Antibiotic Resistance Due to Reduced Uptake

  • Joseph B. McPhee
  • Sandeep Tamber
  • Michelle D. Brazas
  • Shawn Lewenza
  • Robert E. W. Hancock
Part of the Infectious Disease book series (ID)

The introduction of antibiotic therapy for the treatment of bacterial infections has led to a greatly increased human lifespan compared to that in the pre-antibiotic era. However, a disturbing trend has also been noted in that, within a very short period of time following the introduction of a new antibiotic, resistance to that antibiotic begins to emerge, a factor that is becoming increasingly meaningful as the discovery of new antibiotics wanes (1-3). There are a number of mechanisms by which a bacterium may become resistant to a particular antibiotic. Generally these include, but are not limited to, modifi cation of the drug to render it inactive, modifi cation of the drug target, such that it is incapable of interacting with the drug and decreased uptake of the antibiotic into the cell, due to reduced transport and/or increased effl ux. Recent functional genomic studies have also implied that antibiotics may have more complex mechanisms of action than fi rst thought and we are beginning to appreciate that in addition to the mutation of primary targets, subtle mutations in secondary targets are likely to be infl uential (4, 5). This chapter will focus on the contribution of a decreased antibiotic uptake to an increase in antibacterial resistance.

Keywords

Outer Membrane Divalent Cation Cytoplasmic Membrane Antimicrob Agent Capsular Polysaccharide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Spellberg B, Powers JH, Brass EP, Miller LG, Edwards JE, Jr. Trends in antimicrobial drug development: implications for the future. Clin Infect Dis 2004;38(9):1279–1286PubMedCrossRefGoogle Scholar
  2. 2.
    Theuretzbacher U, Toney JH. Nature's clarion call of antibacterial resistance: are we listening? Curr Opin Investig Drugs 2006;7(2):158–166PubMedGoogle Scholar
  3. 3.
    Hancock REW. The end of an era? Nat Rev Drug Discov? 6(28):28–28Google Scholar
  4. 4.
    Brazas MD, Hancock REW. Using microarray gene signatures to elucidate mechanisms of antibiotic action and resistance. Drug Discov Today 2005;10(18):1245–1252PubMedCrossRefGoogle Scholar
  5. 5.
    El'garch F, Jeannot K, Hocquet D, Llanes-Barakat C, Plesiat P. Cumulative effects of several nonenzymatic mechanisms on the resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother 2007;51(3):1016–1021PubMedCrossRefGoogle Scholar
  6. 6.
    Hancock RE, Egli C, Karunaratne N. Molecular organization and structural role of outer membrane macromolecules. In: Ghuysen JM, Hakenbeck R, eds. Bacterial Cell Envelope. Amsterdam: Elsevier Science Publishers BV; 1994, pp. 263–279CrossRefGoogle Scholar
  7. 7.
    Kadner RJ. Cytoplasmic membrane. In: Neidhardt FC, ed. Escherichia coli and Salmonella, 2nd ed. Washington, DC: ASM Press; 1996, pp. 58–87Google Scholar
  8. 8.
    Cronan JE. Bacterial membrane lipids: where do we stand? Annu Rev Microbiol 2003;57:203–224PubMedCrossRefGoogle Scholar
  9. 9.
    Hobot JA, Carlemalm E, Villiger W, Kellenberger E. Periplasmic gel: new concept resulting from the reinvestigation of bacterial cell envelope ultrastructure by new methods. J Bacteriol 1984;160(1):143–152PubMedGoogle Scholar
  10. 10.
    Leduc M, Frehel C, Siegel E, Van Heijenoort J. Multilayered distribution of peptidoglycan in the periplasmic space of Escherichia coli. J Gen Microbiol 1989;135 (Pt 5):1243–1254PubMedGoogle Scholar
  11. 11.
    Dubochet J, McDowall AW, Menge B, Schmid EN, Lickfeld KG. Electron microscopy of frozen-hydrated bacteria. J Bacteriol 1983;155(1):381–390PubMedGoogle Scholar
  12. 12.
