Advertisement

Animal Models and Fetal Programming of the Polycystic Ovary Syndrome

  • David H. Abbott
  • Daniel A. Dumesic
  • Jon E. Levine
  • Andrea Dunaif
  • Vasantha Padmanabhan
Part of the Contemporary Endocrinology book series (COE)

Abstract

At least 28 animal models provide insight into the etiological and pathophysiological basis of polycystic ovary syndrome (PCOS). About 50% of them, however, either do not show sufficient traits meriting designation of a PCOS phenotype or exhibit alternate features mimicking other disorders, such as hyperprolactinemia. In contrast, animal models of fetal programming through androgen excess show remarkable resilience and reliability in replicating PCOS, including metabolic defects in males, and therefore strongly implicate a fetal etiology in the developmental origins of PCOS. This chapter reviews the relevance of animal models for PCOS and their potential value for providing insight into the etiology and pathophysiology of this disorder.

Key Words

Polycystic ovary syndrome rhesus monkeys androgens prenatal fetal programming animal model anovulation hyperandrogenism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hague WM, Adams J, Reeders ST, Peto TEA, Jacobs HS. Familial polycystic ovaries: a genetic disease? Clin Endocrinol 1988;29:593–605.Google Scholar
  2. 2.
    Govind A, Obhrai MS, Clayton RN. Polycystic ovaries are inherited as an autosomal dominant trait: analysis of 29 polycystic ovary syndrome and 10 control families. J Clin Endocrinol Metab 1999;84:38–43.PubMedCrossRefGoogle Scholar
  3. 3.
    Legro RS. The genetics of polycystic ovary syndrome. Am J Med 1995;16;98(1A):9S–16S.CrossRefGoogle Scholar
  4. 4.
    Legro RS, Spielman R, Urbanek M, Driscoll D, Strauss JF 3rd, Dunaif A. Phenotype and genotype in polycystic ovary syndrome. Recent Prog Horm Res 1998;53:217–256.PubMedGoogle Scholar
  5. 5.
    Ehrmann DA, Barnes RB, Rosenfield RL. Polycystic ovary syndrome as aform of functional ovarian hyperandrogenism due to dysregulaton of androgen secretion. Endocr Rev 1995;16:322–353.PubMedCrossRefGoogle Scholar
  6. 6.
    Dunaif A. Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr Rev 1997;18:774–800.PubMedCrossRefGoogle Scholar
  7. 7.
    Azziz R, Woods KS, Reyna R, Key TJ, Knochenhauer ES, Yildiz BO. The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin Endocrinol Metab 2004;89:2745–2749.PubMedCrossRefGoogle Scholar
  8. 8.
    Arslanian SA, Lewy VD, Danadian K. Glucose intolerance in obese adolescents with polycystic ovary syndrome: roles of insulin resistance and beta-cell dysfunction and risk of cardiovascular disease. J Clin Endocrinol Metab 2001;86:66–71.PubMedCrossRefGoogle Scholar
  9. 9.
    Peppard HR, Marfori J, Iuorno MJ, Nestler JE. Prevalence of polycystic ovary syndrome among premenopausal women with type 2 diabetes. Diabetes Care 2001;24:1050–1052.PubMedCrossRefGoogle Scholar
  10. 10.
    Legro RS, Strauss JF. Molecular progress in infertility: polycystic ovary syndrome. Fertil Steril 2003;78:569–576.CrossRefGoogle Scholar
  11. 11.
    Abbott DH, Barnett DK, Bruns CM, Dumesic DA. Androgen excess fetal programming of female reproduction: a developmental aetiology for polycystic ovary syndrome? Hum Reprod Update 2005;11:357–374.PubMedCrossRefGoogle Scholar
  12. 12.
    Zawadzki JA, Dunaif A. Diagnostic criteria for polycystic ovary syndrome: towards a rational approach. In: Dunaif A, Givens JR, Haseltine FP, Merriam GR, eds. Polycystic Ovary Syndrome. Boston: Blackwell Scientific, 1992:377–384.Google Scholar
  13. 13.
    The Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod 2004;19:41–47.CrossRefGoogle Scholar
  14. 14.
    Azziz R. Diagnostic criteria for polycystic ovary syndrome: a reappraisal. Fertil Steril 2005;83:1343–1346.PubMedCrossRefGoogle Scholar
  15. 15.
    Chang RJ. A practical approach to the diagnosis of polycystic ovary syndrome. AmJ Obstet Gynecol2004;191:713–717.Google Scholar
  16. 16.
    Arslanian SA, Witchell S. Premature pubarche, insulin resistance, and adolescent polycystic ovary syndrome. In: Chang RJ, Heindel JJ, Dunaif A, eds. Polycystic Ovary Syndrome. New York: Marcel Dekker, Inc., 2002:37–53.Google Scholar
  17. 17.
    Rosenfield RL, Ghai K, Ehrmann DA, Barnes RB. Diagnosis of the polycystic ovary syndrome in adolescence: comparison of adolescent and adult hyperandrogenism. J Pediatr Endocrinol Metab 2000;13(Suppl 5):1285–1289.Google Scholar
  18. 18.
    Taylor AE, McCourt B, Martin KA, et al. Determinants of abnormal gonadotropin secretion in clinically defined women with polycystic ovary syndrome. J Clin Endocrinol Metab 1997;82:2248–2256.PubMedCrossRefGoogle Scholar
  19. 19.
    Abbott DH, Foong SC, Barnett DK, Dumesic DA. Nonhuman primates contribute unique understanding to anovulatory infertility in women. ILAR J 2004;45:116–131.PubMedGoogle Scholar
  20. 20.
    Risma KA, Hirshfield AN, Nilson JH. Elevated luteinizing hormone in prepubertal transgenic mice causes hyperandrogenemia, precocious puberty, and substantial ovarian pathology. Endocrinology 1997;138:3540–3547.PubMedCrossRefGoogle Scholar
  21. 21.
    Ward RC, Costoff A, Mahesh VB. The induction of polycystic ovaries in mature cycling rats by the administration of dehydroepiandrosterone (DHA). Biol Reprod 1978;18:614–623.PubMedCrossRefGoogle Scholar
  22. 22.
    Mahesh VB, Mills TM, Bagnell CA, Conway BA. Animal models for study of polycystic ovaries and ovarian atresia. In: Mahesh VB, Dhindsa DS, Anderson E, Katra SP, eds. Regulation of Ovarian and Testicular Function. New York: Plenum Press, 1988, pp. 237–257.Google Scholar
  23. 23.
    Ruiz A, Aguilar R, Tébar M, Gaytán F, Sánchez-Criado E. RU486-treated rats show endocrine and morphological responses to therapies analogous to responses of women with polycystic ovary syndrome treated with similar therapies. Biol Reprod 1996;55:1284–1291.PubMedCrossRefGoogle Scholar
  24. 24.
    Hillier SG, Groom GV, Boyns AR, Cameron EH. Development of polycystic ovaries in rats actively immunised against T-3-BSA. Nature 1974;250:433–434.PubMedCrossRefGoogle Scholar
  25. 25.
    Beloosesky R, Gold R, Almog B, et al. Induction of polycystic ovary by testosterone in immature female rats: modulation of apoptosis and attenuation of glucose/insulin ratio. Int J Mol Med 2004;14:207–215.PubMedGoogle Scholar
  26. 26.
    Bogovich K. Induction of ovarian follicular cysts in the pregnant rat by human chorionic gonadotropin. Biol Reprod 1991;45:34–42.PubMedCrossRefGoogle Scholar
  27. 27.
    Poretsky L, Clemons J, Bogovich K. Hyperinsulinemia and human chorionic gonadotropin synergistically promote the growth of ovarian follicular cysts in rats. Metabolism 1992;41:903–910.PubMedCrossRefGoogle Scholar
  28. 28.
    Damario MA, Bogovich K, Liu HC, Rosenwaks Z, Poretsky L. Synergistic effects of insulin-like growth factor-I and human chorionic gonadotropin in the rat ovary. Metabolism 2000;49:314–320.PubMedCrossRefGoogle Scholar
  29. 29.
    Dzienis A, Majewski M, Wojtkiewicz J, Piskula M, Jana B. Adrenergic innervation and steroidogenic activity of cystic porcine ovaries. Rocz Akad Med Bialymst 2004;49(Suppl 1):114–116.PubMedGoogle Scholar
  30. 30.
    Kafali H, Iriadam M, Ozardah I, Demir N. Letrozole-induced polycystic ovaries in the rat: a new model for cystic ovarian disease. Arch Med Res 2004;35:103–108.PubMedCrossRefGoogle Scholar
