Advertisement

Genome Comparisons of Diverse Staphylococcus aureus Strains

  • Martin J. McGavin

Abstract

As with other pathogens, the genome of Staphylococcus aureus can be subdivided into core and accessory segments, comprising roughly 75 and 25% of the genome. Particular attention is given to the MRSA252 strain, which is phylogenetically distinct from other S. aureus genomes, is epidemic in the United Kingdom and North America, and is closely related to methicillin-susceptible clinical isolates that are hypervirulent in musculoskeletal infection models. This strain contains a number of unique or unusual small-scale variations compared with other genomes, and their potential significance as mediators of virulence is discussed. With respect to horizontally transferred virulence determinants of the core genome, another focus is to assess the integration sites of toxincarrying prophage, in terms of a potential cost-benefit relationship. The Staphylococcal Cassette Chromosome is discussed in terms of its role in promoting the evolution of antibiotic resistance, and as a potential mediator of genetic diversity and gene shuffling between species. The association of pathogenicity islands (SaPI) with temperate prophage is considered, with emphasis on a segment of the genome flanking the coa (coagulase) allele, and the diversity of SaPI content, such that there does not appear to be a single SaPI that is associated with the majority of virulent strains. The vSaoα and vSaβ genomic islands, which can be variable in composition, but common to all strains, are discussed in terms of how they may provide insight into the infection strategy of S. aureus, and how vSaβ may be coevolving in association with antibiotic-resistant hospital-adapted strains.

Key Words

Staphylococcus aureus MRSA virulence antibiotic resistance genome structure and evolution pathogenicity island horizontal transfer genetic diversity phage lysogeny 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gill, S., Fouts, D. E., Archer, G. L., et al. (2005) Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J. Bacteriol. 187, 2426–2438.PubMedCrossRefGoogle Scholar
  2. 2.
    Baba, T., Takeuchi, F., Kuroda, M., et al. (2002) Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359, 1819–1827.PubMedCrossRefGoogle Scholar
  3. 3.
    Holden, M. T., Feil, E. J., Lindsay, J. A., et al. (2004) Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proc. Natl. Acad. Sci. USA 101, 9786–9791.PubMedCrossRefGoogle Scholar
  4. 4.
    Kuroda, M., Ohta, T., Uchiyama, I., et al. (2001) Whole genome sequencing of meticillinresistant Staphylococcus aureus. Lancet 357, 1225–1240.PubMedCrossRefGoogle Scholar
  5. 5.
    Fleischmann, R. D., Adams, M. D., White, O., et al. (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512.PubMedCrossRefGoogle Scholar
  6. 6.
    Peacock, S. J., de Silva, I., and Lowy, F. D. (2001) What determines nasal carriage of Staphylococcus aureus? Trends Microbiol. 9, 605–610.PubMedCrossRefGoogle Scholar
  7. 7.
    Foster, T. J. (2004) The Staphylococcus aureus “superbug”. J. Clin. Invest. 114, 1693–1696.PubMedCrossRefGoogle Scholar
  8. 8.
    Jarraud, S., Mougel, C., Thioulouse, J., et al. (2002) Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infect. Immun. 70, 631–641.PubMedCrossRefGoogle Scholar
  9. 9.
    Anonymous. (2003) Emergence of PVL-producing strains of Staphylococcus aureus. CDR Weekly 13, 5–6.Google Scholar
  10. 10.
    Gillet, Y., Issartel, B., Vanhems, P., et al. (2002) Association between Staphylococcus aureus strains carrying gene for Panton-Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. Lancet 359, 753–759.PubMedCrossRefGoogle Scholar
  11. 11.
    Anonymous. (2002) From the Centers for Disease Control. Staphylococcus aureus resistant to vancomycin—United States, 2002. JAMA 288, 824–825.CrossRefGoogle Scholar
  12. 12.
    Anonymous. (2002) Vancomycin-resistant Staphylococcus aureus—PA, October 11, 2002. MMWR. Morb. Mortal. Wkly. Rep. 51, 902.Google Scholar
  13. 13.
    Weigel, L. M., Clewell, D. B., Gill, S. R., et al. (2003) Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 302, 1569–1571.PubMedCrossRefGoogle Scholar
  14. 14.
    Lindsay, J. A. and Holden, M. T. (2004) Staphylococcus aureus: superbug, super genome? Trends Microbiol. 12, 378–385.PubMedCrossRefGoogle Scholar
  15. 15.
    Hiramatsu, K., Watanabe, S., Takeuchi, F., Ito, T., and Baba, T. (2004) Genetic characterization of methicillin-resistant Staphylococcus aureus. Vaccine 22(Suppl 1), S5–S8.PubMedCrossRefGoogle Scholar
  16. 16.
    Johnson, A. P., Aucken, H. M., Cavendish, S., et al. (2001) Dominance of EMRSA-15 and-16 among MRSA causing nosocomial bacteraemia in the UK: analysis of isolates from the European Antimicrobial Resistance Surveillance System (EARSS). J. Antimicrob. Chemother. 48, 143–144.PubMedCrossRefGoogle Scholar
  17. 17.
    McDougal, L. K., Steward, C. D., Killgore, G. E., Chaitram, J. M., McAllister, S. K., and Tenover, F. C. (2003) Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database. J. Clin. Microbiol. 41, 5113–5120.PubMedCrossRefGoogle Scholar
  18. 18.
    Simor, A. E., Ofner-Agostini, M., Bryce, E., McGeer, A., Paton, S., and Mulvey, M. R. (2002) Laboratory characterization of methicillin-resistant Staphylococcus aureus in Canadian hospitals: results of 5 years of National Surveillance, 1995-1999. J. Infect. Dis. 186, 652–660.PubMedCrossRefGoogle Scholar
  19. 19.
    Enright, M. C., Robinson, D. A., Randle, G., Feil, E. J., Grundmann, H., and Spratt, B. G. (2002) The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc. Natl. Acad. Sci. USA 99, 7687–7692.PubMedCrossRefGoogle Scholar
  20. 20.
    Feil, E. J., Cooper, J. E., Grundmann, H., et al. (2003) How clonal is Staphylococcus aureus? J. Bacteriol. 185, 3307–3316.PubMedCrossRefGoogle Scholar
  21. 21.
    Dryla, A., Gelbmann, D., von Gabain, A., and Nagy, E. (2003) Identification of a novel iron regulated staphylococcal surface protein with haptoglobin-haemoglobin binding activity. Mol. Microbiol. 49, 37–53.PubMedCrossRefGoogle Scholar
  22. 22.
    Komatsuzawa, H., Ohta, K., Sugai, M., et al. (2000) Tn551-mediated insertional inactivation of the fmtB gene encoding a cell wall-associated protein abolishes methicillin resistance in Staphylococcus aureus. J. Antimicrob. Chemother. 45, 421–431.PubMedCrossRefGoogle Scholar
  23. 23.
    Wootton, M., Avison, M. B., Bennett, P. M., Howe, R. A., MacGowan, A. P., and Walsh, T. R. (2004) Genetic analysis of 17 genes in Staphylococcus aureus with reduced susceptibility to vancomycin (VISA) and heteroVISA. J. Antimicrob. Chemother. 53, 406–407.PubMedCrossRefGoogle Scholar
  24. 24.
    Howe, R. A., Monk, A., Wootton, M., Walsh, T. R., and Enright, M. C. (2004) Vancomycin susceptibility within methicillin-resistant Staphylococcus aureus lineages. Emerg. Infect. Dis. 10, 855–857.PubMedGoogle Scholar
  25. 25.
    Pallen, M. J. (2002) The ESAT-6/WXG100 superfamily—and a new Gram-positive secretion system? Trends Microbiol. 10, 209–212.PubMedCrossRefGoogle Scholar
  26. 26.
    Stanley, S. A., Raghavan, S., Hwang, W. W., and Cox, J. S. (2003) Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc. Natl. Acad. Sci. USA 100, 13,001–13,006.PubMedCrossRefGoogle Scholar
  27. 27.
    Burts, M. L., Williams, W. A., Debord, K., and Missiakas, D. M. (2005) EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. Proc. Natl. Acad. Sci. USA 102, 1169–1174.PubMedCrossRefGoogle Scholar
  28. 28.
    Hsu, T., Hingley-Wilson, S. M., Chen, B., et al. (2003) The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc. Natl. Acad. Sci. USA 100, 12,420–12,425.PubMedCrossRefGoogle Scholar
  29. 29.