    Lam JS, Lam MY, MacDonald LA, Hancock RE. Visualization of Pseudomonas aeruginosa O antigens by using a protein A-dextran-colloidal gold conjugate with both immunoglobulin G and immunoglobulin M monoclonal antibodies. J Bacteriol 1987;169(8):3531–3538PubMedGoogle Scholar
  13. 13.
    Oliver DB. Periplasm. In: Neidhardt FC, ed. Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. Washington, DC: ASM Press; 1996, pp. 88–103Google Scholar
  14. 14.
    Van Wielink JE, Duine JA. How big is the periplasmic space? Trends Biochem Sci 15(4):136–137PubMedCrossRefGoogle Scholar
  15. 15.
    Brass JM, Higgins CF, Foley M, Rugman PA, Birmingham J, Garland PB. Lateral diffusion of proteins in the periplasm of Escherichia coli. J Bacteriol 1986;165(3):787–795PubMedGoogle Scholar
  16. 16.
    Weidel W, Pelzer H. Bagshaped macromolecules — a new outlook on bacterial cell walls. Adv Enzymol Relat Areas Mol Biol 1964;26:193–232PubMedCrossRefGoogle Scholar
  17. 17.
    Takade A, Umeda A, Matsuoka M, Yoshida S, Nakamura M, Amako K. Comparative studies of the cell structures of Mycobacterium leprae and M. tuberculosis using the electron microscopy freeze-substitution technique. Microbiol Immunol 2003;47(4):265–270PubMedGoogle Scholar
  18. 18.
    Paul TR, Beveridge TJ. Reevaluation of envelope profiles and cytoplasmic ultrastructure of mycobacteria processed by conventional embedding and freeze-substitution protocols. J Bacteriol 1992;174(20):6508–6517PubMedGoogle Scholar
  19. 19.
    Labischinski H, Goodell EW, Goodell A, Hochberg ML. Direct proof of a “more-than-single-layered” peptidoglycan architecture of Escherichia coli W7: a neutron small-angle scattering study. J Bacteriol 1991;173(2):751–756PubMedGoogle Scholar
  20. 20.
    Yao X, Jericho M, Pink D, Beveridge T. Thickness and elasticity of gram-negative murein sacculi measured by atomic force microscopy. J Bacteriol 1999;181(22):6865–6875PubMedGoogle Scholar
  21. 21.
    Dmitriev BA, Ehlers S, Rietschel ET. Layered murein revisited: a fundamentally new concept of bacterial cell wall structure, biogenesis and function. Med Microbiol Immunol 1999;187(3):173–181PubMedCrossRefGoogle Scholar
  22. 22.
    van Heijenoort J, Gutmann L. Correlation between the structure of the bacterial peptidoglycan monomer unit, the specificity of transpeptidation, and susceptibility to beta-lactams. Proc Natl Acad Sci U S A 2000;97(10):5028–5030PubMedCrossRefGoogle Scholar
  23. 23.
    Glauner B, Holtje JV, Schwarz U. The composition of the murein of Escherichia coli. J Biol Chem 1988;263(21):10088–10095PubMedGoogle Scholar
  24. 24.
    Gmeiner J, Essig P, Martin HH. Characterization of minor fragments after digestion of Escherichia coli murein with endo-N,O-diacetylmuramidase from Chalaropsis, and determination of glycan chain length. FEBS Lett 1982;138(1):109–112PubMedCrossRefGoogle Scholar
  25. 25.
    Labischinski H, Barnickel G, Naumann D, Keller P. Conformational and topological aspects of the three-dimensional architecture of bacterial peptidoglycan. Ann Inst Pasteur Microbiol 1985; 136A(1):45–50CrossRefGoogle Scholar
  26. 26.
