Hyperthermia and Chemotherapy: The Science

  • Roger A. Vertrees
  • Jeffrey M. Jordan
  • Joseph B. Zwischenberger
Part of the Current Clinical Oncology book series (CCO)


Cancer ranks second only to heart disease as the greatest cause of mortality in the United States. Despite significant strides in diagnosis and therapeutics, clinical treatment of metastatic cancer still yields a poor prognosis. Basic science research is increasing our knowledge of the mechanisms by which chemotherapeutic and hyperthermic modalities exert their antitumor activity. Herein, we describe the current state of knowledge of these treatment modalities and the basic science behind their clinical usefulness. Moreover, we identify gaps in our understanding of the basic science of these treatments. Basic science is primed to exert a substantial role in extending our therapeutic options through the clarification of current therapeutic mechanisms, as well as the generation of novel treatments.

Key Words

Cancer neoplasia metastasis chemotherapy hyperthermia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gabriele P, Orecchia R, Ragona R. Hyperthermia alone in the treatment of recurrences of malignant tumors. Experience with 60 lesions. Cancer 1990;66:2191–2195.PubMedCrossRefGoogle Scholar
  2. 2.
    Storm FK. Clinical hyperthermia and chemotherapy. Radiol Clin North Am 1989;27:621–627.PubMedGoogle Scholar
  3. 3.
    Neese RM, Williams GC. Why We Get Sick: The New Science of Darwinian Medicine. 1st ed. New York: Times Books; 1994.Google Scholar
  4. 4.
    Kluger MJ. Is fever beneficial? Yale J Biol Med 1986;59:89–95.PubMedGoogle Scholar
  5. 5.
    Kluger MJ. Temperature regulation, fever, and disease. Int Rev Physiol 1979;20:209–251.PubMedGoogle Scholar
  6. 6.
    Matsumi N, Matsumoto K, Mishima N, et al. Thermal damage threshold of brain tissue-histological study of heated normal monkey brains. Neurol Med Chir [Tokyo] 1994;34:209–215.Google Scholar
  7. 7.
    Dickson JA, Calderwood SK. Temperature range and selective sensitivity of tumors to hyperthermia: a critical review. Ann NY Acad Sci 1980;335:180–205.PubMedCrossRefGoogle Scholar
  8. 8.
    Dickson JA, Calderwood SK. Thermosensitivity of neoplastic tissues in vivo. In: Storm FK, ed. Hyperthermia In Cancer Therapy. Boston: G.K. Hall Medical Publishers; 1983:63–140.Google Scholar
  9. 9.
    Katschinski DM, Wiedemann GJ, Longo W, et al. Whole body hyperthermia cytokine induction: a review, and unifying hypothesis for myeloprotection in the setting of cytotoxic therapy. Cytokine Growth Factor Rev 1999;10:93–97.PubMedCrossRefGoogle Scholar
  10. 10.
    Overgaard J, Nielsen OS. The importance of thermotolerance for the clinical treatment with hyperthermia. Radiother Oncol 1983;1:167–178.PubMedCrossRefGoogle Scholar
  11. 11.
    Meyer JL, Van Kersen I, Becker B, et al. The significance of thermotolerance after 41°C hyperthermia: in vivo and in vitro tumor and normal tissue investigations. Int J Radiat Oncol Biol Phys 1985;11:973–981.PubMedGoogle Scholar
  12. 12.
    Li GC, Hahn GM. A proposed operational model of thermotolerance based on effects of nutrients and the initial treatment temperature. Cancer Res 1980;40:4501–4508.PubMedGoogle Scholar
  13. 13.
    Busch W. Uber den Einfluss welchen heftigere Erysipelen zuweilen auf organisierte Neubildunern ausuben. Verh Naturh Preuss Rheinl 1866;23:28–30.Google Scholar
  14. 14.
    Coley WB. Treatment of inoperable malignant tumors with the toxins of erysipelas and Bacillus prodigiosus. Am Surg Assoc 1894;12:183.Google Scholar
  15. 15.
    Coley WB. The therapeutic value of mixed toxins of the Streptococcus of erysipelas and Bacillus prodigious in the treatment of inoperable malignant tumors. Am J Med Sci 1896;112:251.CrossRefGoogle Scholar
  16. 16.
    Coley WB. The treatment of malignant tumors by repeated inoculations of erysipelas: with a report of ten original cases. Am J Med Sci 1893;105:487–510.CrossRefGoogle Scholar
  17. 17.
    Nauts HC, Fowler GA, Bogatko FH. A review of the influence of bacterial infection and of bacterial products (Coley’s toxins) on malignant tumors in man; a critical analysis of 30 inoperable cases treated by Coley’s mixed toxins, in which diagnosis was confirmed by microscopic examination selected for special study. Acta Med Scand Suppl 1953;276:1–103.PubMedGoogle Scholar
  18. 18.
    Shidnia H, Hornback N, Ford G, et al. Clinical experience with hyperthermia in conjunction with radiation therapy. Oncology 1993;50:353–361.PubMedGoogle Scholar
  19. 19.
    Moskovitz B, Meyer G, Kravtzov A, et al. Thermo-chemotherapy for intermediate or highrisk recurrent superficial bladder cancer patients. Ann Oncol 2005;16:585–589.PubMedCrossRefGoogle Scholar
  20. 20.
    Alexander HR, Jr., Libutti SK, Pingpank JF, et al. Hyperthermic isolated hepatic perfusion using melphalan for patients with ocular melanoma metastatic to liver. Clin Cancer Res 2003;9:6343–6349.PubMedGoogle Scholar
  21. 21.
    Rossi CR, Mocellin S, Pilati P, et al. Hyperthermic isolated perfusion with low-dose tumor necrosis factor alpha and doxorubicin for the treatment of limb-threatening soft tissue sarcomas. Ann Surg Oncol 2005;12:398–405.PubMedCrossRefGoogle Scholar
  22. 22.