    Rowlands, S. J., Dyke, K. G. H., Curnock, S. P., Boocock, M. R., and Stark, W. M. (2000) Determination of the integration site of Tn552 in Staphylococcus aureus NCTC9789. Unpublished; GenBank Accession CAB72943.Google Scholar
  30. 30.
    Gillaspy, A. F., Patti, J. M., Pratt, F. L. Jr., Iandolo, J. J., and Smeltzer, M. S. (1997) The Staphylococcus aureus collagen adhesin-encoding gene (cna) is within a discrete genetic element. Gene 196, 239–248.PubMedCrossRefGoogle Scholar
  31. 31.
    Switalski, L. M., Patti, J. M., Butcher, W., Gristina, A. G., Speziale, P., and Hook, M. (1993) A collagen receptor on Staphylococcus aureus strains isolated from patients with septic arthritis mediates adhesion to cartilage. Mol. Microbiol. 7, 99–107.PubMedCrossRefGoogle Scholar
  32. 32.
    de Bentzmann, S., Tristan, A., Etienne, J., Brousse, N., Vandenesch, F., and Lina, G. (2004) Staphylococcus aureus isolates associated with necrotizing pneumonia bind to basement membrane type I and IV collagens and laminin. J. Infect. Dis. 190, 1506–1515.PubMedCrossRefGoogle Scholar
  33. 33.
    Patti, J. M. and Hook, M. (1994) Microbial adhesins recognizing extracellular matrix macromolecules. Curr. Opin. Cell. Biol. 6, 752–758.PubMedCrossRefGoogle Scholar
  34. 34.
    Jonsson, K., Signas, C., Muller, H. P., and Lindberg, M. (1991) Two different genes encode fibronectin binding proteins in Staphylococcus aureus. The complete nucleotide sequence and characterization of the second gene. Eur. J. Biochem. 202, 1041–1048.PubMedCrossRefGoogle Scholar
  35. 35.
    Greene, C., Vaudaux, P. E., Francois, P., Proctor, R. A., McDevitt, D., and Foster, T. J. (1996) A low-fibronectin-binding mutant of Staphylococcus aureus 879R4S has Tn918 inserted into its single fnb gene. Microbiology 142(Pt 8), 2153–2160.PubMedCrossRefGoogle Scholar
  36. 36.
    Rice, K., Huesca, M., Vaz, D., and McGavin, M. J. (2001) Variance in fibronectin binding and fnb locus polymorphisms in Staphylococcus aureus: identification of antigenic variation in a fibronectin binding protein adhesin of the epidemic CMRSA-1 strain of methicillin-resistant S. aureus. Infect. Immun. 69, 3791–3799.PubMedCrossRefGoogle Scholar
  37. 37.
    Cheung, A. L. and Zhang, G. (2002) Global regulation of virulence determinants in Staphylococcus aureus by the SarA protein family. Front. Biosci. 7, d1825–d1842.PubMedCrossRefGoogle Scholar
  38. 38.
    Schmidt, K. A., Manna, A. C., Gill, S., and Cheung, A. L. (2001) SarT, a repressor of alphahemolysin in Staphylococcus aureus. Infect. Immun. 69, 4749–4758.PubMedCrossRefGoogle Scholar
  39. 39.
    Manna, A. C. and Cheung, A. L. (2003) sarU, a sarA homolog, is repressed by SarT and regulates virulence genes in Staphylococcus aureus. Infect. Immun. 71, 343–353.PubMedCrossRefGoogle Scholar
  40. 40.
    Schmidt, K. A., Manna, A. C., and Cheung, A. L. (2003) SarT influences sarS expression in Staphylococcus aureus. Infect. Immun. 71, 5139–5148.PubMedCrossRefGoogle Scholar
  41. 41.
    Tegmark, K., Karlsson, A., and Arvidson, S. (2000) Identification and characterization of SarH1, a new global regulator of virulence gene expression in Staphylococcus aureus. Mol. Microbiol. 37, 398–409.PubMedCrossRefGoogle Scholar
  42. 42.
    Cheung, A. L. and Projan, S. J. (1994) Cloning and sequencing of sarA of Staphylococcus aureus, a gene required for the expression of agr. J. Bacteriol. 176, 4168–4172.PubMedGoogle Scholar
  43. 43.
