Nucleoside Radiosensitizers

  • Donna S. Shewach
  • Theodore S. Lawrence
Part of the Cancer Drug Discovery and Development book series (CDD&D)


Nucleoside/nucleobase analogs (bromodeoxyuridine, iododeoxyuridine, 5fluorouracil, fluorodeoxyuridine, difluorodeoxycytidine, fluoroadenine arabinoside, fluoromethylenedeoxycytidine) can synergistically enhance ionizing radiation-induced cell killing. These analogs are able to radiosensitize a wide variety of tumor cell types in vitro and several have proven clinical efficacy as well. They share a requirement for intracellular metabolism to phosphorylated forms. As triphosphate analogs they can serve as substrates for nucleic acid synthesis and subsequent incorporation into DNA has been correlated with radiosensitization for bromo- and iododeoxyuridine. Each of these analogs also inhibits an enzyme involved in deoxynucleotide metabolism resulting in depletion of at least one deoxynucleoside triphosphate pool. This effect appears to be responsible for radiosensitization with fluorodeoxyuridine difluorodeoxycytidine and fluoromethylenedeoxycytidine in a manner similar to hydroxyurea which elicits radiosensitization solely through its depletion of deoxynucleotides as a result of ribonucleotide reductase inhibition. In addition these analogs promote accumulation of cells in S-phase which appears to be necessary for radiosensitization. Combined with data demonstrating that mismatch repair defective cells are better radiosensitized by these compounds the evidence suggests that errors in DNA replication contribute to radiosensitization. It is essential to define more completely the mechanism(s) responsible for radiosensitization with these important drugs in order to optimize antitumor efficacy and limit normal tissue toxicity.

