholar
  98. 98.
    98. Brighton C. The semi-invasive method of treating nonunion with direct current. Orthop Clin North Amer 1984;15(1):33–45.Google Scholar
  99. 99.
    99. Lorich D, Brighton C, Gupta R, et al. Biochemical pathway mediating the response of bone cells to capacitive coupling. Clin Orthop 1998;350:246–56.PubMedGoogle Scholar
  100. 100.
    100. Brighton C, Fisher JJ, Levine S, et al. The biochemical pathway mediating the proliferative response of bone cells to a mechanical stimulus. J Bone Joint Surg Am 1996;78(9):1337–47.PubMedGoogle Scholar
  101. 101.
    101. Zhuang H, Wang W, Seldes R, Tahernia A, Fan H, Brighton C. Electrical stimulation induces the level of TGF-beta1 mRNA in osteoblastic cells by a mechanism involving calcium/calmodulin pathway. Biochem Biophys Res Commun 1997;237(2):225–9.PubMedGoogle Scholar
  102. 102.
    102. Morone M, Boden S, Hair G, et al. Gene expression during autograft lumbar spine fusion and the effect of bone morphogenetic protein 2. Clin Orthop 1998(352):252–65.Google Scholar
  103. 103.
    103. Gan J, Fredericks D, Glazer P. Direct current and capacitive coupling electrical stimulation upregulates osteopromotive factors for spinal fusions. Harv Med J 2004;6:57–9.Google Scholar
  104. 104.
    Fredericks D, Peterson E, Bobst J, Glazer P, Nepola J, Simon B. Effects of direct current electrical stimulation on expression of BMP-2,4,6,7, bFGF, VEGF, TGF-beta, ALK2, and ALK3 in a rabbit posterolateral spine fusion model. In: North American Spine Society; October 26th – October 30th; Chicago, IL; 2004.Google Scholar
  105. 105.
    105. Wang Z, Clark C, Brighton C. Up-regulation of bone morphogenetic proteins in cultured murine bone cells with use of specific electric fields. J Bone Joint Surg 2006;88(5):1053–65.PubMedGoogle Scholar
  106. 106.
    106. Rodan G, Bourret L, Norton L. DNA synthesis in cartilage cells is stimulated by oscillating electric fields. Science 1978;199(4329):690–2.PubMedGoogle Scholar
  107. 107.
    107. Brighton C, Unger A, Stambough J. In vitro growth of bovine articular cartilage chondrocytes in various capacitively coupled electrical fields. J Orthop Res 1984;2(1):15–22.PubMedGoogle Scholar
  108. 108.
    108. Black J. Methods for stimulating tissues. In: Electrical Stimulation: Its role in growth, repair, and remodelling of the musculoskeletal system. New York, NY: Praeger; 1987:85–101.Google Scholar
  109. 109.
    109. Spadaro J, Becker R. Function of implanted cathodes in electrode-induced bone growth. Med Biol Eng Comput 1979;17(6):769–75.PubMedGoogle Scholar
  110. 110.
    110. Inoue S, Ohashi T, Yasuda I, Fukada E. Electret induced callus formation in the rat. Clin Orthop 1977(124):57–8.PubMedGoogle Scholar
  111. 111.
    111. Treharne R, Brighton C, Korostoff E, Pollack S. Application of direct current in vitro fetal rat tibiae. In: 22nd Annual Meeting of the Orthopaedic Research Society; New Orleans, LA: Orthopaedic Research Society; 1976. p. 113.Google Scholar
  112. 112.
    112. Zorlu U, Tercan M, Ozyazgan I, et al. Comparative study of the effect of ultrasound and electrostimulation on bone healing in rats. Am J Phys Med Rehabil 1998;77(5):427–32.PubMedGoogle Scholar
  113. 113.
    113. Lavine L, Lustrin I, Shamos M, Moss M. The influence of electric current on bone regeneration in vivo. Acta Orthop Scandinav 1971;42(4):305–14.Google Scholar
  114. 114.
    114. Friedenberg Z, Zemsky L, Pollis R, Brighton C. The response of non-traumatized bone to direct current. J Bone Joint Surg Am 1974;56(5):1023–30.PubMedGoogle Scholar
  115. 115.
    115. Stefan S, Sansen W, Mulier J. Experimental study on the electrical impedance of bone and the effect of direct current on the healing of fractures. Clin Orthop 1976;120:264–7.PubMedGoogle Scholar
  116. 116.
    116. Weigert M, Werhahn C. The influence of electric potentials on plated bones. Clin Orthop 1977;124:20–30.PubMedGoogle Scholar
  117. 117.