  31. 31.
    Fisher CR, Graves KH, Parlow AF, Simpson ER. Characterization of mice deficient in aromatase (ArKO) because of targeted disruption of the cyp19 gene. Proc Natl Acad Sci USA 1998;95:6965–6970.PubMedCrossRefGoogle Scholar
  32. 32.
    Zachos NC, Billiar RB, Albrecht ED, Pepe GJ. Developmental regulation of baboon fetal ovarian maturation by estrogen. Biol Reprod 2002;67:1148–1156.PubMedCrossRefGoogle Scholar
  33. 33.
    Faiman C, Reyes FI, Dent DW, Fuller GB, Hobson WC, Thliveris JA. Effects of long-term testosterone exposure on ovarian function and morphology in the rhesus monkey. Anat Rec 1988;222:245–251.PubMedCrossRefGoogle Scholar
  34. 34.
    Billiar RB, Richardson D, Anderson E, Mahajan D, Little B. The effect of chronic and acyclic elevation of circulating androstenedione or estrone concentrations on ovarian function in the rhesus monkey. Endocrinology 1985;16:2209–2220.CrossRefGoogle Scholar
  35. 35.
    Mahajan DK. Polycystic ovarian disease: animal models. Endocrinol Metab Clin North Am 1988;17:705–732.PubMedGoogle Scholar
  36. 36.
    Billiar RB, Richardson D, Schwartz R, Posner B, Little B. Effect of chronically elevated androgen or estrogen on the glucose tolerance test and insulin response in female rhesus monkeys. Am J Obstet Gynecol 1987;157:1297–1302.PubMedGoogle Scholar
  37. 37.
    Vendola K, Zhou J, Wang J, Famuyiwa OA, Bievre M, Bondy CA. Androgens promote oocyte insulin-like growth factor I expression and initiation of follicle development in the primate ovary. Biol Reprod 1999;61:353–357.PubMedCrossRefGoogle Scholar
  38. 38.
    Stubbs SA, Hardy K, Da Silva-Buttkus P, Stark J, Webber LJ, Flanagan AM, Themmen AP, Visser JA, Groome NP, Franks S. Anti-Mullerian hormone (AMH) protein expression is reduced during the initial stages of follicle development in human polycystic ovaries. J Clin Endocrinol Metab 2005;90:5536–5543.PubMedCrossRefGoogle Scholar
  39. 39.
    Barker DJP. Mothers, Babies and Health in Later Life. Edinburgh: Churchill Livingstone, 1994.Google Scholar
  40. 40.
    Abbott DH, Dumesic DA, Eisner Kemnitz JW, Goy RW. The prenatally androgenized female rhesus monkey as a model for polycystic ovarian syndrome. In: Azziz R, Nestler JE, Dewailly D, eds. Androgen Excess Disorders in Women. Philadelphia: Lippincott-Raven Press, 1997:369–382.Google Scholar
  41. 41.
    Abbott DH, Bruns CM, Barnett DK, Dumesic DA. Fetal programming of polycystic ovary syndrome. In:Kovacs WG, Norman RL, eds. Polycystic Ovary Syndrome, 2nd ed. Cambridge: Cambridge University Press, 2006.Google Scholar
  42. 42.
    Padmanabhan V, Manikkam M, Recabarren S, Foster D. Prenatal testosterone programs reproductive and metabolic dysfunction in the female. Mol Cell Endocrinol 2005;246:165–174.CrossRefGoogle Scholar
  43. 43.
    Barbieri RL, Saltzman DH, Torday JS, Randall RW, Frigoletto FD, Ryan KJ. Elevated concentrations of the betasubunit of human chorionic gonadotropin and testosterone in the amniotic fluid of gestations of diabetic mothers. Am J Obstet Gynecol 1986;154:1039–1043.PubMedGoogle Scholar
  44. 44.
    Barnes RB, Rosenfield RL, Ehrmann DA, et al. Ovarian hyperandrogynism as a result of congenital adrenal virilizing disorders: evidence for perinatal masculinization of neuroendocrine function in women. J Clin Endocrinol Metab 1994;79:1328–1333.PubMedCrossRefGoogle Scholar
  45. 45.
    Sir-Petermann T, Maliqueo M, Angel B, Lara HE, Perez-Bravo F, Recabarren SE. Maternal serum androgens in pregnant women with polycystic ovarian syndrome: possible implications in prenatal androgenization. Hum Reprod 2002;17:2573–2579.PubMedCrossRefGoogle Scholar