    Bonvalot S, Laplanche A, Lejeune F, et al. Limb salvage with isolated perfusion for soft tissue sarcoma: could less TNF-α be better? Ann Oncol 2005;16:1061–1068.PubMedCrossRefGoogle Scholar
  23. 23.
    Grunhagen DJ, Brunstein F, Graveland WJ, et al. Isolated limb perfusion with tumor necrosis factor and melphalan prevents amputation in patients with multiple sarcomas in arm or leg. Ann Surg Oncol 2005;12:473–479.PubMedCrossRefGoogle Scholar
  24. 24.
    Groom RC, Hill AG. Hyperthermic cancer treatment: Systemic hyperthermia and isolated limb perfusion. Proc Am Acad Cardiovasc Perfusion 1987;8:105–111.Google Scholar
  25. 25.
    Eggermont AM, Koops HS, Kroon BB, et al. Isolated limb perfusion with high-dose tumor necrosis factor-alpha in combination with interferon-gamma and melphalan for nonresectable extremity soft tissue sarcomas: A multicenter trial. J Clin Oncol 1996;14:2653–2665.PubMedGoogle Scholar
  26. 26.
    Loggie BW, Sterchi JM, Rogers AT, et al. Intraperitoneal hyperthermic chemotherapy for advanced gastrointestinal and ovarian cancers. Reg Cancer Treat 1994;2:78–81.Google Scholar
  27. 27.
    Mohamed F, Marchettini P, Stuart OA, et al. Thermal enhancement of new chemotherapeutic agents at moderate hyperthermia. Ann Surg Oncol 2003;10:463–468.PubMedCrossRefGoogle Scholar
  28. 28.
    Fujimoto S, Shrestha RD, Kokubun M, et al. Intraperitoneal hyperthermic perfusion combined with surgery effective for gastric cancer patients with peritoneal seeding. Ann Surg 1988;208:36–41.PubMedCrossRefGoogle Scholar
  29. 29.
    Rossi CR, Deraco M, De Simone M, et al. Hyperthermic intraperitoneal intraoperative chemotherapy after cytoreductive surgery for the treatment of abdominal sarcomatosis: clinical outcome and prognostic factors in 60 consecutive patients. Cancer 2004;100:1943–1950.PubMedCrossRefGoogle Scholar
  30. 30.
    Reichman TW, Cracchiolo B, Sama J, et al. Cytoreductive surgery and intraoperative hyperthermic chemoperfusion for advanced ovarian carcinoma. J Surg Oncol 2005;90:51–58.PubMedCrossRefGoogle Scholar
  31. 31.
    Gori J, Castano R, Toziano M, et al. Intraperitoneal hyperthermic chemotherapy in ovarian cancer. Int J Gynecol Cancer 2005;15:233–239.PubMedCrossRefGoogle Scholar
  32. 32.
    Yonemura Y, Kawamura T, Bandou E, et al. Treatment of peritoneal dissemination from gastric cancer by peritonectomy and chemohyperthermic peritoneal perfusion. Br J Surg 2005;92:370–375.PubMedCrossRefGoogle Scholar
  33. 33.
    de Bree E, Romanos J, Relakis K, et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for malignant mixed mesodermal tumours with peritoneal dissemination. Eur J Surg Oncol 2005;31:111–112.PubMedCrossRefGoogle Scholar
  34. 34.
    Robins HI, Steeves RA, Shecterle LM, et al. Whole body hyperthermia (41–42°C): a simple technique for unanesthetized mice. Med Phys 1984;11:833–839.PubMedCrossRefGoogle Scholar
  35. 35.
    Pettigrew RT, Galt JM, Ludgate CM, et al. Clinical effects of whole-body hyperthermia in advanced malignancy. Br Med J 1974;4:679–682.PubMedGoogle Scholar
  36. 36.
    Herman TS, Zukoski CF, Anderson RM, et al. Whole-body hyperthermia and chemotherapy for treatment of patients with advanced, refractory malignancies. Cancer Treat Rep 1982;66:259–265.PubMedGoogle Scholar
  37. 37.
    Robins HI, Woods JP, Schmitt CL, et al. A new technological approach to radiant heat whole body hyperthermia. Cancer Lett 1994;79:137–145.PubMedCrossRefGoogle Scholar
  38. 38.
    Parks LC, Minaberry D, Smith DP, et al. Treatment of far-advanced bronchogenic carcinoma by extracorporeally induced systemic hyperthermia. J Thorac Cardiovasc Surg 1979;78:883–892.PubMedGoogle Scholar
  39. 39.
    Zwischenberger JB, Vertrees RA, Bedell EA, et al. Percutaneous venovenous perfusioninduced systemic hyperthermia for lung cancer: a phase I safety study. Ann Thorac Surg 2004;77:1916–1925.PubMedCrossRefGoogle Scholar
  40. 40.
    Pritchard MT, Ostberg JR, Evans SS, et al. Protocols for simulating the thermal component of fever: preclinical and clinical experience. Methods 2004;32:54–62.PubMedCrossRefGoogle Scholar
  41. 41.
    Jones EL, Prosnitz LR, Dewhirst MW, et al. In regard to Vasanathan. (Int J Radiat Oncol Biol Phys 2005;61:145–153). Int J Radiat Oncol Biol Phys 2005;63:644.PubMedCrossRefGoogle Scholar
  42. 42.
    Sumiyoshi K, Strebel FR, Rowe RW, et al. The effect of whole-body hyperthermia combined with “metronomic” chemotherapy on rat mammary adenocarcinoma metastases. Int J Hyperthermia 2003;19:103–118.PubMedCrossRefGoogle Scholar
  43. 43.