Key Words

DNA repair fludarabine fluorodeoxyuridine 5-fluorouracil gemcitabine radiation radiation enhancement ratio radiosensitization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fertil, B., Dertnger, H., Courdi, A., and Malaise, E. P. Mean inactivation dose: a useful concept for intercomparison of human cell survival curves. Radiat. Res., 99, 73–84, 1984.PubMedCrossRefGoogle Scholar
  2. 2.
    Steel, G. G., and Peckham, M. J. Exploitable mechanisms in combined radiotherapy-chemotherapy: the concept of additivity. Int. J. Radiat. Oncol. Biol. Phys., 5, 85–91, 1979.PubMedGoogle Scholar
  3. 3.
    Chou, T.-C., and Talalay, P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv. Enz. Reg., 22, 27–55, 1984.CrossRefGoogle Scholar
  4. 4.
    Greco, W. R., Park, H. S., and Rustum, Y. M. Application of a new approach for the quantitation of drug synergism to the combination of cis-diamminedichloro-platinum and 1—D-arabinofuranosylcytosine. Cancer Res., 50, 5318–5327, 1990.PubMedGoogle Scholar
  5. 5.
    Terasima, T., and Tolmach, L. J. Variations in several responses of HeLa cells to X-irradiation during divison cycle. Biophysical J., 3, 11–33, 1963.CrossRefGoogle Scholar
  6. 6.
    Sinclair, W. K., and Morton, R. A. X-ray sensitivity during cell generation cycle of cultured Chinese hamster cells. Radiat. Res., 29, 450–474, 1966.PubMedCrossRefGoogle Scholar
  7. 7.
    Prusoff, W., and Goz, B. Halogenated pyrimidine deoxyribonucleosides. In A. C. Sartorelli and D. G. Johns (nteds.), Handbook of Experimental Pharmacology, vol. 38, pp. 272–347. New York: Springer-Verlag, 1975.Google Scholar
  8. 8.
    Goz, B. The effects of incorporation of 5-halogenated deoxyuridines into the DNA of eukaryotic cells. Pharmacol. Rev., 29, 249–272, 1978.Google Scholar
  9. 9.
    Lee, L.-S., and Cheng, Y. Human deoxythymidine kinase II: substrate specificity and kinetic behavior of the cytoplasmic and mitochondrial isozymes derived from blast cells of acute myelocytic leukemia. Biochemistry, 15, 3686–3690, 1976.PubMedCrossRefGoogle Scholar
  10. 10.
    Lee, L.-S., and Cheng, Y. Human deoxythymidine kinase. I. Purification and general properties of the cytoplasmic and mitochondrial isozymes derived from blast cells of acute myelocytic leukemia. J. Biol. Chem., 251, 2600–2604, 1976.PubMedGoogle Scholar
  11. 11.
    Eriksson, S., Kierdaszuk, B., Munch-Petersen, B., Oberg, O., and Johansson, N. G. Comparison of the substrate specificities of human thymidine kinase 1 and 2 and deoxycytidine kinase toward antiviral and cytostatic nucleoside analogs. Biochem. Biophys. Res. Commun., 176, 586–592, 1991.PubMedCrossRefGoogle Scholar
  12. 12.
    Parker, W. B., Bapat, A. R., Shen, J.-X., Townsend, A. J., and Cheng, Y. Interaction of 2-halogenated dATP analogs (F, Cl, and Br) with human DNA polymerases, DNA primase, and ribonucleotide reductase. Mol. Pharmacol., 34, 485–491, 1988.PubMedGoogle Scholar
  13. 13.
    Djordjevic, B., and Szybalski, W. Genetics of human cell lines. III. Incorporation of 5-bromo-and 5-iododeoxyuridine into the deoxyribonucleic acid of human cells and its effect on radiation sensitivity. J. Exp. Med., 112, 509–531, 1960.PubMedCrossRefGoogle Scholar
  14. 14.
    Lawrence, T. S., Davis, M. A., Maybaum, J., et al. The potential superiority of bromodeoxyuridine to iododeoxyuridine as a radiation sensitizer in the treatment of colorectal cancer. Cancer Res., 52, 3698–3704, 1992.PubMedGoogle Scholar
  15. 15.
    Dewey, W. C., and Humphrey, R. M. Increase in radiosensitivity to ionizing radiation related to replacement of thymidine in mammalian cells with 5-bromodeoxyuridine. Radiat. Res., 26, 538, 1965.PubMedCrossRefGoogle Scholar
  16. 16.
    McLaughlin, P. W., Lawrence, T. S., Seabury, H., et al. Bromodeoxyuridine-mediated radiosensitization in human glioma: the effect of concentration, duration, and fluoropyrimidine modulation. Int. J. Radiat. Oncol. Biol. Phys., 30, 601–607, 1994.PubMedGoogle Scholar
  17. 17.
    Mancini, W. R., Stetson, P. L., Lawrence, T. S., Wagner, L. M., Greenberg, H. S., and Ensminger, W. D. Variability of 5-bromo-2′-deoxyuridine incorporation into DNA of human glioma cell lines and modulation with fluoropyrimidines. Cancer Res., 51, 870–874, 1991.PubMedGoogle Scholar
  18. 18.
    Lawrence, T. S., Davis, M. A., Maybaum, J., Stetson, P. L., and Ensminger, W. D. The effect of single vs double-strand substitution on halogenated pyrimidine-induced radiosensitization and DNA strand breakage in human tumor cells. Radiat. Res., 123, 192–198, 1990.PubMedCrossRefGoogle Scholar
  19. 19.
    Kinsella, T. J., Dobson, P. A., Mitchell, J. B., and Fornace, A. J. Enhancement of X-ray induced DNA damage by pretreatment with halogenated pyrimidine analogs. Int. J. Radiat. Oncol. Biol. Phys., 13, 733–739, 1987.PubMedGoogle Scholar
  20. 20.
    Iliakis, G., Kurtzman, S., Pantelias, G., and Okayasu, R. Mechanism of radiosensitization by halogenatedpyrimidines: effect of BrdU on radiation induction of DNA and chromosome damage and its correlation with cell killing. Radiat. Res., 119,286–304, 1989.PubMedCrossRefGoogle Scholar
  21. 21.
    Lawrence, T. S., Davis, M. A., Maybaum, J., Stetson, P. L., and Ensminger, W. D. The dependence of halogenated pyrimidine incorporation and radiosensitization on the duration of drug exposure. Int. J. Radiat. Oncol. Biol. Phys., 18, 1393–1398, 1990.PubMedGoogle Scholar
  22. 22.
    Tishler, R. B., and Geard, C. R. Correlation of sensitizer enhancement ratio with bromodeoxyuridine concentration and exposure time in human cervical-carcinoma cells treated with low-dose rate irradiation. Int. J. Radiat. Oncol. Biol. Phys., 22, 495–498, 1992.PubMedGoogle Scholar
  23. 23.
    Fornace, A. J., Dobson, P. A., and Kinsella, T. J. Enhancement of radiation damage in cellular DNA following unifilar substitution with iododeoxyuridine. Int. J. Radiat. Oncol. Biol. Phys., 18, 1990.Google Scholar
  24. 24.
    Dillehay, L. E., Thompson, L. H., and Carrano, A. V. DNA-strand breaks associated with halogenated pyrimidine incorporation. Mutat. Res., 131, 129–136, 1984.PubMedGoogle Scholar
  25. 25.
    Zimbrick, J. D., Ward, J. E, and Myers, L. S., Jr. Studies on the chemical basis of cellular radiosensitizatioin by 5-bromouracil substitution in DNA. II. Pulse-and steady-state radiolysis of bromouracil-substituted and unsubstituted DNA. Int. J. Radiat. Biol., 16, 525–534, 1969.CrossRefGoogle Scholar
  26. 26.
    Lawrence, T. S., Davis, M. A., and Normolle, D. P. Effect of bromodeoxyuridine on radiation-induced DNA damage and repair based on DNA fragment size using pulsed-field gel electrophoresis. Radiat. