Electrical Manipulation of DNA on Metal Surfaces

  • Marc Tornow
  • Kenji Arinaga
  • Ulrich Rant


We review recent work on the active manipulation of DNA on metal substrates by electric fields. This includes the controlled positioning, alignment, or release of DNA on or into dedicated locations and the control of hybridization. In this context, we discuss techniques for immobilizing DNA on metal surfaces and methods of characterizing such hybrid systems. In particular, we focus on electrically induced, conformational changes of monolayers of short oligonucleotides on gold substrates. Such switchable layers allow for molecular dynamics studies at interfaces and have demonstrated large potential in label-free biosensing applications.

Key Words

Biomolecular films biosensors conformational changes DNA-basedsensing molecular dynamics nano-electromechanical system (NEMS) oligonucleotides self-assembled monolayers surface functionalization switchable layer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kambhampati D. Protein Microarray Technology, 1st ed. Weinheim: Wiley-VCH, 2004.Google Scholar
  2. 2.
    Hoheisel JD. Oligomer-chip technology. Trends Biotechnol 1997; 15(11): 465–469.CrossRefGoogle Scholar
  3. 3.
    Niemeyer CM, Blohm D. DNA microarrays. Angew Chem Int Ed 1999;38(19):2865–2869.CrossRefGoogle Scholar
  4. 4.
    Xiang CC, Chen YD. cDNA microarray technology and its applications. Biotechnol Adv 2000;18(1):35–46.CrossRefGoogle Scholar
  5. 5.
    Schena M, Heller RA, Theriault TP, Konrad K, Lachenmeier E, Davis RW. Microarrays: biotechnology’s discovery platform for functional genomics. Trends Biotechnol 1998;16(7):301–306.CrossRefGoogle Scholar
  6. 6.
    Heller MJ. DNA Microarray technology: devices, systems, and applications. Annu Rev Biomed Eng 2002;4:129–153.CrossRefGoogle Scholar
  7. 7.
    Tarlov MJ, Steel AB. DNA-based sensors. In: Rusling JF, ed. Biomolecular Films. New York: Marcel Dekker Inc., 2003;545–608.Google Scholar
  8. 8.
    Voet D, Voet JG, Pratt CW. Fundamentals of Biochemistry: Life at the Molecular Level, 2nd ed. New York: Wiley, 2006.Google Scholar
  9. 9.
    Tinland B, Pluen A, Sturm J, Weill G. Persistence length of single-stranded DNA. Macromolecules 1997;30:5763–5765.CrossRefGoogle Scholar
  10. 10.
    Taylor WH, Hagerman PJ. Application of the method of phage T4 DNA ligasecatalyzed ring-closure to the study of DNA structure. II. NaCl-dependence of DNA flexibility and helical repeat. J Mol Biol 1990;212(2):363–376.CrossRefGoogle Scholar
  11. 11.
    Smith SB, Finzi L, Bustamante C. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 1992; 258(13 Nov): 1122.CrossRefGoogle Scholar
  12. 12.
    Kimura-Suda H, Petrovykh DY, Tarlov MJ, Whitman LJ. Base-dependent competitive adsorption of single-stranded DNA on gold. J Am Chem Soc 2003;125(30):9014–9015.CrossRefGoogle Scholar
  13. 13.
    Netz RR, Andelman D. Neutral and charged polymers at interfaces. Phys Rep 2003;380:1–95, and references therein.CrossRefGoogle Scholar
  14. 14.
    Allen MJ, Balooch M, Subbiah S, Tench RJ, Siekhaus W, Balhorn R. Scanning tunneling microscope images of adenine and thymine at atomic resolution. Scanning Microscopy 1991;5(3):625–630.Google Scholar
  15. 15.
    Boland T, Ratner BD. Two-dimensional assembly of purines and pyrimidines on Au(111). Langmuir 1994; 10:3845.CrossRefGoogle Scholar
  16. 16.
    Tao NJ, DeRose JA, Lindsay S. Self-assembly of molecular superstructures studied by in situ scanning tunneling microscopy: DNA bases on gold (111). J Phys Chem 1993;97(4):910.CrossRefGoogle Scholar
  17. 17.
    Hölzle MH, Wandlowski T, Kolb DM. Structural transitions in uracil adlayers on gold single crystal electrodes. Surface Sci 1995;335:281.CrossRefGoogle Scholar
  18. 18.