    Zwischenberger JB, Vertrees RA, Woodson LC, et al. Percutaneous venovenous perfusioninduced systemic hyperthermia for advanced non-small cell lung cancer: Initial clinical experience. Ann Thorac Surg 2001;72:234–243.PubMedCrossRefGoogle Scholar
  44. 44.
    Vertrees RA, Tao W, Pencil SD, et al. Induction of whole body hyperthemia with venovenous perfusion. ASAIO J 1996;42:250–254.PubMedCrossRefGoogle Scholar
  45. 45.
    Eisler K, Hipp R, Gogler S, et al. New clinical aspects of whole body hyperthermia. Adv Exp Med Biol 1990;267:393–398.PubMedGoogle Scholar
  46. 46.
    Stewart JR, Gibbs FA, Jr. Hyperthermia in the treatment of cancer. Perspectives on its promise and its problems. Cancer 1984;54:2823–2830.PubMedCrossRefGoogle Scholar
  47. 47.
    Thrall DE, Page RL, Dewhirst MW, et al. Temperature measurements in normal and tumor tissue of dogs undergoing whole body hyperthermia. Cancer Res 1986;46:6229–6235.PubMedGoogle Scholar
  48. 48.
    Page RL, McEntee MC, Williams PL, et al. Effect of whole body hyperthermia on carboplatin disposition and toxicity in dogs. Int J Hyperthermia 1994;10:807–816.PubMedCrossRefGoogle Scholar
  49. 49.
    Bull JM, Lees D, Schuette W, et al. Whole body hyperthermia: a phase-I trial of a potential adjuvant to chemotherapy. Ann Intern Med 1979;90:317–323.PubMedGoogle Scholar
  50. 50.
    Tapazoglou E, Cohen JD, Schmitt CL, et al. Whole body hyperthermia and carboplatin: cytotoxicity for murine leukaemia and normal marrow. Br J Cancer 1991;64:528–530.PubMedGoogle Scholar
  51. 51.
    Page RL, Thrall DE, Dewhirst MW, et al. Phase I study of melphalan alone and melphalan plus whole body hyperthermia in dogs with malignant melanoma. Int J Hyperthermia 1991;7:559–566.PubMedCrossRefGoogle Scholar
  52. 52.
    Vertrees R, Tao W, Deyo D, et al. Effects of blood flow rates on heat distribution heterogeneity during perfusion-induced hyperthermia. ASAIO J 1996;42(4):250–254.PubMedCrossRefGoogle Scholar
  53. 53.
    St. Cyr J, Kelly T, Shecterle LM, et al. Whole body extracorporeal low flow hyperthermia in a canine model. J Extra Corpor Technol 1996;28:140–146.Google Scholar
  54. 54.
    Nagle VLJ, Berry JM, Bull JM. Whole body hyperthermia with carboplatin (CBDCA) for treatment of advanced or metastatic GI adenocarcinomas. Proc Am Assoc CA Res 1999;40:345.Google Scholar
  55. 55.
    Ismail-Zade RS. Whole body hyperthermia supplemented with urotropin in the treatment of malignant tumors. Exp Oncol 2005;27:61–64.PubMedGoogle Scholar
  56. 56.
    Leopold KA, Dewhirst M, Samulski T, et al. Relationships among tumor temperature, treatment time, and histopathological outcome using preoperative hyperthermia with radiation in soft tissue sarcomas. Int J Radiat Oncol Biol Phys 1992;22:989–998.PubMedGoogle Scholar
  57. 57.
    Tomasovic SP, Ramagli LS, Simonette RA, et al. Heat-stress proteins of rat lung endothelial and mammary adenocarcinoma cells. Radiat Res 1987;110:45–60.PubMedCrossRefGoogle Scholar
  58. 58.
    Kim YD, Lake CR, Lees DE, et al. Hemodynamic and plasma catecholamine responses to hyperthermic cancer therapy in humans. Am J Physiol 1979;237:H570–H574.PubMedGoogle Scholar
  59. 59.
    Gorman AJ, Proppe DW. Influence of heat stress on arterial baroreflex control of heart rate in the baboon. Circ Res 1982;51:73–82.PubMedGoogle Scholar
  60. 60.
    Hemmila MR, Foley DS, Casetti AV, et al. Perfusion induced hyperthermia for oncologic therapy with cardiac and cerebral protection. ASAIO J 2002;48:350–354.PubMedCrossRefGoogle Scholar
  61. 61.
    Page RL, Meyer RE, Thrall DE, et al. Cardiovascular and metabolic response of tumourbearing dogs to whole body hyperthermia. Int J Hyperthermia 1987;3:513–525.PubMedGoogle Scholar
  62. 62.
    Tonnesen AS, Marnock C, Bull JM, et al. Sweating, hemodynamic responses, and thermal equilibration during hyperthermia in humans. J Appl Physiol 1987;62:1596–1602.PubMedGoogle Scholar
  63. 63.
    Vertrees RA, Bidani A, Deyo DJ, et al. Venovenous perfusion-induced systemic hyperthermia: hemodynamics, blood flow, and thermal gradients. Ann Thorac Surg 2000;70:644–652.PubMedCrossRefGoogle Scholar
  64. 64.
    Bowler K. Heat death and cellular heat injury. J Therm Biol 1981;6:171–178.CrossRefGoogle Scholar
  65. 65.
    Hart GR, Anderson RJ, Crumpler CP, et al. Epidemic classical heat stroke: clinical characteristics and course of 28 patients. Medicine [Baltimore] 1982;61:189–197.PubMedCrossRefGoogle Scholar
  66. 66.
    Vertrees RA, Pencil SD, Tao W, et al. Pathology of perfusion-induced whole body hyperthermia in acute swine. J Invest Surg 1995;8:288 (A).Google Scholar
  67. 67.