    117. Petersson C, Johnell O. Electrical stimulation of osteogenesis in delayed union of the rabbit fibula. Arch Orthop Trauma Surg 1983;101(4):247–50.PubMedGoogle Scholar
  118. 118.
    118. Kleczynski S. Electrical stimulation to promote the union of fractures. Int Orthop 1988;12(1):83–7.PubMedGoogle Scholar
  119. 119.
    119. Esterhai J, Friedenberg Z, Brighton C, Black J. Temporal course of bone formation in response to constant direct current stimulation. J Orthop Res 1985;3(2):137–9.PubMedGoogle Scholar
  120. 120.
    120. Brighton C, Hunt R. Ultrastructure of electrically induced osteogenesis in the rabbit medullary canal. J Orthop Res 1986;4:27–36.PubMedGoogle Scholar
  121. 121.
    121. Buch F, Albrektsson T, Herbst E. The bone growth chamber for quantification of electrically induced osteogenesis. J Orthop Res 1986;4(2):194–203.PubMedGoogle Scholar
  122. 122.
    122. Spadaro J, Albanese S, Chase S. Bone formation near direct current electrodes with and without motion. J Orthop Res 1992;10(25):729–38.PubMedGoogle Scholar
  123. 123.
    123. Yonemori K, Matsunaga S, Ishidou Y, Maeda S, Yoshida H. Early effects of electrical stimulation on osteogenesis. Bone 1996;19(2):173–80.PubMedGoogle Scholar
  124. 124.
    124. Sato O, Akai M. Effect of direct-current stimulation on the growth plate. In vivo study with rabbits. Arch Orthop Trauma Surg 1989;109:9–13.Google Scholar
  125. 125.
    125. Takei N, Akai M. Effect of direct current stimulation on triradiate physeal cartilage. In vivo study in young rabbits. Arch Orthop Trauma Surg 1993;112(4):159–62.PubMedGoogle Scholar
  126. 126.
    126. Akai M, Oda H, Shirasaki Y, Tateishi T. Electrical stimulation of ligament healing. An experimental study of the patellar ligament of rabbits. Clin Orthop 1988;235:296–301.PubMedGoogle Scholar
  127. 127.
    127. Nannmark U, Buch F, Albrektsson T. Influence of direct currents on bone vascular supply. Scand J Plast Reconstr Surg Hand Surg 1988;22(2):113–5.PubMedGoogle Scholar
  128. 128.
    Bozic K, Glazer P, Zurakowski D, Simon B, Hayes W, Lipson S. The effect of coralline hydroxyapatite and direct current electrical stimulation in spinal fusion: A rabbit model. In: Combined Orthopaedic Research Societies Meeting; September Hamamatsu, Japan; 1998.Google Scholar
  129. 129.
    129. Bozic K, Glazer P, Zurakowski D, Simon B, Lipson S, Hayes W. In vivo evaluation of coralline hydroxyapatite and direct current electrical stimulation in lumbar spinal fusion. Spine 1999;24(20):2127–33.PubMedGoogle Scholar
  130. 130.
    130. France J, Norman T, Santrock R, McGrath B, Simon B. The efficacy of direct current stimulation for lumbar intertransverse process fusions in an animal model. Spine 2001;26(9):1002–8.PubMedGoogle Scholar
  131. 131.
    131. Glazer P, Spencer U, Alkalay R, Schwardt J. In vivo evaluation of calcium sulfate as a bone graft substitute for lumbar spinal fusion. Spine J 2001;1(6):395–401.PubMedGoogle Scholar
  132. 132.
    132. Paterson D, Carter R, Maxwell G, Hillier T, Ludbrook J, Savage J. Electrical bone-growth stimulation in an experimental model of delayed union. Lancet 1977;1(8025):1278–81.PubMedGoogle Scholar
  133. 133.
    133. Paterson D, Hillier T, Carter R, Ludbrook J, Maxwell G, Savage J. Experiemtnal delayed union of the dog tibia and its use in assessing the effect of an electrical bone growth stimulator. Clin Orthop 1977;128:340–50.PubMedGoogle Scholar
  134. 134.
    134. Harrington D, Walter J, Walter T, Chen T, Bodamer W, Black D. The efficacy of electrical stimulation on experimentally induced nonunion fracture of the canine tibia. Trans Bioelec Repair and Growth Soc 1982;2:84.Google Scholar
  135. 135.