    Roelfs B, Bunge E, Schröter C, Solomun T, Meyer H, Nichols RJ, BaumgÄrtel H. Adsorption of thymine on gold single-crystal electrodes. J Phys Chem B 1997;101(5):754–765.CrossRefGoogle Scholar
  19. 19.
    Whitesides GM, Bain CD. Modeling organic surfaces with self-assembled monolayers. Angew Chem Int Ed 1989;28(4):506–512.CrossRefGoogle Scholar
  20. 20.
    Ulman A. Thin Films: Self-Assembled Monolayers of Thiols. London: Academic Press Inc., 1998.Google Scholar
  21. 21.
    Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 2005; 105(4): 1103–1169.CrossRefGoogle Scholar
  22. 22.
    Ulman A. Formation and structure of self-assembled monolayers. Chem Rev 1996;96:1533–1554.CrossRefGoogle Scholar
  23. 23.
    Peelen D, Smith LM. Immobilization of amine-modified oligonucleotides on aldehyde-terminated alkanethiol monolayers on gold. Langmuir 2005;21(1): 266–271.CrossRefGoogle Scholar
  24. 24.
    Johnson PA, Levicky R. Polymercaptosiloxane anchor films for robust immobilization of biomolecules to gold supports. Langmuir 2003;19(24):10,288–10,294.CrossRefGoogle Scholar
  25. 25.
    Xu XH, Bard AJ. Immobilization and hybridization of DNA on an aluminum(III) alkanebisphosphonate thin-film with electrogenerated chemiluminescent detection. J Am Chem Soc 1995; 117(9):2627–2631.CrossRefGoogle Scholar
  26. 26.
    Smith EA, Wanat MJ, Cheng YF, Barreira SVP, Frutos AG, Corn RM. Formation, spectroscopic characterization, and application of sulfhydrylterminated alkanethiol monolayers for the chemical attachment of DNA onto gold surfaces. Langmuir 2001;17(8):2502–2507.CrossRefGoogle Scholar
  27. 27.
    Knoll W, Yu F, Neumann T, Schiller S, Naumann R. Supramolecular functional interfacial architectures for biosensor applications. Phys Chem Chem Phys 2003;5(23):5169–5175.CrossRefGoogle Scholar
  28. 28.
    Georgiadis R, Peterlinz KP, Peterson AW. Quantitative measurements and modeling of kinetics in nucleic acid monolayer films using SPR spectroscopy. J Am Chem Soc 2000; 122:3166–3173.CrossRefGoogle Scholar
  29. 29.
    Peterson AW, Heaton RJ, Georgiadis RM. The effect of surface probe density on DNA hybridization. Nucl Acids Res 2001;29(24):5163–5168.CrossRefGoogle Scholar
  30. 30.
    Herne TM, Tarlov MJ. Characterization of DNA probes immobilized on gold surfaces. J Am Chem Soc 1997;119:8916–8920.CrossRefGoogle Scholar
  31. 31.
    Arinaga K, Rant U, Tornow M, Fujita S, Abstreiter G, Yokoyama N, to be published.Google Scholar
  32. 32.
    Levicky R, Herne TM, Tarlov MJ, Satija SK. Using self-assembly to control the structure of DNA monolayers on gold: a neutron reflectivity study. J Am Chem Soc 1998; 120:9787–9792.CrossRefGoogle Scholar
  33. 33.
    Steel AB, Herne TM, Tarlov MJ. Electrochemical quantitation of DNA immobilized on gold. Anal Chem 1998;70:4670–4677.CrossRefGoogle Scholar
  34. 34.
    Rant U, Arinaga K, Fujita S, Yokoyama N, Abstreiter G, Tornow M. Structural properties of oligonucleotide monolayers on gold surfaces probed by fluorescence investigations. Langmuir 2004;20(23): 10,086–10,092.CrossRefGoogle Scholar
  35. 35.
    Singhal P, Kuhr WG. Ultrasensitive voltammetric detection of underivatized oligonucleotides and DNA. Anal Chem 1997;69(23):4828–4832.CrossRefGoogle Scholar
  36. 36.
    Napier ME, Loomis CR, Sistare MF, Kim J, Eckhardt AE, Thorp HH. Probing biomolecule recognition with electron transfer: electrochemical sensors for DNA hybridization. Bioconjugate Chem 1997;8(6):906–913.CrossRefGoogle Scholar
  37. 37.
    Palecek E, Fojta M, Tomschik M, Wang J. Electrochemical biosensors for DNA hybridization and DNA damage. Biosensors & Bioelectronics 1998; 13(6):621–628.CrossRefGoogle Scholar
  38. 38.
    Kelley S, Boon E, Barton J. Jackson N, Hill M. Single-base mismatch detection based on charge transduction through DNA. Nucl Acids Res 1999;27(24): 4830–4837.CrossRefGoogle Scholar
  39. 39.
    Steel AB, Levicky RL, Herne TM, Tarlov MJ. Immobilization of nucleic acids at solid surfaces: effect of oligonucleotide length on layer assembly. Biophys J 2000;79(2):975–981.CrossRefGoogle Scholar
  40. 40.
    Petrovykh DY, Kimura-Suda H, Tarlov MJ, Whitman LJ. Quantitative characterization of DNA films by X-ray photoelectron spectroscopy. Langmuir 2004;20(2):429–440.CrossRefGoogle Scholar
  41. 41.
    Leavitt AJ, Wenzler LA, Williams JM, Beebe TPJ. Angle-dependent X-ray photoelectron spectroscopy and atomic force microscopy of sulfur-modified DNA on Au(111). J Phys Chem 1994;98(35):8742–8746.CrossRefGoogle Scholar
  42. 42.
    Petrovykh DY, Kimura-Suda H, Whitman LJ, Tarlov MJ. Quantitative analysis and characterization of DNA immobilized on gold. J Am Chem Soc 2003; 125: 5219–5226.CrossRefGoogle Scholar
  43. 43.
    Boncheva M, Scheibler L, Lincoln P, Vogel H, Akerman B. Design of oligonucleotide arrays at interfaces. Langmuir 1999;15(13):4317–4320.CrossRefGoogle Scholar
  44. 44.
    Hansma HG. Surface biology of DNA by atomic force microscopy. Annu Rev Phys Chem 2001;52:71–92.CrossRefGoogle Scholar
  45. 45.
    Rekesh D, Lyubchenko Y, Shlyakhtenko L, Lindsay S. Scanning tunneling microscopy of mercapto-hexyl-oligonucleotides attached to gold. Biophys J 1996;71(2):1079–1086.Google Scholar
  46. 46.
    Huang E, Satjapipat M, Han SB, Zhou FM. Surface structure and coverage of an oligonucleotide probe tethered onto a gold substrate and its hybridization efficiency for a polynucleotide target. Langmuir 2001; 17(4): 1215–1224.CrossRefGoogle Scholar
  47. 47.
    O’Brien JC, Stickney JT, Porter MD. Preparation and characterization of selfassembled double-stranded DNA (dsDNA) microarrays for protein: dsDNA screening using atomic force microscopy. Langmuir 2000;16(24):9559–9567.CrossRefGoogle Scholar
  48. 48.
    Kelley SO, Barton JK, Jackson NM, et al. Orienting DNA helices on gold using applied electric fields. Langmuir 1998;14(24):6781–6784.CrossRefGoogle Scholar
  49. 49.
    Zhang Z-L, Pang DW, Zhang R-Y. Investigation of DNA orientation on gold by EC-STM. Bioconjugate Chem 2002;13:104–109.CrossRefGoogle Scholar
  50. 50.
    Wackerbarth H, Grubb M, Zhang J, Hansen AG, Ulstrup J. Dynamics of ordered-domain formation of DNA fragments on Au(1 11) with molecular resolution. Angew Chem Int Ed 2004;43:198–203.CrossRefGoogle Scholar
  51. 51.
    Knoll W. Optical Characterization of organic thin films and interfaces with evanescent waves. MRS Bull 1991;16(7):29–39.Google Scholar
  52. 52.
    Peterlinz KA, Georgiadis R. Two-color approach for determination of thickness and dielectric constant of thin films using surface plasmon resonance spectroscopy. Optics Communications 1996;130(4-6):260–266.CrossRefGoogle Scholar
  53. 53.
    Neumann T, Johansson ML, Kambhampati D, Knoll W. Surface-plasmon fluorescence spectroscopy. Advanced Functional Materials 2002;12(9):575–586.CrossRefGoogle Scholar
  54. 54.
    Didenko V. DNA probes using fluorescence resonance energy transfer (FRET): designs and applications. BioTechniques 2001;31:1106.Google Scholar
  55. 55.