    Vertrees RA, Leeth AM, Girouard MK, et al. Whole-body hyperthermia: a review of theory, design and application. Perfusion 2002;17:279–290.CrossRefGoogle Scholar
  68. 68.
    Vertrees RA. Pathobiology of Thermal Stress in Normal, Transformed, and Malignant Lung Cells. Galveston: University of Texas Medical Branch; 1999.Google Scholar
  69. 69.
    Roberts NJ, Jr, Steigbigel RT. Hyperthermia and human leukocyte functions: effects on response of lymphocytes to mitogen and antigen and bactericidal capacity of monocytes and neutrophils. Infect Immun. 1977;18:673–679.PubMedGoogle Scholar
  70. 70.
    Wissing D, Jaattela M. HSP27 and HSP70 increase the survival of WEHI-S cells exposed to hyperthermia. Int J Hyperthermia 1996;12:125–138.PubMedCrossRefGoogle Scholar
  71. 71.
    Li GC, Mak JY. Re-induction of hsp70 synthesis: an assay for thermotolerance. Int J Hyperthermia 1989;5:389–403.PubMedGoogle Scholar
  72. 72.
    Trieb K, Sztankay A, Amberger A, et al. Hyperthermia inhibits proliferation and stimulates the expression of differentiation markers in cultured thyroid carcinoma cells. Cancer Lett 1994;87:65–71.PubMedCrossRefGoogle Scholar
  73. 73.
    Samali A, Cotter TG. Heat shock proteins increase resistance to apoptosis. Exp Cell Res 1996;223:163–170.PubMedCrossRefGoogle Scholar
  74. 74.
    Li GC, Mivechi NF, Weitzel G. Heat shock proteins, thermotolerance, and their relevance to clinical hyperthermia. Int J Hyperthermia 1995;11:459–488.PubMedCrossRefGoogle Scholar
  75. 75.
    Koishi M, Hosokawa N, Sato M, et al. Quercetin, an inhibitor of heat shock protein synthesis, inhibits the acquisition of thermotolerance in a human colon carcinoma cell line. Jpn J Cancer Res 1992;83:1216–1222.PubMedGoogle Scholar
  76. 76.
    Welch WJ. The mammalian heat shock (or stress) response: a cellular defense mechanism. Adv Exp Med Biol 1987;225:287–304.PubMedGoogle Scholar
  77. 77.
    Welch WJ, Mizzen LA. Characterization of the thermotolerant cell. II. Effects on the intracellular distribution of heat-shock protein 70, intermediate filaments, and small nuclear ribonucleoprotein complexes. J Cell Biol 1988;106:1117–1130.PubMedCrossRefGoogle Scholar
  78. 78.
    Vertrees RA, Zwischenberger JB, Boor PJ, et al. Oncogenic ras results in increased cell kill due to defective thermoprotection in lung cancer cells. Ann Thorac Surg 2000;69:1675–1680.PubMedCrossRefGoogle Scholar
  79. 79.
    Swan H. Metabolic rate, temperature, and acid-base control: The best strategy and our needs to achieve it. J Extra Corpor Technol 1985;17:65–73.Google Scholar
  80. 80.
    Lazenby WD, Ko W, Zelano JA. Effects of temperature and flow rate on regional blood flow and metabolism during cardiopulmonary bypass. Ann Thorac Surg 1992;53:957–964.PubMedCrossRefGoogle Scholar
  81. 81.
    Bicher HI, Hetzel FW, Sandhu TS, et al. Effects of hyperthermia on normal and tumor microenvironment. Radiology 1980;137:523–530.PubMedGoogle Scholar
  82. 82.
    Wahl ML, Bobyock SB, Leeper DB, et al. Effects of 42°C hyperthermia on intracellular pH in ovarian carcinoma cells during acute or chronic exposure to low extracellular pH. Int J Radiat Oncol Biol Phys 1997;39:205–212.PubMedCrossRefGoogle Scholar
  83. 83.
    van der Zee J. Heating the patient: a promising approach? Ann Oncol 2002;13:1173–1184.PubMedCrossRefGoogle Scholar
  84. 84.
    Borrelli MJ, Thompson LL, Cain CA, et al. Time-temperature analysis of cell killing of BHK cells heated at temperatures in the range of 43.5°C to 57.0°C. Int J Radiat Oncol Biol Phys 1990;19:389–399.PubMedGoogle Scholar
  85. 85.
    Bauer KD, Henle KJ. Arrhenius analysis of heat survival curves from normal and thermotolerant CHO cells. Radiat Res 1979;78:251–263.PubMedCrossRefGoogle Scholar
  86. 86.
    Dewhirst MW, Sim DA, Sapareto S, et al. Importance of minimum tumor temperature in determining early and long-term responses of spontaneous canine and feline tumors to heat and radiation. Cancer Res 1984;44:43–50.PubMedGoogle Scholar
  87. 87.
    Dewey WC, Hopwood LE, Sapareto SA, et al. Cellular responses to combinations of hyperthermia and radiation. Radiology 1977;123:463–474.PubMedGoogle Scholar
  88. 88.
    Roti Roti JL, Henle KJ. Comparison of two mathematical models for describing heatinduced cell killing. Radiat Res 1980;81:374–383.CrossRefGoogle Scholar
  89. 89.
    Dewey WC. Arrhenius relationships from the molecule and cell to the clinic. Int J Hyperthermia 1994;10:457–483.PubMedCrossRefGoogle Scholar
  90. 90.
    Sapareto SA, Dewey WC. Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 1984;10:787–800.PubMedGoogle Scholar
  91. 91.
    Pace M, Bini M, Millanta L. Control of the physical parameters in local electromagnetic hyperthermia. Adv Exp Med Biol 1990;267:297–303.PubMedGoogle Scholar
  92. 92.