    Peng, H. L., Novick, R. P., Kreiswirth, B., Kornblum, J., and Schlievert, P. (1988) Cloning, characterization, and sequencing of an accessory gene regulator (agr) in Staphylococcus aureus. J. Bacteriol. 170, 4365–4372.PubMedGoogle Scholar
  44. 44.
    Roche, F. M., Meehan, M., and Foster, T. J. (2003) The Staphylococcus aureus surface protein SasG and its homologues promote bacterial adherence to human desquamated nasal epithelial cells. Microbiology 149, 2759–2767.PubMedCrossRefGoogle Scholar
  45. 45.
    Hussain, M., Herrmann, M., von Eiff, C., Perdreau-Remington, F., and Peters, G. (1997) A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces. Infect. Immun. 65, 519–524.PubMedGoogle Scholar
  46. 46.
    Savolainen, K., Paulin, L., Westerlund-Wikstrom, B., Foster, T. J., Korhonen, T. K., and Kuusela, P. (2001) Expression of pls, a gene closely associated with the mecA gene of methicillin-resistant Staphylococcus aureus, prevents bacterial adhesion in vitro. Infect. Immun. 69, 3013–3020.PubMedCrossRefGoogle Scholar
  47. 47.
    Juuti, K. M., Sinha, B., Werbick, C., Peters, G., and Kuusela, P. I. (2004) Reduced adherence and host cell invasion by methicillin-resistant Staphylococcus aureus expressing the surface protein Pls. J. Infect. Dis. 189, 1574–1584.PubMedCrossRefGoogle Scholar
  48. 48.
    Huesca, M., Peralta, R., Sauder, D. N., Simor, A. E., and McGavin, M. J. (2002) Adhesion and virulence properties of epidemic Canadian methicillin-resistant Staphylococcus aureus strain 1: identification of novel adhesion functions associated with plasmin-sensitive surface protein. J. Infect. Dis. 185, 1285–1296.PubMedCrossRefGoogle Scholar
  49. 49.
    Josefsson, E., McCrea, K. W., Ni Eidhin, D., et al. (1998) Three new members of the serine-aspartate repeat protein multigene family of Staphylococcus aureus. Microbiology 144, 3387–3395.PubMedGoogle Scholar
  50. 50.
    Tung, H., Guss, B., Hellman, U., Persson, L., Rubin, K., and Ryden, C. (2000) A bone sialoprotein-binding protein from Staphylococcus aureus: a member of the Staphylococcal Sdr family. Biochem. J. 345, 611–619.PubMedCrossRefGoogle Scholar
  51. 51.
    Cassat, J. E., Dunman, P. M., McAleese, F., Murphy, E., Projan, S. J., and Smeltzer, M. S. (2005) Comparative genomics of Staphylococcus aureus musculoskeletal isolates. J. Bacteriol. 187, 576–592.PubMedCrossRefGoogle Scholar
  52. 52.
    Blevins, J. S., Beenken, K. E., Elasri, M. O., Hurlburt, B. K., and Smeltzer, M. S. (2002) Strain-dependent differences in the regulatory roles of sarA and agr in Staphylococcus aureus. Infect. Immun. 70, 470–480.PubMedCrossRefGoogle Scholar
  53. 53.
    Yamaguchi, T., Hayashi, T., Takami, H., et al. (2000) Phage conversion of exfoliative toxin A production in Staphylococcus aureus. Mol. Microbiol. 38, 694–705.PubMedCrossRefGoogle Scholar
  54. 54.
    Kaneko, J., Kimura, T., Narita, S., Tomita, T., and Kamio, Y. (1998) Complete nucleotide sequence and molecular characterization of the temperate staphylococcal bacteriophage phiPVL carrying Panton-Valentine leukocidin genes. Gene 215, 57–67.PubMedCrossRefGoogle Scholar
  55. 55.
    Pragman, A. A., Yarwood, J. M., Tripp, T. J., and Schlievert, P. M. (2004) Characterization of virulence factor regulation by SrrAB, a two-component system in Staphylococcus aureus. J. Bacteriol. 186, 2430–2438.PubMedCrossRefGoogle Scholar
  56. 56.