    Chance RR, Prock A, Silbey R. Molecular fluorescence and energy transfer near interfaces. Adv Chem Phys 1978;37:1–65.CrossRefGoogle Scholar
  56. 56.
    Barnes WL. Fluorescence near interfaces: the role of photonic mode density. J Modern Optics 1998;45(4):661–699.Google Scholar
  57. 57.
    Perez-Luna VH, Yang SP, Rabinovich EM, et al. Fluorescence biosensing strategy based on energy transfer between fluorescently labeled receptors and a metallic surface. Biosensors & Bioelectronics 2002;17(1-2):71–78.CrossRefGoogle Scholar
  58. 58.
    Buttry DA, Ward MD. Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance. Chem Rev 1992;92(6): 1355–1379.CrossRefGoogle Scholar
  59. 59.
    Janshoff A, Galla HJ, Steinem C. Piezoelectric mass-sensing devices as biosensors—an alternative to optical biosensors? Angew Chem Int Ed 2000; 39(22):4004–4032.CrossRefGoogle Scholar
  60. 60.
    Patolsky F, Lichtenstein A, Willner I. Electronic transduction of DNA sensing processes on surfaces: amplification of DNA detection and analysis of single-base mismatches by tagged liposomes. J Am Chem Soc 2001;123(22):5194–5205.CrossRefGoogle Scholar
  61. 61.
    Wang J, Rivas G, Jiang M, Zhang X. Electrochemically induced release of DNA from gold ultramicroelectrodes. Langmuir 1999; 15:6541.CrossRefGoogle Scholar
  62. 62.
    Rief M, Clausen-Schaumann H, Gaub HE. Sequence-dependent mechanics of single DNA molecules. Nat Struct Biol 1999;6(4):346–349.CrossRefGoogle Scholar
  63. 63.
    Harris SA. The physics of DNA stretching. Contemp Phys 2004;45(1): 11–30.CrossRefGoogle Scholar
  64. 64.
    Seitz, M. Force spectroscopy. In: Niemeyer CM, Mirkn CA, eds. Nanobiotechnology. Weinheim: Wiley-VCH, 2004:404–428.CrossRefGoogle Scholar
  65. 65.
    Bustamante C, Bryant Z, Smith SB. Ten years of tension: single-molecule DNA mechanics. Nature 2003;421:423–427.CrossRefGoogle Scholar
  66. 66.
    Doyle PS, Ladoux B, Viovy JL. Dynamics of a tethered polymer in shear flow. Phys Rev Lett 2000;84(20):4769–4772.CrossRefGoogle Scholar
  67. 67.
    Braun E, Eichen Y, Sivan U, Ben-Yoseph G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 1998;391(Feb 19): 775–778.CrossRefGoogle Scholar
  68. 68.
    Diez S, Reuther C, Dinu C, et al. Stretching and transporting DNA molecules using motor proteins. Nano Lett 2003;3(9):1251–1254.CrossRefGoogle Scholar
  69. 69.
    Walti C, Wirtz R, Germishuizen WA, et al. Direct selective functionalization of nanometer-separated gold electrodes with DNA oligonucleotides. Langmuir 2003;19(4):981–984.CrossRefGoogle Scholar
  70. 70.
    Ge C, Liao J, Yu W, Gu N. Electric potential control of DNA immobilization on gold electrode. Biosensors & Bioelectronics 2003; 18:53–58.CrossRefGoogle Scholar
  71. 71.
    Edman C, Raymond D, Wu D, et al. Electric field directed nucleic acid hybridization on microchips. Nucl Acids Res 1997;25(24):4907–4914.CrossRefGoogle Scholar
  72. 72.
    Gurtner C, Tu E, Jamshidi N, et al. Microelectronic array devices and techniques for electric field enhanced DNA hybridization in low-conductance buffers. Electrophoresis 2002;23(10):1543–1550.CrossRefGoogle Scholar
  73. 73.
    Heaton RJ, Peterson AW, Georgiadis RM. Electrostatic surface plasmon resonance: direct electric field-induced hybridization and denaturation in monolayer nucleic acid films and label-free discrimination of base mismatches. Proc Nat Acad Sci USA 2001;98(7):3701–3704.CrossRefGoogle Scholar
  74. 74.
    Takeishi S, Rant U, Fujiwara T, et al. Observation of electrostatically released DNA from gold electrodes with controlled threshold voltages. J Chem Phys 2004;120(12):5501–5504.CrossRefGoogle Scholar
  75. 75.