    135. Fuentes A, Marcondes de Souza J, Valeri V, Mascarenhas S. Experimental model of electric stimulation of pseudarthrosis healing. Clin Orthop 1984(183):267–75.PubMedGoogle Scholar
  136. 136.
    136. Jacobs R, Luethi U, Dueland R, Perren S. Electrical stimulation of experimental nonunions. Clin Orthop 1981(161):146–53.PubMedGoogle Scholar
  137. 137.
    137. Chakkalakal D, Lippiello L, Shindell R, Connolly J. Electrophysiology of direct current stimulation of fracture healing in canine radius. IEEE Trans Biomed Eng 1990;37(11):1048–58.PubMedGoogle Scholar
  138. 138.
    138. Chakkalakal D, Lippiello L, Wilson R, Shindell R, Connolly J. Mineral and matrix contributions to rigidity in fracture healing. J Biomech 1990;23(5):425–34.PubMedGoogle Scholar
  139. 139.
    139. Kahanovitz N, Arnoczky S, Hulse D, Shires P. The effect of postoperative electromagnetic pulsing on canine posterior spinal fusions. Spine 1984;9(3):273–9.PubMedGoogle Scholar
  140. 140.
    140. Kahanovitz N, Arnoczky S. The efficacy of direct current electrical stimulation to enhance canine spinal fusions. Clin Orthop 1990;251:295–9.PubMedGoogle Scholar
  141. 141.
    141. Dejardin L, Kahanovitz N, Arnoczky S, Simon B. The effect of varied electrical current densities on lumbar spinal fusions in dogs. Spine J 2001;1(5):341–7.PubMedGoogle Scholar
  142. 142.
    142. Toth J, Seim Hr, Schwardt J, Humphrey W, Wallskog J, Turner A. Direct current electrical stimulation increases the fusion rate of spinal fusion cages. Spine 2000;25(20):2580–7.PubMedGoogle Scholar
  143. 143.
    143. Cook S, Patron L, Christakis P, Bailey K, Banta C, Glazer P. Direct current stimulation of titanium interbody fusion devices in primates. Spine J 2004;4(3):300–11.PubMedGoogle Scholar
  144. 144.
    144. Baranowski T, Black J. The mechanism of faradic stimulation of osteogenesis. In: Blank M, Findl E, eds. Mechanistic Approaches to Interactions of Electric and Electromagnetic Fields with Living Systems. New York: Plenum Press; 1987:399.Google Scholar
  145. 145.
    145. Bodamyali T, Kanczler J, Simon B, Blake D, Stevens C. Effect of faradic products on direct current-stimulated calvarial organ culture calcium levels. Biochem Biophys Res Commun 1999;264(3):657–61.PubMedGoogle Scholar
  146. 146.
    146. Wang Q, Shizhen Z, Xie Y, Zhengqun Z, Yang G. Electrochemical reactions during constant DC current stimulation: An in vitro experiment with cultured rat calvarial cells. Electro Magnetobiology 1995;14(1):31–40.Google Scholar
  147. 147.
    147. Wang Q, Zhong S, Ouyang J, et al. Osteogenesis of electrically stimulated bone cells mediated in part by calcium ions. Clin Orthop 1998;348:259–68.PubMedGoogle Scholar
  148. 148.
    Urban M, Brighton C, Black J. Dose-response relationship for faradic stimulation of osteogenesis in the rabbit tibia by use of a single-strand platinum cathode. In: Electromagnetics in Biology and Medicine. San Francisco, CA; 1991:199–206.Google Scholar
  149. 149.
    149. Brighton C, Heppenstall R. Oxygen tension in zones of the epiphyseal plate, the metaphysis and diaphysis. An in vitro and in vivo study in rats and rabbits. J Bone Joint Surg Am 1971;53(4):719–28.PubMedGoogle Scholar
  150. 150.
    150. Brighton C, Krebs A. Oxygen tension of nonunion of fractured femurs in the rabbit. Surg Gyn Obstet 1972;135(3):379–85.Google Scholar
  151. 151.
    151. Brighton C, Krebs A. Oxygen tension of healing fractures in the rabbit. J Bone Joint Surg Am 1972;54(2):323–32.PubMedGoogle Scholar
  152. 152.
    152. Heppenstall R, Grislis G, Hunt T. Tissue gas tensions and oxygen consumption in healing bone defects. Clin Orthop 1977;106:357–65.Google Scholar
  153. 153.
    153. Bassett C, Hermann I. Influence of oxygen concentration and mechanical factors on differentiation of connective tissues in vitro. Nature 1961;190:460–1.PubMedGoogle Scholar
  154. 154.