    Dickson JA, McKenzie A, McLeod K. Temperature gradients in pigs during whole-body hyperthermia at 42°C. J Appl Physiol 1979;47:712–717.PubMedGoogle Scholar
  93. 93.
    Alston RP, Murray L, McLaren AD. Changes in hemodynamic variables during hypothermic cardiopulmonary bypass. Effects of flow rate, flow character, and arterial pH. J Thorac Cardiovasc Surg 1990;100:134–144.PubMedGoogle Scholar
  94. 94.
    Shanks CA, Wade LD, Meyer R, et al. Changes of body temperature and heat in cardiac surgical patients. Anaesth Intensive Care 1985;13:12–17.PubMedGoogle Scholar
  95. 95.
    Pujol A, Fusciardi J, Ingrand P, et al. Afterdrop after hypothermic cardiopulmonary bypass: the value of tympanic membrane temperature monitoring. J Cardiothorac Vasc Anesth 1996;10:336–341.PubMedCrossRefGoogle Scholar
  96. 96.
    Davis FM, Parimelazhagan KN, Harris EA. Thermal balance during cardiopulmonary bypass with moderate hypothermia in man. Br J Anaesth 1977;49:1127–1132.PubMedCrossRefGoogle Scholar
  97. 97.
    Utley JR, Wachtel C, Cain RB, et al. Effects of hypothermia, hemodilution, and pump oxygenation on organ water content, blood flow and oxygen delivery, and renal function. Ann Thorac Surg 1981;31:121–133.PubMedCrossRefGoogle Scholar
  98. 98.
    Otte J. Hyperthermia in cancer therapy. Eur J Pediatr 1988;147:560–569.PubMedCrossRefGoogle Scholar
  99. 99.
    Brown SL, Hunt JW, Hill RP. Differential thermal sensitivity of tumour and normal tissue microvascular response during hyperthermia. Int J Hyperthermia 1992;8:501–514.PubMedCrossRefGoogle Scholar
  100. 100.
    Gerweck LE. Hyperthermia in cancer therapy: the biological basis and unresolved questions. Cancer Res 1985;45:3408–3414.PubMedGoogle Scholar
  101. 101.
    Li GC. Thermal biology and physiology in clinical hyperthermia: current status and future needs. Cancer Res 1984;44:4886s–4893s.PubMedGoogle Scholar
  102. 102.
    Anghileri LJ, Crone-Escanye MC, Martin JA, et al. Modification of the ionic environment in the tumor cell by hyperthermia. Neoplasma 1988;35:489–494.PubMedGoogle Scholar
  103. 103.
    Vertrees RA, Deyo DJ, Quast M, et al. Development of a human to murine orthotopic xenotransplanted lung cancer model. J Invest Surg 2000;13:349–358.PubMedGoogle Scholar
  104. 104.
    Cavaliere R, Ciocatto EC, Giovanella BC, et al. Selective heat sensitivity of cancer cells. Biochemical and clinical studies. Cancer 1967;20:1351–1381.PubMedCrossRefGoogle Scholar
  105. 105.
    Giovanella BC. Thermosensitivity of neoplastic cells in vitro. In: Storm FK, ed. Hyperthermia In Cancer Therapy. Boston: G.K. Hall Medical Publishers; 1983:55–62.Google Scholar
  106. 106.
    Dewey WC, Thrall DE, Gillette EL. Hyperthermia and radiation-a selective thermal effect on chronically hypoxic tumor cells in vivo. Int J Radiat Oncol Biol Phys 1977;2:99–103.PubMedGoogle Scholar
  107. 107.
    Curran WJ, Jr., Goodman RL. Hyperthermia 1991: a critical review. In: Dewey WC, Edington M, Fry RJM, Hall EJ, Whitmore GF, eds. Radiation Research: A 20th Century Perspective Volume II: Congress Proceedings. San Diego: Academic Press, Inc.; 1992:883–888.Google Scholar
  108. 108.
    Engelberg D, Zandi E, Parker CS, et al. The yeast and mammalian ras pathways control transcription of heat shock genes independently of heat shock transcription factor. Mol Cell Biol 1994;14:4929–4937.PubMedGoogle Scholar
  109. 109.
    Gress TM, Muller-Pillasch F, Weber C, et al. Differential expression of heat shock proteins in pancreatic carcinoma. Cancer Res 1994;54:547–551.PubMedGoogle Scholar
  110. 110.
    Konno A, Sato N, Yagihashi A, et al. Heat-or stress-inducible transformation-associated cell surface antigen on the activated H-ras oncogene-transfected rat fibroblast. Cancer Res 1989;49:6578–6582.PubMedGoogle Scholar
  111. 111.
    Wen LP, Madani K, Martin GA, et al. Proteolytic cleavage of ras GTPase-activating protein during apoptosis. Cell Death Differ 1998;5:729–734.PubMedCrossRefGoogle Scholar
  112. 112.
    Irving EA, Bamford M. Role of mitogen-and stress-activated kinases in ischemic injury. J Cereb Blood Flow Metab 2002;22:631–647.PubMedCrossRefGoogle Scholar
  113. 113.
    Woodgett JR, Kyriakis JM, Avruch J, et al. Reconstitution of novel signalling cascades responding to cellular stresses. Philos Trans R Soc Lond B Biol Sci 1996;351:135–142.PubMedCrossRefGoogle Scholar
  114. 114.
    Kyriakis JM, Avruch J. Protein kinase cascades activated by stress and inflammatory cytokines. Bioessays 1996;18:567–577.PubMedCrossRefGoogle Scholar
  115. 115.
    Coso OA, Chiariello M, Yu JC, et al. The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 1995;81:1137–1146.PubMedCrossRefGoogle Scholar
  116. 116.