    Yarwood, J. M., McCormick, J. K., and Schlievert, P. M. (2001) Identification of a novel two-component regulatory system that acts in global regulation of virulence factors of Staphylococcus aureus. J. Bacteriol. 183, 1113–1123.PubMedCrossRefGoogle Scholar
  57. 57.
    Throup, J. P., Zappacosta, F., Lunsford, R. D., et al. (2001) The srhSR gene pair from Staphylococcus aureus: genomic and proteomic approaches to the identification and characterization of gene function. Biochemistry 40, 10,392–10,401.PubMedCrossRefGoogle Scholar
  58. 58.
    Katayama, Y., Ito, T., and Hiramatsu, K. (2000) A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 44, 1549–1555.PubMedCrossRefGoogle Scholar
  59. 59.
    Ito, T., Ma, X. X., Takeuchi, F., Okuma, K., Yuzawa, H., and Hiramatsu, K. (2004) Novel type V staphylococcal cassette chromosome mec driven by a novel cassette chromosome recombinase, ccrC Antimicrob. Agents Chemother. 48, 2637–2651.CrossRefGoogle Scholar
  60. 60.
    Ito, T., Katayama, Y., Asada, K., et al. (2001) Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 45, 1323–1336.PubMedCrossRefGoogle Scholar
  61. 61.
    Daum, R. S., Ito, T., Hiramatsu, K., et al. (2002) A novel methicillin-resistance cassette in community-acquired methicillin-resistant Staphylococcus aureus isolates of diverse genetic backgrounds. J. Infect. Dis. 186, 1344–1347.PubMedCrossRefGoogle Scholar
  62. 62.
    O’Brien, F. G., Price, C., Grubb, W. B., and Gustafson, J. E. (2002) Genetic characterization of the fusidic acid and cadmium resistance determinants of Staphylococcus aureus plasmid pUB101. J. Antimicrob. Chemother. 50, 313–321.PubMedCrossRefGoogle Scholar
  63. 63.
    Tveten, Y., Jenkins, A., and Kristiansen, B. E. (2002) A fusidic acid-resistant clone of Staphylococcus aureus associated with impetigo bullosa is spreading in Norway. J. Antimicrob. Chemother. 50, 873–876.PubMedCrossRefGoogle Scholar
  64. 64.
    Osterlund, A., Eden, T., Olsson-Liljequist, B., Haeggman, S., and Kahlmeter, G. (2002) Clonal spread among Swedish children of a Staphylococcus aureus strain resistant to fusidic acid. Scand. J. Infect. Dis. 34, 729–734.PubMedCrossRefGoogle Scholar
  65. 65.
    O’Neill, A. J., Larsen, A. R., Henriksen, A. S., and Chopra, I. (2004) A fusidic acid-resistant epidemic strain of Staphylococcus aureus carries the fusB determinant, whereas fusA mutations are prevalent in other resistant isolates. Antimicrob. Agents Chemother. 48, 3594–3597.PubMedCrossRefGoogle Scholar
  66. 66.
    Gilot, P., Jossin, Y., and Content, J. (2000) Cloning, sequencing and characterisation of a Listeria monocytogenes gene encoding a fibronectin-binding protein. J. Med. Microbiol. 49, 887–896.PubMedGoogle Scholar
  67. 67.
    Gilot, P. and Content, J. (2002) Specific identification of Listeria welshimeri and Listeria monocytogenes by PCR assays targeting a gene encoding a fibronectin-binding protein. J. Clin. Microbiol. 40, 698–703.PubMedCrossRefGoogle Scholar
  68. 68.
    Luong, T. T., Ouyang, S., Bush, K., and Lee, C. Y. (2002) Type 1 capsule genes of Staphylococcus aureus are carried in a staphylococcal cassette chromosome genetic element. J. Bacteriol. 184, 3623–3629.PubMedCrossRefGoogle Scholar
  69. 69.
    Mongkolrattanothai, K., Boyle, S., Murphy, T. V., and Daum, R. S. (2004) Novel non-mecA-containing staphylococcal chromosomal cassette composite island containing pbp4 and tagF genes in a commensal staphylococcal species: a possible reservoir for antibiotic resistance islands in Staphylococcus aureus. Antimicrob. Agents Chemother. 48, 1823–1836.PubMedCrossRefGoogle Scholar
  70. 70.