    154. Brighton C, Ray R, Soble L, Kuettner K. In vitro epiphyseal-plate growth in various oxygen tensions. J Bone Joint Surg Am 1969;51(7):1383–96.PubMedGoogle Scholar
  155. 155.
    155. Brighton C, Adler S, Black J, Itada N, Friedenberg Z. Cathodic oxygen consumption and electrically induced osteogenesis. Clin Orthop 1975;107:277–82.PubMedGoogle Scholar
  156. 156.
    156. Howell D, Pita J, Marquez J, Madruga J. Partition of calcium, phosphate, and protein in the fluid phase aspirated at calcifying sites in epiphyseal cartilage. J Clin Invest 1968;47(5):1121–32.PubMedGoogle Scholar
  157. 157.
    157. Richards D, Brookes M. Osteogenesis and the pH of the osseous circulation. Calcif Tissue Res 1968;2(Suppl 1):93.Google Scholar
  158. 158.
    158. Chakkalakal D, Mashoof A, Novak J, Strates B, McGuire M. Mineralization and pH relationships in healing skeletal defects grafted with demineralized bone matrix. J Biomed Mater Res 1994;28(12):1439–43.PubMedGoogle Scholar
  159. 159.
    159. Arnett T, Spowage M. Modulation of the resorptive activity of rat osteoclasts by small changes in extracellular pH near the physiological range. Bone 1996;18(3):277–9.PubMedGoogle Scholar
  160. 160.
    160. Bushinsky D. Metabolic alkalosis decreases bone calcium efflux by suppressing osteoclasts and stimulating osteoblasts. Am J Physiol 1996;271(1 Pt 2):216–22.Google Scholar
  161. 161.
    161. Steinbeck M, Kim J, Trudeau M, Hauschka P, Karnovsky M. Involvement of hydrogen peroxide in the differentiation of clonal HD-11EM cells into osteoclast-like cells. J Cell Phys 1998;176(3):574–87.Google Scholar
  162. 162.
    162. Cho M, Hunt T, Hussain M. Hydrogen peroxide stimulates macrophage vascular endothelial growth factor release. Am J Physiol Heart Circ Physiol 2001;280(5): H2357–63.PubMedGoogle Scholar
  163. 163.
    Petersen E, Fredericks D, Bobst J, Nepola J, Simon B. Effects of direct current electrical stimulation on expression of BMP 2, 4, 6, 7, bFGF, VEGF, and ALK2 receptor in a rabbit posteriolateral spine fusion model. In: Bioelectromagnetics Society Meeting; June 22–27; Maui, HI; 2003.Google Scholar
  164. 164.
    164. Dunn A, Rush G. Electrical stimulation in treatment of delayed union and nonunion of fractures and osteotomies. South Med J 1984;77(12):1530–4.PubMedGoogle Scholar
  165. 165.
    165. Frykman G, Taleisnik J, Peters G, et al. Treatment of nonunited scaphoid fractures by pulsed electromagnetic field and cast. J Hand Surg [Am] 1986;11(3):344–9.Google Scholar
  166. 166.
    166. Adams B, Frykman G, Taleisnik J. Treatment of scaphoid nonunion with casting and pulsed electromagnetic fields: a study continuation. J Hand Surg [Am] 1992;17(5):910–4.Google Scholar
  167. 167.
    Melone CJ, Pess G. Treatment of scaphoid pseudarthroses with bone grafting and pulsing electromagnetic fields: American Academy of Orthopedic Surgeons; 1986.Google Scholar
  168. 168.
    168. Beckenbaugh R. Noninvasive pulsed electromagnetic stimulation in the treatment of scaphoid nonunions. In: 31st Annual Meeting of the Orthopaedic Research Society; Las Vegas, NV: Orthopaedic Research Society; 1985.Google Scholar
  169. 169.
    169. Bigliani L, Rosenwasser M, Caulo N, Schink M, Bassett C. The use of pulsing electromagnetic fields to achieve arthrodesis of the knee following failed total knee arthroplasty. A preliminary report. J Bone Joint Surg Am 1983;65(4):480–5.PubMedGoogle Scholar
  170. 170.
    170. Bassett C, Caulo N, Kort J. Congenital “pseudarthroses” of the tibia: treatment with pulsing electromagnetic fields. Clin Orthop 1981;154:136–48.PubMedGoogle Scholar
  171. 171.
    171. Fontanesi G, Giancecchi F, Rotini R, Cadossi R. Treatment of delayed union and pseudarthrosis by low frequency pulsing electromagnetic stimulation. Study of 35 cases. Ital J Orthop Traumatol 1983;9(3):305–18.PubMedGoogle Scholar
  172. 172.