    Naumann D, Barnickel G, Bradaczek H, Labischinski H, Giesbrecht P. Infrared spectroscopy, a tool for probing bacterial peptidoglycan. Potentialities of infrared spectroscopy for cell wall analytical studies and rejection of models based on crystalline chitin. Eur J Biochem 1982;125(3):505–515PubMedCrossRefGoogle Scholar
  27. 27.
    Raetz CR. Biochemistry of endotoxins. Annu Rev Biochem 1990;59:129–170PubMedCrossRefGoogle Scholar
  28. 28.
    Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem 2002;71:635–700PubMedCrossRefGoogle Scholar
  29. 29.
    Preston A, Mandrell RE, Gibson BW, Apicella MA. The lipooligosaccharides of pathogenic Gram-negative bacteria. Crit Rev Microbiol 1996;22(3):139–180PubMedCrossRefGoogle Scholar
  30. 30.
    Hancock REW, Brinkman FS. Function of pseudomonas porins in uptake and efflux. Annu Rev Microbiol 2002;56:17–38PubMedCrossRefGoogle Scholar
  31. 31.
    Koronakis V. TolC — the bacterial exit duct for proteins and drugs. FEBS Lett 2003;555(1):66–71PubMedCrossRefGoogle Scholar
  32. 32.
    Draper P. The outer parts of the mycobacterial envelope as permeability barriers. Front Biosci 1998;3:D1253–D1261PubMedGoogle Scholar
  33. 33.
    Liu J, Barry CE, III, Besra GS, Nikaido H. Mycolic acid structure determines the fluidity of the mycobacterial cell wall. J Biol Chem 1996;271(47):29545–29551PubMedCrossRefGoogle Scholar
  34. 34.
    Brennan PJ, Nikaido H. The envelope of mycobacteria. Annu Rev Biochem 1995;64:29–63PubMedCrossRefGoogle Scholar
  35. 35.
    Faller M, Niederweis M, Schulz GE. The structure of a mycobacte-rial outer-membrane channel. Science 2004;303(5661):1189–1192PubMedCrossRefGoogle Scholar
  36. 36.
    Niederweis M. Mycobacterial porins — new channel proteins in unique outer membranes. Mol Microbiol 2003;49(5):1167–1177PubMedCrossRefGoogle Scholar
  37. 37.
    Jann B, and Jann K. Capsules of Escherichia coli. In: Sussman M, ed. Mechanisms of Virulence. Cambridge: Cambridge University Press; 1997Google Scholar
  38. 38.
    Whitfield C, Roberts IS. Structure, assembly and regulation of expression of capsules in Escherichia coli. Mol Microbiol 1999;31(5):1307–1319PubMedCrossRefGoogle Scholar
  39. 39.
    Costerton JW, Irvin RT, Cheng KJ. The bacterial glycocalyx in nature and disease. Annu Rev Microbiol 1981;35:299–324PubMedCrossRefGoogle Scholar
  40. 40.
    Ophir T, and Gutnick DL. A role for exopolysaccharides required in the protection of microorganisms from dessication. Appl Environ Microbiol 1994;60:740–745PubMedGoogle Scholar
  41. 41.
    Berry A, DeVault JD, Chakrabarty AM. High osmolarity is a signal for enhanced algD transcription in mucoid and nonmu-coid Pseudomonas aeruginosa strains. J Bacteriol 1989;171(5): 2312–2317PubMedGoogle Scholar
  42. 42.
    Pickard D, Li J, Roberts M, et al. Characterization of defined ompR mutants of Salmonella typhi: ompR is involved in the regulation of Vi polysaccharide expression. Infect Immun 1994;62(9):3984–3993PubMedGoogle Scholar
  43. 43.
    Sauer K. The genomics and proteomics of biofilm formation. Genome Biol 2003;4(6):219 (Epub 2003 May 27)PubMedCrossRefGoogle Scholar
  44. 44.
    Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2004;2(2):95–108PubMedCrossRefGoogle Scholar
  45. 45.
    Stewart PS. Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol 2002;292(2):107–113PubMedCrossRefGoogle Scholar
  46. 46.
    Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002;15(2):167–193PubMedCrossRefGoogle Scholar
  47. 47.
    Govan J. Alginate biosynthesis and other unusual characteristics associated with the pathogenesis of Pseudomonas aerugi-nosa in cystic fibrosis. In: Griffiths E, Donachie W, Stephen J, ed. Bacterial Infections of the Respiratory and Gastrointestinal Mucosae. Oxford: IRL Press; 1988, pp. 67–96Google Scholar
  48. 48.
    Michalek MT, Mold C, Bremer EG. Inhibition of the alternative pathway of human complement by structural analogues of sialic acid. J Immunol 1988;140(5):1588–1594PubMedGoogle Scholar
  49. 49.
    Platt MW, Correa N, Jr, Mold C. Growth of group B streptococci in human serum leads to increased cell surface sialic acid and decreased activation of the alternative complement pathway. Can J Microbiol 1994;40(2):99–105PubMedCrossRefGoogle Scholar
  50. 50.
    Edwards MS, Kasper DL, Jennings HJ, Baker CJ, Nicholson-Weller A. Capsular sialic acid prevents activation of the alternative complement pathway by type III, group B streptococci. J Immunol 1982;128(3):1278–1283PubMedGoogle Scholar
  51. 51.
    Marques MB, Kasper DL, Pangburn MK, Wessels MR. Prevention of C3 deposition by capsular polysaccharide is a virulence mechanism of type III group B streptococci. Infect Immun 1992;60(10): 3986–3993PubMedGoogle Scholar
  52. 52.
    Bortolussi R, Ferrieri P, Bjorksten B, Quie PG. Capsular K1 polysaccharide of Escherichia coli: relationship to virulence in newborn rats and resistance to phagocytosis. Infect Immun 1979;25(1):293–298PubMedGoogle Scholar
  53. 53.
    Nosanchuk JD, Casadevall A. Cellular charge of Cryptococcus neoformans: contributions from the capsular polysaccharide, melanin, and monoclonal antibody binding. Infect Immun 1997;65(5): 1836–1841PubMedGoogle Scholar
  54. 54.
    Wibawan IW, Lammler C. Influence of capsular neuraminic acid on properties of streptococci of serological group B. J Gen Microbiol 1991;137(Pt 12):2721–2725PubMedGoogle Scholar
  55. 55.
    Mandrell RE, McLaughlin R, Aba Kwaik Y, et al. Lipooligosaccharides (LOS) of some Haemophilus species mimic human glycosphingolipids, and some LOS are sialylated. Infect Immun 1992;60(4):1322–1328PubMedGoogle Scholar
  56. 56.
    Mandrell RE, Griffiss JM, Macher BA. Lipooligosaccharides (LOS) of Neisseria gonorrhoeae and Neisseria meningitidis have components that are immunochemically similar to precursors of human blood group antigens. Carbohydrate sequence specificity of the mouse monoclonal antibodies that recognize crossreacting antigens on LOS and human erythrocytes. J Exp Med 1988;168(1):107–126Google Scholar
  57. 57.
    Vann WF, Schmidt MA, Jann B, Jann K. The structure of the capsular polysaccharide (K5 antigen) of urinary-tract-infective Escherichia coli 010:K5:H4. A polymer similar to desulfo-heparin. Eur J Biochem 1981;116(2):359–364Google Scholar
  58. 58.
    Tamber S, Hancock REW. On the mechanism of solute uptake in Pseudomonas. Front Biosci 2003;8:s472–83PubMedCrossRefGoogle Scholar
  59. 59.
    Huang H, Hancock REW. Genetic definition of the substrate selectivity of outer membrane porin protein OprD of Pseudomonas aeruginosa. J Bacteriol 1993;175(24):7793–7800PubMedGoogle Scholar
  60. 60.
    Vaara M. Increased outer membrane resistance to ethylenediami-netetraacetate and cations in novel lipid A mutants. J Bacteriol 1981;148(2):426–434PubMedGoogle Scholar
  61. 61.