    Schertzer, J. W. and Brown, E. D. (2003) Purified, recombinant TagF protein from Bacillus subtilis 168 catalyzes the polymerization of glycerol phosphate onto a membrane acceptor in vitro. J. Biol. Chem. 278, 18,002–18,007.PubMedCrossRefGoogle Scholar
  71. 71.
    Fitzgerald, S. N. and Foster, T. J. (2000) Molecular analysis of the tagF gene, encoding CDP-Glycerol:Poly(glycerophosphate) glycerophosphotransferase of Staphylococcus epidermidis ATCC 14990. J. Bacteriol. 182, 1046–1052.PubMedCrossRefGoogle Scholar
  72. 72.
    Hilden, P., Savolainen, K., Tyynela, J., Vuento, M., and Kuusela, P. (1996) Purification and characterisation of a plasmin-sensitive surface protein of Staphylococcus aureus. Eur. J. Biochem. 236, 904–910.PubMedCrossRefGoogle Scholar
  73. 73.
    Zhang, Y. Q., Ren, S. X., Li, H. L., et al. (2003) Genome-based analysis of virulence genes in a non-biofilm-forming Staphylococcus epidermidis strain (ATCC 12228). Mol. Microbiol. 49, 1577–1593.PubMedCrossRefGoogle Scholar
  74. 74.
    Lindsay, J. A., Ruzin, A., Ross, H. F., Kurepina, N., and Novick, R. P. (1998) The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus. Mol. Microbiol. 29, 527–543.PubMedCrossRefGoogle Scholar
  75. 75.
    Fitzgerald, J. R., Monday, S. R., Foster, T. J., et al. (2001) Characterization of a putative pathogenicity island from bovine Staphylococcus aureus encoding multiple superantigens. J. Bacteriol. 183, 63–70.PubMedCrossRefGoogle Scholar
  76. 76.
    Yarwood, J. M., McCormick, J. K., Paustian, M. L., Orwin, P. M., Kapur, V., and Schlievert, P. M. (2002) Characterization and expression analysis of Staphylococcus aureus pathogenicity island 3. Implications for the evolution of staphylococcal pathogenicity islands. J. Biol. Chem. 277, 13,138–13,147.PubMedCrossRefGoogle Scholar
  77. 77.
    Ruzin, A., Lindsay, J., and Novick, R. P. (2001) Molecular genetics of SaPI1—a mobile pathogenicity island in Staphylococcus aureus. Mol. Microbiol. 41, 365–377.PubMedCrossRefGoogle Scholar
  78. 78.
    Sebulsky, M. T., Shilton, B. H., Speziali, C. D., and Heinrichs, D. E. (2003) The role of FhuD2 in iron(III)-hydroxamate transport in Staphylococcus aureus. Demonstration that FhuD2 binds iron(III)-hydroxamates but with minimal conformational change and implication of mutations on transport. J. Biol. Chem. 278, 49,890–49,900.PubMedCrossRefGoogle Scholar
  79. 79.
    Sebulsky, M. T. and Heinrichs, D. E. (2001) Identification and characterization of fhuD1 and fhuD2, two genes involved in iron-hydroxamate uptake in Staphylococcus aureus. J. Bacteriol. 183, 4994–5000.PubMedCrossRefGoogle Scholar
  80. 80.
    Moore, P. C. and Lindsay, J. A. (2002) Molecular characterisation of the dominant UK methicillin-resistant Staphylococcus aureus strains, EMRSA-15 and EMRSA-16. J. Med. Microbiol. 51, 516–521.PubMedGoogle Scholar
  81. 81.
    Rice, K., Peralta, R., Bast, D., de Azavedo, J., and McGavin, M. J. (2001) Description of staphylococcus serine protease (ssp) operon in Staphylococcus aureus and nonpolar inactivation of ssp A-encoded serine protease. Infect. Immun. 69, 159–169.PubMedCrossRefGoogle Scholar
  82. 82.
    Reed, S. B., Wesson, C. A., Liou, L. E., et al. (2001) Molecular characterization of a novel Staphylococcus aureus serine protease operon. Infect. Immun. 69, 1521–1527.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2006

Authors and Affiliations

  • Martin J. McGavin
    • 1
  1. 1.Division of Microbiology, Sunnybrook and Women’s College Health Science Centre, Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoCanada

Personalised recommendations