    172. Fontanesi G, Dalmonte A, Rinaldi, et al. The effect of low frequency pulsing electromagnetic fields for the treatment of congenital and acquired pseudarthrosis. J Bioelectricity 1984;3:55.Google Scholar
  173. 173.
    173. Bassett C, Schink-Ascani M. Long-term pulsed electromagnetic field (PEMF) results in congenital pseudarthrosis. Calcif Tissue Int 1991;49(3):216–20.PubMedGoogle Scholar
  174. 174.
    174. Ito H, Shirai Y, Gembun Y. A case of congenital pseudarthrosis of the tibia treated with pulsing electromagnetic fields. 17-year follow-up. J Nippon Med School 2000;67(3):198–201.Google Scholar
  175. 175.
    Holmes G. The treatment of delayed unions and nonunions of the proximal fifth metatarsal with pulsed electromagnetic fields. In: 24th Meeting of the American Orthopaedic Foot and Ankle Society; July; Coeur D'Alene, France; 1994.Google Scholar
  176. 176.
    176. Holmes G. The treatment of delayed unions and nonunions of the proximal fifth metatarsal with pulsed electromagnetic fields. Foot Ankle Int 1994;15(10):552–6.PubMedGoogle Scholar
  177. 177.
    Borsalino G, Fornaciari F, Rocchi R, Bettati E, Ulohogilan S, Bagnacani M. PEMF stimulation of femoral head bone remodelling after osteotomy in osteoarthritis patients: A double-blind study. In: Bioelectric Repair and Growth Society; Utrecht, The Netherlands; 1986.Google Scholar
  178. 178.
    178. Sutbeyaz S, Sezer N, Koseoglu B. The effect of pulsed electromagnetic fields in the treatment of cervical osteoarthritis: a randomized, double-blind, sham-controlled trial. Rheumatol Int 2005;26(4):320–4.PubMedGoogle Scholar
  179. 179.
    179. Thamsborg G, Florescu A, Oturai P, Fallentin E, Tritsaris K, Dissing S. Treatment of knee osteoarthritis with pulsed electromagnetic fields: a randomized, double-blind, placebo-controlled study. Osteoarthritis Cartilage 2005;13(7):575–81.PubMedGoogle Scholar
  180. 180.
    180. Fischer G, Pelka R, Barovic J. Adjuvant treatment of knee osteoarthritis with weak pulsing magnetic fields. Results of a placebo-controlled trial prospective clinical trial. Z Orthop Ihre Grenzgeb 2005;143(5):544–50.PubMedGoogle Scholar
  181. 181.
    181. Bassett C, Schink-Ascani M, Lewis S. Effects of pulsed electromagnetic fields on Steinberg ratings of femoral head osteonecrosis. Clin Orthop 1989;246:172–85.PubMedGoogle Scholar
  182. 182.
    182. Aaron R, Lennox D, Bunce G, Ebert T. The conservative treatement of osteonecrosis of the femoral head. Clin Orthop 1989;249:209–18.PubMedGoogle Scholar
  183. 183.
    183. Seber S, Omeroglu H, Cetinkanat H, Kose N. [The efficacy of pulsed electromagnetic fields used alone in the treatment of femoral head osteonecrosis: a report of two cases]. [Turkish]. Acta Orthopaedica et Traumatologica Turcica 2003;37(5):410–3.PubMedGoogle Scholar
  184. 184.
    184. Bassett CA, Schink M, Mitchell S. Treatement of osteonecrosis of the hip with specific, pulsed electromagnetic fields (PEMFs), a preliminary clinical report. In: Arlet J, Ficat R, Hungerforg D, eds. Bone Circulation. Baltimore: Williams & Wilkins; 1984.Google Scholar
  185. 185.
    185. Aaron R, Ciombor D. Treatment of osteonecrosis of the femoral head with pulsed external magnetic fields. Ann NY Acad Sci 1985;435:367.Google Scholar
  186. 186.
    186. Aaron R, Lennox D, Bunce G, Ebert T. The conservative treatment of osteonecro-sis of the femoral head. A comparison of pulsed electromagnetic fields and core decompression. Trans Bioelectr Repair Growth Soc 1988;8:24.Google Scholar
  187. 187.
    187. Rosenberg A, Barden R, Galante J. The use of pulsed electromagnetic fields in the treatment of femoral head osteonecrosis. Trans Bioelectr Repair Growth Soc 1987;7:92.Google Scholar
  188. 188.