    Rant U, Arinaga K, Fujiwara T, et al. Excessive counterion condensation on immobilized ssDNA in solutions of high ionic strength. Biophys J 2003;85: 3858–3864.Google Scholar
  76. 76.
    Manning GS. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q Rev Biophys 1978;2: 179–246.Google Scholar
  77. 77.
    Zheng LF, Brody JP, Burke PJ. Electronic manipulation of DNA, proteins, and nanoparticles for potential circuit assembly. Biosensors & Bioelectronics 2004;20(3):606–619.CrossRefGoogle Scholar
  78. 78.
    Washizu M, Kurosawa O. Electrostatic manipulation of DNA in microfabricated structures. IEEE Trans Ind Appl 1990;26(6): 1165–1172.CrossRefGoogle Scholar
  79. 79.
    Dewarrat F, Calame M, Schönenberger C. Orientation and positioning of DNA molecules with an electric field technique. Single Mol 2002;3(4): 189–193.CrossRefGoogle Scholar
  80. 80.
    Germishuizen WA, Walti C, Wirtz R, et al. Selective dielectrophoretic manipulation of surface-immobilized DNA molecules. Nanotechnology 2003; 14(8): 896–902.CrossRefGoogle Scholar
  81. 81.
    Suzuki S, Yamanashi T, Tazawa S, Kurosawa O, Washizu M. Quantitative analysis of DNA orientation in stationary AC electric fields using fluorescence anisotropy. IEEE Trans Ind Appl 1998;34(1):75–83.CrossRefGoogle Scholar
  82. 82.
    Namasivayam V, Larson RG, Burke DT, Burns MA. Electrostretching DNA molecules using polymer-enhanced media within microfabricated devices. Anal Chem 2002;74:3378–3385.CrossRefGoogle Scholar
  83. 83.
    Washizu M, Kurosawa O, Arai I, Suzuki S, Shimamoto N. Applications of electrostatic stretch-and-positioning of DNA. IEEE Trans Ind Appl 1995; 31(3):447.CrossRefGoogle Scholar
  84. 84.
    Yamamoto T, Kurosawa O, Kabata H, Shimamoto N, Washizu M. Molecular surgery of DNA based on electrostatic micromanipulation. IEEE Trans Ind Appl 2000;36(4):1010–1017.CrossRefGoogle Scholar
  85. 85.
    Ferree S, Blanch HW. Electrokinetic stretching of tethered DNA. Biophys J 2003;85(4):2539–2546.Google Scholar
  86. 86.
    Holzel R, Gajovic-Eichelmann N, Bier FF. Oriented and vectorial immobilization of linear M13 dsDNA between interdigitated electrodes—towards single molecule DNA nanostructures. Biosensors & Bioelectronics 2003;18(5-6): 555–564.CrossRefGoogle Scholar
  87. 87.
    Porath D, Bezryadin A, de Vries S, Dekker C. Direct measurement of electrical transport through DNA molecules. Nature 2000;403(6770):635–638.CrossRefGoogle Scholar
  88. 88.
    Rant U, Arinaga K, Fujita S, Yokoyama N, Abstreiter G, Tornow M. Dynamic electrical switching of DNA layers on a metal surface. Nano Lett 2004;4(12): 2441–2445.CrossRefGoogle Scholar
  89. 89.
    Lahann J, Mitragotri S, Tran TN, et al. A reversibly switching surface. Science 2003;299(5605):371–374.CrossRefGoogle Scholar
  90. 90.
    Rant U, Arinaga K, Tornow M, Fujita S, Yokoyama N, Abstreiter G, to be published.Google Scholar
  91. 91.
    Rant U, Arinaga K, Tornow M, et al. Dissimilar dynamic behavior of electrically manipulated single and double stranded DNA tethered to a gold surface. Biophys J 2006; 90:3666–3671.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2008

Authors and Affiliations

  • Marc Tornow
    • 1
  • Kenji Arinaga
    • 2
    • 3
  • Ulrich Rant
    • 2
  1. 1.Institute of Semiconductor TechnologyTechnical University of BraunschweigBraunschweigGermany
  2. 2.Walter Schottky InstitutTechnische Universitaet MuenchenGarchingGermany
  3. 3.Fujitsu Laboratories Ltd.AtsugiJapan

Personalised recommendations