    Mivechi NF, Giaccia AJ. Mitogen-activated protein kinase acts as a negative regulator of the heat shock response in NIH3T3 cells. Cancer Res 1995;55:5512–5519.PubMedGoogle Scholar
  117. 117.
    Frese S, Schaper M, Kuster JR, et al. Cell death induced by down-regulation of heat shock protein 70 in lung cancer cell lines is p53-independent and does not require DNA cleavage. J Thorac Cardiovasc Surg 2003;126:748–754.PubMedCrossRefGoogle Scholar
  118. 118.
    Lee JS, Lee JJ, Seo JS. HSP70 deficiency results in activation of c-Jun N-terminal kinase, extracellular signal-regulated kinase, and caspase-3 in hyperosmolarity-induced apoptosis. J Biol Chem 2005;280:6634–6641.PubMedCrossRefGoogle Scholar
  119. 119.
    Shi H, Cao T, Connolly JE, et al. Hyperthermia enhances CTL cross-priming. J Immunol 2006;176:2134–2141.PubMedGoogle Scholar
  120. 120.
    Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wideranging implications in tissue kinetics. Br J Cancer 1972;26:239–257.PubMedGoogle Scholar
  121. 121.
    Green DR. Apoptotic pathways: the roads to ruin. Cell 1998;94:695–698.PubMedCrossRefGoogle Scholar
  122. 122.
    Johnson NL, Gardner AM, Diener KM, et al. Signal transduction pathways regulated by mitogen-activated/extracellular response kinase induce cell death. J Biol Chem 1996;271:3229–3237.PubMedCrossRefGoogle Scholar
  123. 123.
    Green DR, Reed JC. Mitochondria and apoptosis. Science 1998;281:1309–1312.PubMedCrossRefGoogle Scholar
  124. 124.
    Mishra NC, Kumar S. Apoptosis: a mitochondrial perspective on cell death. Indian J Exp Biol 2005;43:25–34.PubMedGoogle Scholar
  125. 125.
    Liu ZG, Hsu H, Goeddel DV, et al. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell 1996;87:565–576.PubMedCrossRefGoogle Scholar
  126. 126.
    Deng Y, Lin Y, Wu X. TRAIL-induced apoptosis requires Bax-dependent mitochondrial release of Smac/DIABLO. Genes Dev 2002;16:33–45.PubMedCrossRefGoogle Scholar
  127. 127.
    Srivastava RK. TRAIL/Apo-2L: mechanisms and clinical applications in cancer. Neoplasia 2001;3:535–546.PubMedCrossRefGoogle Scholar
  128. 128.
    MacFarlane M. TRAIL-induced signalling and apoptosis. Toxicol Lett 2003;139:89–97.PubMedCrossRefGoogle Scholar
  129. 129.
    Ledgerwood EC, Pober JS, Bradley JR. Recent advances in the molecular basis of TNF signal transduction. Lab Invest 1999;79:1041–1050.PubMedGoogle Scholar
  130. 130.
    Soldani C, Scovassi AI. Poly(ADP-ribose) polymerase-1 cleavage during apoptosis: an update. Apoptosis 2002;7:321–328.PubMedCrossRefGoogle Scholar
  131. 131.
    An S, Park MJ, Park IC, et al. Procaspase-3 and its active large subunit localized in both cytoplasm and nucleus are activated following application of apoptotic stimulus in Ramos-Burkitt lymphoma B cells. Int J Mol Med 2003;12:311–317.PubMedGoogle Scholar
  132. 132.
    Pajonk F, van Ophoven A, McBride WH. Hyperthermia-induced proteasome inhibition and loss of androgen receptor expression in human prostate cancer cells. Cancer Res 2005;65:4836–4843.PubMedCrossRefGoogle Scholar
  133. 133.
    Zhang X, Li Y, Huang Q, et al. Increased resistance of tumor cells to hyperthermia mediated by integrin-linked kinase. Clin Cancer Res 2003;9:1155–1160.PubMedGoogle Scholar
  134. 134.
    Barry MA, Behnke CA, Eastman A. Activation of programmed cell death (apoptosis) by cisplatin, other anticancer drugs, toxins and hyperthermia. Biochem Pharmacol 1990;40:2353–2362.PubMedCrossRefGoogle Scholar
  135. 135.
    Allan DJ, Harmon BV. The morphologic categorization of cell death induced by mild hyperthermia and comparison with death induced by ionizing radiation and cytotoxic drugs. Scan Electron Microsc 1986;(Pt 3):1121–1133.Google Scholar
  136. 136.
    Dyson JE, Simmons DM, Daniel J, et al. Kinetic and physical studies of cell death induced by chemotherapeutic agents or hyperthermia. Cell Tissue Kinet 1986;19:311–324.PubMedGoogle Scholar
  137. 137.
    Takano YS, Harmon BV, Kerr JF. Apoptosis induced by mild hyperthermia in human and murine tumour cell lines: a study using electron microscopy and DNA gel electrophoresis. J Pathol 1991;163:329–336.PubMedCrossRefGoogle Scholar
  138. 138.
    Tomasovic SP, Vasey TA, Story MD, et al. Cytotoxic manifestations of the interaction between hyperthermia and TNF: DNA fragmentation. Int J Hyperthermia 1994;10:247–262.PubMedCrossRefGoogle Scholar
  139. 139.
    Vertrees RA, Das GC, Coscio AM, et al. A mechanism of hyperthermia-induced apoptosis in ras-transformed lung cells. Mol Carcinog 2005;44:111–121.PubMedCrossRefGoogle Scholar
  140. 140.
    Orlandi L, Zaffaroni N, Bearzatto A, et al. Effect of melphalan and hyperthermia on p34cdc2 kinase activity in human melanoma cells. Br J Cancer 1996;74:1924–1928.PubMedGoogle Scholar
  141. 141.