    Eftekhar N, Schink-Ascani M, Mitchell S, Bassett C. Osteonecrosis of the femoral head treated by pulsed electromagnetic fields (PEMFs): a preliminary report. In: Hungerford D, ed. The Hip. St. Louis, MO; 1983:306–30.Google Scholar
  189. 189.
    189. Bassett C, Mitchell S, Gaston S. Pulsing electromagnetic field treatment in unu-nited fractures and failed arthrodeses. JAMA 1982;247(5):623–8.PubMedGoogle Scholar
  190. 190.
    190. Gossling H, Bernstein R, Abbott J. Treatment of ununited tibial fractures: a comparison of surgery and pulsed electromagnetic fields (PEMF). Orthopedics 1992;15(6):711–9.PubMedGoogle Scholar
  191. 191.
    191. Bassett C, Mitchell S, Gaston S. Treatment of ununited tibial diaphyseal fractures with pulsing electromagnetic fields. J Bone Joint Surg Am 1981;63(4):511–23.PubMedGoogle Scholar
  192. 192.
    192. Heckman JD, Ingram AJ, Loyd RD, Luck JV, Jr., Mayer PW. Nonunion treatment with pulsed electromagnetic fields. Clinical Orthopaedics & Related Research 1981(161):58–66.Google Scholar
  193. 193.
    193. Borsalino G, Bagnacani M, Bettati E, et al. Electrical stimulation of human femoral intertrochanteric osteotomies. Double-blind study. Clin Orthop 1988;237:256–63.PubMedGoogle Scholar
  194. 194.
    194. Sharrard W. A double-blind trial of pulsed electromagnetic fields for delayed union of tibial fractures. J Bone Joint Surg Br 1990;72(3):347–55.PubMedGoogle Scholar
  195. 195.
    195. Mammi GI, Rocchi R, Cadossi R, Massari L, Traina GC. The electrical stimulation of tibial osteotomies. Double-blind study. Clinical Orthopaedics & Related Research 1993(288):246–53.Google Scholar
  196. 196.
    196. Parnell E, Simonis R. The effect of electrical stimulation in the treatment of nonunion of tibial fractures. J Bone Joint Surg Br 1991;73B(Suppl):S178.Google Scholar
  197. 197.
    197. Simonis R, Parnell E, Ray P, Peacock J. Electrical treatment of tibial nonunion: a prospective, randomised, double-blind trial. Injury 2003;34(5):357–62.PubMedGoogle Scholar
  198. 198.
    198. Longo 3rd J. Successful treatment of recalcitrant nonunions with combined magnetic field stimulation. Surg Technol Int 1997;6:397–403.PubMedGoogle Scholar
  199. 199.
    199. Linovitz R, Pathria M, Bernhardt M, et al. Combined magnetic fields accelerate and increase spine fusion: a double-blind, randomized, placebo controlled study. Spine 2002;27(13):1383–9.PubMedGoogle Scholar
  200. 200.
    200. Scott G, King J. A prospective, double-blind trial of electrical capacitive coupling in the treatment of nonunion of long bones. J Bone Joint Surg Am 1994;76(6):820–6.PubMedGoogle Scholar
  201. 201.
    201. Goodwin C, Brighton C, Guyer R, Johnson J, Light K, Yuan H. A double-blind study of capacitively coupled electrical stimulation as an adjunct to lumbar spinal fusions. Spine 1999;24(13):1349–56.PubMedGoogle Scholar
  202. 202.
    202. Brighton C, Pollack S. Treatment of nonunion of the tibia with a capacitively coupled electrical field. J Trauma 1984;24(2):153–5.PubMedGoogle Scholar
  203. 203.
    203. Brighton C, Pollack S. Treatment of recalcitrant nonunion with a capacitively coupled electrical field. A preliminary report. J Bone Joint Surg 1985;67-A(4):577–85.Google Scholar
  204. 204.
    204. Abeed RI, Naseer M, Abel EW. Capacitively coupled electrical stimulation treatment: results from patients with failed long bone fracture unions. J Orthop Trauma 1998;12(7):510–3.PubMedGoogle Scholar
  205. 205.
    205. Zamora-Navas N, Borras V, Antelo L, Saras A, Pena R. Electrical stimulation of bone nonunion with the presence of a gap. Acta Orthop Belg 1995;61(3):169–76.PubMedGoogle Scholar
  206. 206.
    206. Benazzo F, Mosconi M, Beccarisi G, Galli U. Use of capacitive coupled electric fields in stress fractures in athletes. Clin Orthop 1995;310:145–9.PubMedGoogle Scholar
  207. 207.