  46. 46.
    Gitau R, Adams D, Fish NM, Glover V. Fetal plasma testosterone correlates positively with cortisol. Arch Dis Child Fetal Neonatal Ed 2005;90:F166–F169.PubMedCrossRefGoogle Scholar
  47. 47.
    West C, Foster DL, Evans NP, Robinson J, Padmanabhan V. Intrafollicular activin availability is altered in prenatal-androgenized lambs. Mol Cell Endocrinol 2001;185:51–59.PubMedCrossRefGoogle Scholar
  48. 48.
    Sullivan SD, Moenter SM. Prenatal androgens alter GABAergic drive to gonadotropin-releasing hormone neurons: implications for a common fertility disorder. Proc Natl Acad Sci USA 2004;101:7129–7134.PubMedCrossRefGoogle Scholar
  49. 49.
    Foecking EM, Szabo M, Schwartz NB, Levine JF. Neuroendocrine consequences of prenatal androgen exposure in the female rat: absence of luteinizing hormone surges, suppression of progesterone receptor gene expression, and acceleration of the gonadotropin-releasing hormone pulse generator. Biol Reprod 2005;72:1475–1483.PubMedCrossRefGoogle Scholar
  50. 50.
    Dumesic DA, Schramm RD, Abbott DH. Early origins of polycystic ovary syndrome (PCOS). Reprod Fertil Dev 2005;17:349–360.PubMedCrossRefGoogle Scholar
  51. 51.
    Recabarren SE, Padmanabhan V, Codner E, et al. Postnatal developmental consequences of altered insulin sensitivity in female sheep treated prenatally with testosterone. Am J Physiol Endocrinol Metab 2005;E807-E806.Google Scholar
  52. 52.
    Ibanez L, Potau N, Zampolli M, et al. Hyperinsulinemia in postpubertal girls with a history of premature pubarche and functional ovarian hyperandrogenism. J Clin Endocrinol Metab 1996:81:1237–1243.PubMedCrossRefGoogle Scholar
  53. 53.
    Sir-Petermann T, Hitchsfeld C, Maliqueo M, et al. Birth weight in offspring of mothers with polycystic ovarian syndrome. Hum Reprod 2005;20:2122–2126.PubMedCrossRefGoogle Scholar
  54. 54.
    Laitinen J, Taponen S, Martikainen H, et al. Body size from birth to adulthood as a predictor of self-reported polycystic ovary syndrome symptoms. Int J Obes Relat Metab Disord 2003;27:710–715.PubMedCrossRefGoogle Scholar
  55. 55.
    Sadrzadeh S, Klip WA, Broekmans FJ, et al. OMEGA Project Group. Birth weight and age at menarche in patients with polycystic ovary syndrome or diminished ovarian reserve, in a retrospective cohort. Hum Reprod 2003:18:2225–2230.PubMedCrossRefGoogle Scholar
  56. 56.
    Manikkam M, Crespi EJ, Doop DD, et al. Fetal programming: prenatal testosterone excess leads to fetal growth retardation and postnatal catch-up growth in sheep. Endocrinology 2004;145:790–798.PubMedCrossRefGoogle Scholar
  57. 57.
    Slob AK, den Hamer R, Woutersen PJ, van der Werff ten Bosch JJ. Prenatal testosterone propionate and postnatal ovarian activity in the rat. Acta Endocrinol (Copenh) 1983;103:420–427.Google Scholar
  58. 58.
    Wolf CJ, LeBlanc GA, Gray LE Jr. Interactive effects of vinclozolin and testosterone propionate on pregnancy and sexual differentiation of the male and female SD rat. Toxicol Sci 2004;78:135–143.PubMedCrossRefGoogle Scholar
  59. 59.
    Wood JR, Ho CK, Nelson-Degrave VL, McAllister JM, Strauss JF III. The molecular signature of polycystic ovary syndrome (PCOS) theca cells defined by gene expression profiling. J Reprod Immunol 2004;63:51–60.PubMedCrossRefGoogle Scholar
  60. 60.
    Yildiz BO, Yarali H, Oguz H, Bayraktar M. Glucose intolerance, insulin resistance, and hyperandrogenemia in first degree relatives of women with polycystic ovary syndrome. J Clin Endocrinol Metab 2003;88:2031–2036.PubMedCrossRefGoogle Scholar
  61. 61.