    Hancock REW, Wong PG. Compounds which increase the permeability of the Pseudomonas aeruginosa outer membrane. Antimicrob Agents Chemother 1984;26(1):48–52PubMedGoogle Scholar
  62. 62.
    Stephan J, Mailaender C, Etienne G, Daffe M, Niederweis M. Multidrug resistance of a porin deletion mutant of Myco-bacterium smegmatis. Antimicrob Agents Chemother 2004;48(11): 4163–4170PubMedCrossRefGoogle Scholar
  63. 63.
    Stephan J, Bender J, Wolschendorf F, et al. The growth rate of Mycobacterium smegmatis depends on sufficient porin-mediated influx of nutrients. Mol Microbiol 2005;58(3):714–730PubMedCrossRefGoogle Scholar
  64. 64.
    Paulsen IT. Multidrug efflux pumps and resistance: regulation and evolution. Curr Opin Microbiol 2003;6(5):446–451PubMedCrossRefGoogle Scholar
  65. 65.
    Piddock LJ. Multidrug-resistance efflux pumps — not just for resistance. Nat Rev Microbiol 2006;4(8):629–636PubMedCrossRefGoogle Scholar
  66. 66.
    Yoshida H, Bogaki M, Nakamura S, Ubukata K, Konno M. Nucleotide sequence and characterization of the Staphylococcus aureus norA gene, which confers resistance to quinolones. J Bacteriol 1990;172(12):6942–6949PubMedGoogle Scholar
  67. 67.
    Poole K. Multidrug resistance in Gram-negative bacteria. Curr Opin Microbiol 2001;4(5):500–508PubMedCrossRefGoogle Scholar
  68. 68.
    Poole K. Efflux-mediated multiresistance in Gram-negative bacteria. Clin Microbiol Infect 2004;10(1):12–26PubMedCrossRefGoogle Scholar
  69. 69.
    Ramos JL, Martinez-Bueno M, Molina-Henares AJ, et al. The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 2005;69(2):326–356PubMedCrossRefGoogle Scholar
  70. 70.
    Schweizer HP. Efflux as a mechanism of resistance to antimicrobials in Pseudomonas aeruginosa and related bacteria: unanswered questions. Genet Mol Res 2003;2(1):48–62PubMedGoogle Scholar
  71. 71.
    Cowan SW, Garavito RM, Jansonius JN, et al. The structure of OmpF porin in a tetragonal crystal form. Structure 1995;3(10):1041–1050PubMedCrossRefGoogle Scholar
  72. 72.
    Schirmer T, Keller TA, Wang YF, Rosenbusch JP. Structural basis for sugar translocation through maltoporin channels at 3.1 A resolution. Science 1995;267(5197):512–514PubMedCrossRefGoogle Scholar
  73. 73.
    Locher KP, Rees B, Koebnik R, et al. Transmembrane signaling across the ligand-gated FhuA receptor: crystal structures of free and ferrichrome-bound states reveal allosteric changes. Cell 1998;95(6):771–778PubMedCrossRefGoogle Scholar
  74. 74.
    Cowan SW, Schirmer T, Rummel G, et al. Crystal structures explain functional properties of two E. coli porins. Nature 1992;358(6389):727–733PubMedCrossRefGoogle Scholar
  75. 75.
    Kreusch A, Neubuser A, Schiltz E, Weckesser J, Schulz GE. Structure of the membrane channel porin from Rhodopseudomonas blastica at 2.0 A resolution. Protein Sci 1994;3(1):58–63PubMedCrossRefGoogle Scholar
  76. 76.
    Hernandez-Alles S, Conejo M, Pascual A, Tomas JM, Benedi VJ, Martinez-Martinez L. Relationship between outer membrane alterations and susceptibility to antimicrobial agents in iso-genic strains of Klebsiella pneumoniae. J Antimicrob Chemother 2000;46(2):273–277PubMedCrossRefGoogle Scholar
  77. 77.