    207. Brighton C, Shaman P, Heppenstall R, Esterhai JJ, Pollack S, Friedenberg Z. Tibial nonunion treated with direct current, capacitive coupling, or bone graft. Clin Orthop 1995;321:223–34.PubMedGoogle Scholar
  208. 208.
    208. Paterson D, Lewis G, Cass C. Treatment of delayed union and nonunion with an implanted direct current stimulator. Clin Orthop 1980;184:117–28.Google Scholar
  209. 209.
    209. Cundy P, Paterson D. A ten-year review of treatment of delayed union and nonunion with an implanted bone growth stimulator. Clin Orthop 1990;259:216–22.PubMedGoogle Scholar
  210. 210.
    210. Bassett C, Mitchell S, Norton L, Caulo N, Gaston S. Electromagnetic repairs of nonunion. In: Brighton C, Black J, Pollack S, eds. Electrical Properties of Bone & Cartilage. New York: Grune and Stratton; 1979:605–30.Google Scholar
  211. 211.
    211. Brighton C. The treatment of nonunions with electricity. J Bone Joint Surg Am 1981;63(5):847–51.PubMedGoogle Scholar
  212. 212.
    212. Cohen M, Roman A, Lovins J. Totally implanted direct current stimulator as treatment for a nonunion in the foot. J Foot Ankle Surg 1993;32(4):375–81.PubMedGoogle Scholar
  213. 213.
    213. Janis L, Krawetz L, Wagner S. Ankle and subtalar fusion utilizing a tricortical bone graft, bone stimulator, and external fixator after avascular necrosis of the talus. J Foot Ankle Surg 1996;35(2):120–6.PubMedGoogle Scholar
  214. 214.
    214. Midis N, Conti S. Revision ankle arthrodesis. Foot and Ankle Int 2000;23(3):243–7.Google Scholar
  215. 215.
    215. Reynolds J. The use of implantable direct current stimulation in bone grafted foot and ankle arthrodesis. In: Mid- American Orthopaedic Association; April; Hilton Head, SC: Mid- American Orthopaedic Association; 1997.Google Scholar
  216. 216.
    216. Kane W. Direct current electrical bone growth stimulation for spinal fusion. Spine 1988;13(3):363–5.PubMedGoogle Scholar
  217. 217.
    217. Welch W, Willis S, Gerszten P. Implantable direct current stimulation in paraaxial cervical arthrodesis. Adv Ther 2004;21(6):389–400.PubMedGoogle Scholar
  218. 218.
    218. Baker J, Cain T, Tullos H. Intramedullary fixation for congenital pseudarthrosis of the tibia. J Bone Joint Surg 1992;74-A(2):169–78.Google Scholar
  219. 219.
    219. Brighton C, Friedenberg Z, Zemsky L, Pollis P. Direct-current stimulation of nonunion and congenital pseudarthrosis. Exploration of its clinical application. J Bone Joint Surg Am 1975;57(3):368–77.PubMedGoogle Scholar
  220. 220.
    220. Lavine L, Lustrin I, Shamos M. Treatment of congenital pseudarthrosis of the tibia with direct current. Clin Orthop 1977;124:69–74.PubMedGoogle Scholar
  221. 221.
    221. Paterson D, Lewis G, Cass C. Treatment of congenital pseudarthrosis of the tibia with direct current stimulation. Clin Orthop 1980;148:129–35.PubMedGoogle Scholar
  222. 222.
    222. Paterson D, Simonis R. Electrical stimulation in the treatment of congenital pseudarthrosis of the tibia. Trans Bioelec Repair and Growth Soc 1983;3:2.Google Scholar
  223. 223.
    223. Paterson D. Treatment of nonunion with a constant direct current: a totally implantable system. Orthop Clin North Am 1984;15(1):47–59.PubMedGoogle Scholar
  224. 224.
    224. Paterson D, Simonis R. Electrical stimulation in the treatment of congenital pseu-darthrosis of the tibia. J Bone Joint Surg 1985;67-B(3):454–62.Google Scholar
  225. 225.
    225. Steinberg M, Brighton C, Hayken G, Tooze S, Steinberg D. Early results in the treatment of avascular necrosis of the femoral head with electrical stimulation. Orthop Clin North Am 1984;15(1):163–75.PubMedGoogle Scholar
  226. 226.