    Fox R. Prevalence of a positive family history of type 2 diabetes in women with polycystic ovarian disease. Gynecol Endocrinol 1999;13:390–393.PubMedCrossRefGoogle Scholar
  62. 62.
    Sir-Petermann T, Angel B, Maliqueo M, Carvajal F, Santos JL, Perez-Bravo F. Prevalence of Type II diabetes mellitus and insulin resistance in parents of women with polycystic ovary syndrome. Diabetologia 2002;45:959–964.PubMedCrossRefGoogle Scholar
  63. 63.
    Bruns CM, Baum ST, Colman RJ, et al. Insulin resistance and impaired insulin secretion in prenatally androgenized male rhesus monkeys. J Clin Endocrinol Metab 2004;89:6218–6223.PubMedCrossRefGoogle Scholar
  64. 64.
    Resko JA, Buhl AE, Phoenix CH. Treatment of pregnant rhesus macaques with testosterone propionate: observations on its fate in the fetus. Biol Reprod 1987;37:1185–1191.PubMedCrossRefGoogle Scholar
  65. 65.
    Sarma HN, Manikkam M, Herkimer C, Dell’Orco J, Foster DL, Padmanabhan V. Fetal programming: excess prenatal testosterone reduces postnatal LH, but not FSH responsiveness to estradiol negative feedback in the female. Endocrinology 2005;146:4281–4291.PubMedCrossRefGoogle Scholar
  66. 66.
    Dumesic DA, Schramm RD, Peterson E, Paprocki AM, Zhou R, Abbott DH. Impaired developmental competence of oocytes in adult prenatally androgenized female rhesus monkeys undergoing gonadotropin stimulation for in vitro fertilization. J Clin Endocrinol Metab 2002;87:1111–1119.PubMedCrossRefGoogle Scholar
  67. 67.
    Bagavandoss P, England B, Asirvatham A, Bruot BC. Transient induction of polycystic ovary-like syndrome in immature hypothyroid rats. Proc Soc Exp Biol Med 1998;219:77–84.PubMedGoogle Scholar
  68. 68.
    Brawer JR, Munoz M, Farookhi R. Development of the polycystic ovarian condition (PCO) in the estradiol-valerate treated rat. Biol Reprod 1986;35:647–655.PubMedCrossRefGoogle Scholar
  69. 69.
    Quant LM, Hutz RJ. Induction by estradiol 17β of polycystic ovaries in the guinea pig. Biol Reprod 1993;48:1088–1094.CrossRefGoogle Scholar
  70. 70.
    Lagace DC, Nachtigal MW. Valproic acid fails to induce polycystic ovary syndrome in female rats. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:587–594.PubMedCrossRefGoogle Scholar
  71. 71.
    Ferin M, Morrell M, Xiao E, et al. Endocrine and metabolic responses to long-term monotherapy with antiepileptic drug valproate in the normally cycling rhesus monkey. J Clin Endocrinol Metab 2003;88:2908–2915.PubMedCrossRefGoogle Scholar
  72. 72.
    Furudate S, Nakano T. PMSG-induced persistent estrus in rats as a model for polycystic ovary disease: characteristics and restoration to the normal cycle. Exp Anim 1989;38:121–126.Google Scholar
  73. 73.
    Jones HM, Vernon MW, Rush ME. Systematic studies invalidate the neonatally androgenized rat as a model for polycystic ovary disease. Biol Reprod 1987;36:1253–1265.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2006

Authors and Affiliations

  • David H. Abbott
    • 1
  • Daniel A. Dumesic
    • 2
    • 3
  • Jon E. Levine
    • 4
  • Andrea Dunaif
    • 5
  • Vasantha Padmanabhan
    • 6
  1. 1.National Primate Research Center and Department of Obstetrics and GynecologyUniversity of WisconsinMadison
  2. 2.National Primate Research CenterUniversity of WisconsinMadison
  3. 3.Reproductive Medicine & Infertility AssociatesWoodbury
  4. 4.Department of Neurobiology and PhysiologyNorthwestern UniversityEvanston
  5. 5.Division of Endocrinology, Metabolism and Molecular Medicine, The Feinberg School of MedicineNorthwestern UniversityChicago
  6. 6.Departments of Pediatrics, Obstetrics and Gynecology, and Molecular and Integrative PhysiologyUniversity of Michigan Reproductive Sciences ProgramAnn Arbor

Personalised recommendations