    Hernandez-Alles S, Benedi VJ, Martinez-Martinez L, et al. Development of resistance during antimicrobial therapy caused by insertion sequence interruption of porin genes. Antimicrob Agents Chemother 1999;43(4):937–939PubMedGoogle Scholar
  78. 78.
    Pragai Z, Nagy E. In-vitro selection of porin-deficient mutants of two strains of Klebsiella pneumoniae with reduced susceptibilities to meropenem, but not to imipenem. J Antimicrob Chemother 1998;42(6):821–824PubMedCrossRefGoogle Scholar
  79. 79.
    Van Gelder P, Dumas F, Bartoldus I, et al. Sugar transport through maltoporin of Escherichia coli: role of the greasy slide. J Bacteriol 2002;184(11):2994–2999CrossRefGoogle Scholar
  80. 80.
    Moraes TF, Bains M, Hancock RE, Strynadka NC. An arginine ladder in OprP mediates phosphate-specific transfer across the outer membrane. Nat Struct Mol Biol 2007;14(1):85–87PubMedCrossRefGoogle Scholar
  81. 81.
    Fsihi H, Kottwitz B, Bremer E. Single amino acid substitutions affecting the substrate specificity of the Escherichia coli K-12 nucleoside-specific Tsx channel. J Biol Chem 1993;268(23):17495–17503PubMedGoogle Scholar
  82. 82.
    Benz R, Schmid A, Maier C, Bremer E. Characterization of the nucleoside-binding site inside the Tsx channel of Escherichia coli outer membrane. Reconstitution experiments with lipid bilayer membranes. Eur J Biochem 1988;176(3):699–705Google Scholar
  83. 83.
    Trias J, Nikaido H. Protein D2 channel of the Pseudomonas aeru-ginosa outer membrane has a binding site for basic amino acids and peptides. J Biol Chem 1990;265(26):15680–15684PubMedGoogle Scholar
  84. 84.
    Trias J, Nikaido H. Outer membrane protein D2 catalyzes facilitated diffusion of carbapenems and penems through the outer membrane of Pseudomonas aeruginosa. Antimicrob Agents Chemother 1990;34(1):52–57PubMedGoogle Scholar
  85. 85.
    Tamber S, Maier E, Benz R, Hancock REW. Characterization of OpdH, a Pseudomonas aeruginosa porin involved in the uptake of tricarboxylates. J Bacteriol 2007;189(3):929–939PubMedCrossRefGoogle Scholar
  86. 86.
    Koebnik R, Locher KP, Van Gelder P. Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol 2000;37(2):239–253PubMedCrossRefGoogle Scholar
  87. 87.
    Ferguson AD, Hofmann E, Coulton JW, Diederichs K, Welte W. Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. Science 1998;282(5397):2215–2220PubMedCrossRefGoogle Scholar
  88. 88.
    Ferguson AD, Kodding J, Walker G, et al. Active transport of an antibiotic rifamycin derivative by the outer-membrane protein FhuA. Structure (Camb) 2001;9(8):707–716CrossRefGoogle Scholar
  89. 89.
    Ferguson AD, Braun V, Fiedler HP, Coulton JW, Diederichs K, Welte W. Crystal structure of the antibiotic albomycin in complex with the outer membrane transporter FhuA. Protein Sci 2000;9(5):956–963PubMedCrossRefGoogle Scholar
  90. 90.
    Mailaender C, Reiling N, Engelhardt H, Bossmann S, Ehlers S, Niederweis M. The MspA porin promotes growth and increases antibiotic susceptibility of both Mycobacterium bovis BCG and Mycobacterium tuberculosis. Microbiology 2004;150(Pt 4): 853–864PubMedCrossRefGoogle Scholar
  91. 91.