    226. Steinberg M, Brighton C, Steinberg D, Tooze S, Hayken G. Treatment of avascular necrosis of the femoral head by a combination of bone grafting, decompression, and electrical stimulation. Clin Orthop 1984;186:137–53.PubMedGoogle Scholar
  227. 227.
    227. Steinberg M, Brighton C, Corces A, et al. Osteonecrosis of the femoral head. Clin Orthop 1989;249:199–208.PubMedGoogle Scholar
  228. 228.
    228. Dwyer A. The use of electrical current stimulation in spinal fusion. Orthop Clin North Am 1975;6(1):265–73.PubMedGoogle Scholar
  229. 229.
    229. Dwyer A. Direct current stimulation in spinal fusion. Med J Aust 1974;1:73–5.PubMedGoogle Scholar
  230. 230.
    230. Kane W. The use of supplementary electronic bone growth in primary and secondary lumbo sacral fusions. In: Brighton C, Black J, Pollack S, eds. In Electrical Properties of Bone & Cartilage. New York: Grune & Stratton; 1979:563–6.Google Scholar
  231. 231.
    231. Meril A. Direct current stimulation of allograft in anterior and posterior lumbar interbody fusions. Spine 1994;19(21):2393–8.PubMedGoogle Scholar
  232. 232.
    Pettine K. A retrospective controlled study of implantable direct current stimulation in lumbar spinal fusion. In: North American Spine Society; October 18–21; Washington, DC; 1995.Google Scholar
  233. 233.
    Kant A. An analysis of the effect of electrical stimulation as an adjunct to lumbar spinal fusion: A retrospective controlled study of implantable direct current stimulation in lumbar spine fusion. In: North American Spine Society; October 18–21; Washington, DC; 1995.Google Scholar
  234. 234.
    234. Kahanovitz N, Pashos C. The Role of Direct Current in the Critical Pathway for Lumbar Spinal Fusion. J Care Manag 1996;2(6):2–8.Google Scholar
  235. 235.
    235. Tejano N, Puno R, Ignacio J. The use of implantable direct current stimulation in multilevel spinal fusion without instrumentation. A prospective clinical and radiographic evaluation with long-term follow-up. Spine 1996;21(16):1904–8.PubMedGoogle Scholar
  236. 236.
    236. Rogozinski A, Rogozinski C. Efficacy of implanted bone growth stimulation in instrumented lumbosacral spinal fusion. Spine 1996;21(21):2479–83.PubMedGoogle Scholar
  237. 237.
    Banco R, Grottkau B, Cicerchia D, Banco S, Cowan S. A randomized preliminary trial to determine the effect of DC stimulation on instrumented fusion in smokers. In: Joint Session CNS/AANS- Disorders of the Spine and Peripheral Nerves; 1997; Newport Beach, CA; 1997.Google Scholar
  238. 238.
    238. Kucharzyk D. A controlled prospective outcome study of implantable electrical stimulation with spinal instrumentation in a high-risk spinal fusion population. Spine 1999;24(5):465–8.PubMedGoogle Scholar
  239. 239.
    Ortman B. Use of implantable DC stimulation in elderly spine fusion patients. In: Mid-America Orthopedic Association; April; Hilton Head Island, SC; 1997.Google Scholar
  240. 240.
    Ortman B. Comparison of spinal fusion patients and outcomes by age. In: Joint Session CNS/AANS- Disorders of the Spine and Peripheral Nerves; February; Newport Beach, CA; 1997.Google Scholar
  241. 241.
    Kucharzyk D. The role of electrical stimulation with spinal instrumentation. In: Joint Session CNS/AANS- Disorders of the Spine and Peripheral Nerves; February; Newport Beach, CA; 1997.Google Scholar
  242. 242.
    Kane W, Czop S. An analysis of risk factors affecting posterolateral spinal fusion success with implantable direct current stimulation. In: Joint Session CNS/AANS-Disorders of the Spine and Peripheral Nerves; Newport Beach, CA; 1997.Google Scholar
  243. 243.
    Birney T. A retrospective review of patient outcomes using internal fixation and implantable direct current stimulation in lumbar spinal fusion. In: Mid-America Orthopedic Association; Hilton-Head Island, NC; 1997.Google Scholar
  244. 244.
    244. Aaron R, Ciombor D, Keeping H, Wang S, Capuano A, Polk C. Power frequency fields promote cell differentiation coincident with an increase in transforming growth factor-beta(1) expression. Bioelectromagnetics 1999;20(7):453–8.PubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Josh Simon
    • 1
  • Bruce Simon
    • 1
  1. 1.Biomet OsteobiologicsParsippanyNJ

Personalised recommendations