    Chelvi TP, Ralhan R. Hyperthermia potentiates antitumor effect of thermosensitive-liposome-encapsulated melphalan and radiation in murine melanoma. Tumour Biol 1997;18:250–260.PubMedCrossRefGoogle Scholar
  142. 142.
    Averill DA, Larrivee B. Hyperthermia, cyclosporine A and melphalan cytotoxicity and transport in multidrug resistant cells. Int J Hyperthermia 1998;14:583–588.PubMedGoogle Scholar
  143. 143.
    Larrivee B, Averill DA. Melphalan resistance and photoaffinity labelling of P-glycoprotein in multidrug-resistant Chinese hamster ovary cells: reversal of resistance by cyclosporin A and hyperthermia. Biochem Pharmacol 1999;58:291–302.PubMedCrossRefGoogle Scholar
  144. 144.
    Turcotte S, Averill-Bates DA. Sensitization to the cytotoxicity of melphalan by ethacrynic acid and hyperthermia in drug-sensitive and multidrug-resistant Chinese hamster ovary cells. Radiat Res 2001;156:272–282.PubMedCrossRefGoogle Scholar
  145. 145.
    Robins HI, Rushing D, Kutz M, et al. Phase I clinical trial of melphalan and 41.8°C wholebody hyperthermia in cancer patients. J Clin Oncol 1997;15:158–164.PubMedGoogle Scholar
  146. 146.
    Hafstrom L, Naredi P. Isolated hepatic perfusion with extracorporeal oxygenation using hyperthermia TNF alpha and melphalan: Swedish experience. Recent Results Cancer Res 1998;147:120–126.PubMedGoogle Scholar
  147. 147.
    Robins HI, Katschinski DM, Longo W, et al. A pilot study of melphalan, tumor necrosis factor-alpha and 41.8°C whole-body hyperthermia. Cancer Chemother Pharmacol 1999;43:409–414.PubMedCrossRefGoogle Scholar
  148. 148.
    Glehen O, Stuart OA, Mohamed F, et al. Hyperthermia modifies pharmacokinetics and tissue distribution of intraperitoneal melphalan in a rat model. Cancer Chemother Pharmacol 2004;54:79–84.PubMedCrossRefGoogle Scholar
  149. 149.
    Lindner P, Fjalling M, Hafstrom L, et al. Isolated hepatic perfusion with extracorporeal oxygenation using hyperthermia, tumour necrosis factor alpha and melphalan. Eur J Surg Oncol 1999;25:179–185.PubMedCrossRefGoogle Scholar
  150. 150.
    Libutti SK, Barlett DL, Fraker DL, et al. Technique and results of hyperthermia isolated hepatic perfusion with tumor necrosis factor and melphalan for the treatment of unresectable hepatic malignancies. J Am Coll Surg 2000;191:519–530.PubMedCrossRefGoogle Scholar
  151. 151.
    Pilati P, Mocellin S, Rossi CR, et al. True versus mild hyperthermia during isolated hepatic perfusion: effects on melphalan pharmacokinetics and liver function. World J Surg 2004;28:775–781.PubMedCrossRefGoogle Scholar
  152. 152.
    Noorda EM, Vrouenraets BC, Nieweg OE, et al. Long-term results of a double perfusion schedule using high dose hyperthermia and melphalan sequentially in extensive melanoma of the lower limb. Melanoma Res 2003;13:395–399.PubMedCrossRefGoogle Scholar
  153. 153.
    Herman TS, Teicher BA, Holden SA. Addition of mitomycin C to cis-diamminedichloroplatinum( II)/hyperthermia/radiation therapy in the FSaIIC fibrosarcoma. Int J Hyperthermia 1991;7:893–903.PubMedCrossRefGoogle Scholar
  154. 154.
    Gilly FN, Carry PY, Sayag AC, et al. Treatment of peritoneal carcinomatosis by intraperitoneal chemo-hyperthermia with mitomycin C. Initial experience. Ann Chir 1990;44:545–551.PubMedGoogle Scholar
  155. 155.
    Herman TS, Teicher BA, Holden SA. Trimodality therapy (drug/hyperthermia/radiation) with BCNU or mitomycin C. Int J Radiat Oncol Biol Phys 1990;18:375–382.PubMedGoogle Scholar
  156. 156.
    Sakaguchi Y, Kohnoe S, Emi Y, et al. Cytotoxicity of mitomycin C and carboquone combined with hyperthermia against hypoxic tumor cells in vitro. Oncology 1992;49:227–232.PubMedGoogle Scholar
  157. 157.
    Takeuchi H, Baba H, Maehara Y, et al. Flavone acetic acid increases the cytotoxicity of mitomycin C when combined with hyperthermia. Cancer Chemother Pharmacol 1996;38:1–8.PubMedCrossRefGoogle Scholar
  158. 158.
    Shchepotin IB, Buras RR, Nauta RJ, et al. Effect of mitomycin C, verapamil, and hyperthermia on human gastric adenocarcinoma. Cancer Chemother Pharmacol 1994;34:257–260.PubMedCrossRefGoogle Scholar
  159. 159.
    Gilly FN, Carry PY, Sayag AC, et al. Regional chemotherapy (with mitomycin C) and intra-operative hyperthermia for digestive cancers with peritoneal carcinomatosis. Hepatogastroenterology 1994;41:124–129.PubMedGoogle Scholar
  160. 160.
    Francois Y, Grandclement E, Sayag-Beaujard AC, et al. Intraperitoneal chemo-hyperthermia with mitomycin C in cancer of the stomach with peritoneal carcinosis. J Chir [Paris] 1997;134:237–242.Google Scholar
  161. 161.
    Paroni R, Salonia A, Lev A, et al. Effect of local hyperthermia of the bladder on mitomycin C pharmacokinetics during intravesical chemotherapy for the treatment of superficial transitional cell carcinoma. Br J Clin Pharmacol 2001;52:273–278.PubMedCrossRefGoogle Scholar
  162. 162.