    Raynaud C, Laneelle MA, Senaratne RH, Draper P, Laneelle G, Daffe M. Mechanisms of pyrazinamide resistance in mycobacteria: importance of lack of uptake in addition to lack of pyrazinamidase activity. Microbiology 1999;145 (Pt 6):1359–1367PubMedCrossRefGoogle Scholar
  92. 92.
    Jarlier V, Nikaido H. Permeability barrier to hydrophilic solutes in Mycobacterium chelonei. J Bacteriol 1990;172(3):1418–1423PubMedGoogle Scholar
  93. 93.
    Moore RA, Bates NC, Hancock REW. Interaction of polycationic antibiotics with Pseudomonas aeruginosa lipopolysaccharide and lipid A studied by using dansyl-polymyxin. Antimicrob Agents Chemother 1986;29(3):496–500PubMedGoogle Scholar
  94. 94.
    Bina J, Alm RA, Uria-Nickelsen M, Thoimas SR, Trust TJ, Hancock REW. Helicobacter pylori uptake and efflux: basis for intrinsic susceptibility to antibiotics in vitro. Antimicrob Agents Chemother 2000;44(2):248–254PubMedCrossRefGoogle Scholar
  95. 95.
    Macfarlane EL, Kwasnicka A, Ochs MM, Hancock REW. PhoP-PhoQ homologues in Pseudomonas aeruginosa regulate expression of the outer-membrane protein OprH and polymyxin B resistance. Mol Microbiol 1999;34(2):305–316PubMedCrossRefGoogle Scholar
  96. 96.
    Peterson AA, Hancock REW, McGroarty EJ. Binding of poly-cationic antibiotics and polyamines to lipopolysaccharides of Pseudomonas aeruginosa. J Bacteriol 1985;164(3):1256–1261PubMedGoogle Scholar
  97. 97.
    Peterson AA, Fesik SW, McGroarty EJ. Decreased binding of antibiotics to lipopolysaccharides from polymyxin-resistant strains of Escherichia coli and Salmonella typhimurium. Antimicrob Agents Chemother 1987;31(2):230–237PubMedGoogle Scholar
  98. 98.
    Skurnik M, Venho R, Bengoechea JA, Moriyon I. The lipopoly-saccharide outer core of Yersinia enterocolitica serotype O:3 is required for virulence and plays a role in outer membrane integrity. Mol Microbiol 1999;31(5):1443–1462PubMedCrossRefGoogle Scholar
  99. 99.
    Hancock RE, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 2006;24(12):1551–1557PubMedCrossRefGoogle Scholar
  100. 100.
    Gilleland HE, Jr, Murray RG. Ultrastructural study of polymyxin-resistant isolates of Pseudomonas aeruginosa. J Bacteriol 1976;125(1):267–281PubMedGoogle Scholar
  101. 101.
    Lounatmaa K, Nanninga N. Effect of polymyxin on the outer membrane of Salmonella typhimurium: freeze-fracture studies. J Bacteriol 1976;128(2):665–667PubMedGoogle Scholar
  102. 102.
    Kato A, LatifiT, Groisman EA. Closing the loop: the PmrA/ PmrB two-component system negatively controls expression of its posttranscriptional activator PmrD. Proc Natl Acad Sci U S A 2003;100(8):4706–4711PubMedCrossRefGoogle Scholar
  103. 103.
    Garcia Vescovi E, Soncini FC, Groisman EA. Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell 1996;84(1):165–174PubMedCrossRefGoogle Scholar
  104. 104.
    Wosten MM, Kox LF, Chamnongpol S, Soncini FC, Groisman EA. A signal transduction system that responds to extracellular iron. Cell 2000;103(1):113–125PubMedCrossRefGoogle Scholar
  105. 105.
    Bader MW, Sanowar S, Daley ME, et al. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 2005;122(3):461–472PubMedCrossRefGoogle Scholar
  106. 106.