    Sayag-Beaujard AC, Francois Y, Glehen O, et al. Treatment of peritoneal carcinomatosis in patients with digestive cancers with combination of intraperitoneal hyperthermia and mitomycin C. Bull Cancer 2004;91:E113–132.PubMedGoogle Scholar
  163. 163.
    Turk J, Bemis K, Colbert W, et al. General pharmacology of gemcitabine hydrochloride in animals. Arzneimittelforschung 1994;44:1089–1092.PubMedGoogle Scholar
  164. 164.
    Ruiz van Haperen VW, Veerman G, Vermorken JB, et al. Regulation of phosphorylation of deoxycytidine and 2′,2′-difluorodeoxycytidine (gemcitabine); effects of cytidine 5′-triphosphate and uridine 5′-triphosphate in relation to chemosensitivity for 2′,2′-difluorodeoxycytidine. Biochem Pharmacol 1996;51:911–918.PubMedCrossRefGoogle Scholar
  165. 165.
    Tolis C, Peters GJ, Ferreira CG, et al. Cell cycle disturbances and apoptosis induced by topotecan and gemcitabine on human lung cancer cell lines. Europ J Cancer 1999;35:796–807.CrossRefGoogle Scholar
  166. 166.
    Pace E, Melis M, Siena L, et al. Effects of gemcitabine on cell proliferation and apoptosis in non-small-cell lung cancer (NSCLC) cell lines. Cancer Chemother Pharmacol 2000;46:467–476.PubMedCrossRefGoogle Scholar
  167. 167.
    Ruiz van Haperen VW, Veerman G, Boven E, et al. Schedule dependence of sensitivity to 2′,2′-difluorodeoxycytidine (gemcitabine) in relation to accumulation and retention of its triphosphate in solid tumour cell lines and solid tumours. Biochem Pharmacol 1994;48:1327–1339.CrossRefGoogle Scholar
  168. 168.
    Latz D, Fleckenstein K, Eble M, et al. Radiosensitizing potential of gemcitabine (2′,2′-difluoro-2′-deoxycytidine) within the cell cycle in vitro. Int J Radiat Oncol Biol Phys 1998;41:875–882.PubMedCrossRefGoogle Scholar
  169. 169.
    Haveman J, Rietbroek RC, Geerdink A, et al. Effect of hyperthermia on the cytotoxicity of 2′,2′-difluorodeoxycytidine (gemcitabine) in cultured SW1573 cells. Int J Cancer 1995;62:627–630.PubMedCrossRefGoogle Scholar
  170. 170.
    van der Heijden AG, Verhaegh G, Jansen CF, et al. Effect of hyperthermia on the cytotoxicity of 4 chemotherapeutic agents currently used for the treatment of transitional cell carcinoma of the bladder: an in vitro study. J Urol 2005;173:1375–1380.PubMedCrossRefGoogle Scholar
  171. 171.
    Mizuta Y, Akazawa Y, Shiozawa K, et al. Pseudomyxoma peritonei accompanied by intraductal papillary mucinous neoplasm of the pancreas. Pancreatology 2005;5:470–474.PubMedCrossRefGoogle Scholar
  172. 172.
    Vertrees RA, Das GC, Popov VL. Synergistic interaction of hyperthermia and gemcitabine in lung cancer. Cancer Biol Ther 2005;4:1144–1153.PubMedCrossRefGoogle Scholar
  173. 173.
    Reitbroek RC, Katschinski DM, Reijers MHE, et al. Lack of thermal enhancement for taxanes in vitro. Int J Hyperthermia 1997;13:525–533.Google Scholar
  174. 174.
    Cividalli A, Cruciani G, Livdi E, et al. Hyperthermia enhances the response of paclitaxel and radiation in a mouse adenocarcinoma. Int J Radiat Oncol Biol Phys 1999;44:407–412.PubMedCrossRefGoogle Scholar
  175. 175.
    Salah-Eldin AE, Inoue S, Tsukamoto S, et al. An association of Bcl-2 phosphorylation and Bax localization with their functions after hyperthermia and paclitaxel treatment. Int J Cancer 2003;103:53–60.PubMedCrossRefGoogle Scholar
  176. 176.
    Zoul Z, Filip S, Melichar B, et al. Weekly paclitaxel combined with local hyperthermia in the therapy of breast cancer locally recurrent after mastectomy-a pilot experience. Onkologie 2004;27:385–388.PubMedCrossRefGoogle Scholar
  177. 177.
    Elias D, Matsuhisa T, Sideris L, et al. Heated intra-operative intraperitoneal oxaliplatin plus irinotecan after complete resection of peritoneal carcinomatosis: pharmacokinetics, tissue distribution and tolerance. Ann Oncol 2004;15:1558–1565.PubMedCrossRefGoogle Scholar
  178. 178.
    Alexander HR, Jr., Libutti SK, Pingpank JF, et al. Isolated hepatic perfusion for the treatment of patients with colorectal cancer liver metastases after irinotecan-based therapy. Ann Surg Oncol 2005;12:138–144.PubMedCrossRefGoogle Scholar
  179. 179.
    Robins HI, Cohen JD, Schmitt CL, et al. Phase I clinical trial of carboplatin and 41.8°C whole-body hyperthermia in cancer patients. J Clin Oncol 1993;11:1787–1794.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Roger A. Vertrees
    • 1
  • Jeffrey M. Jordan
    • 2
  • Joseph B. Zwischenberger
    • 3
  1. 1.University of Texas Medical BranchHouston
  2. 2.James W. McLaughlin FellowUniversity of Texas Medical BranchHouston
  3. 3.Department of Surgery, Medicine, and RadiologyUniversity of Texas Medical BranchGalveston

Personalised recommendations