    Nummila K, Kilpelainen I, Zahringer U, Vaara M, Helander IM. Lipopolysaccharides of polymyxin B-resistant mutants of Escherichia coli are extensively substituted by 2-aminoethyl pyrophosphate and contain aminoarabinose in lipid A. Mol Microbiol 1995;16(2):271–278PubMedCrossRefGoogle Scholar
  107. 107.
    Guo L, Lim KB, Poduje CM, et al. Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell 1998;95(2):189–198PubMedCrossRefGoogle Scholar
  108. 108.
    Guina T, Yi EC, Wang H, Hackett M, Miller SI. A PhoP-regulated outer membrane protease of Salmonella enterica serovar Typhimurium promotes resistance to alpha-helical antimicrobial peptides. J Bacteriol 2000;182(14):4077–4086PubMedCrossRefGoogle Scholar
  109. 109.
    McPhee JB, Lewenza S, Hancock REW. Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Mol Microbiol 2003;50(1):205–217PubMedCrossRefGoogle Scholar
  110. 110.
    Peschel A, Sahl HG. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 2006;4(7):529–536PubMedCrossRefGoogle Scholar
  111. 111.
    Vaara M, Nurminen M. Outer membrane permeability barrier in Escherichia coli mutants that are defective in the late acyltrans-ferases of lipid A biosynthesis. Antimicrob Agents Chemother 1999;43(6):1459–1462PubMedGoogle Scholar
  112. 112.
    Snyder DS, McIntosh TJ. The lipopolysaccharide barrier: correlation of antibiotic susceptibility with antibiotic permeability and fluorescent probe binding kinetics. Biochemistry 2000;39(38):11777–11787PubMedCrossRefGoogle Scholar
  113. 113.
    Lambert PA. Cellular impermeability and uptake of biocides and antibiotics in Gram-positive bacteria and mycobacteria. Symp Ser Soc Appl Microbiol 2002;(31):46S–54SGoogle Scholar
  114. 114.
    Chopra I, Ball P. Transport of antibiotics into bacteria. Adv Microb Physiol 1982;23:183–240PubMedCrossRefGoogle Scholar
  115. 115.
    Hancock RE. Aminoglycoside uptake and mode of action-with special reference to streptomycin and gentamicin. II. Effects of aminoglycosides on cells. J Antimicrob Chemother 1981;8(6):429–445PubMedCrossRefGoogle Scholar
  116. 116.
    Bryan LE, Kwan S. Roles of ribosomal binding, membrane potential, and electron transport in bacterial uptake of streptomycin and gentamicin. Antimicrob Agents Chemother 1983;23(6):835–845PubMedGoogle Scholar
  117. 117.
    Westbrock-Wadman S, Sherman DR, Hickey MJ, et al. Characterization of a Pseudomonas aeruginosa efflux pump contributing to aminoglycoside impermeability. Antimicrob Agents Chemother 1999;43(12):2975–2983PubMedGoogle Scholar
  118. 118.
    Vaara M, Vaara T. Sensitization of Gram-negative bacteria to antibiotics and complement by a nontoxic oligopeptide. Nature 1983;303(5917):526–528PubMedCrossRefGoogle Scholar
  119. 119.
    Falagas ME, Bliziotis IA. Pandrug-resistant Gram-negative bacteria: the dawn of the post-antibiotic era? Int J Antimicrob Agents 2007Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Joseph B. McPhee
    • 1
  • Sandeep Tamber
    • 2
  • Michelle D. Brazas
    • 3
  • Shawn Lewenza
    • 4
  • Robert E. W. Hancock
    • 5
  1. 1.Postdoctoral Fellow, Center for Infectious DiseaseState University of New York — Stony BrookStony BrookUSA
  2. 2.Postdoctoral Fellow, Dartmouth College Medical SchoolDartmouth CollegeHanoverUSA
  3. 3.Bioinformatics Education, Research AssociateOntario Institute for Cancer ResearchTorontoCanada
  4. 4.Department of Microbiology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
  5. 5.Centre for Microbial Diseases and Immunity ResearchUniversity of British ColumbiaVancouverCanada

Personalised recommendations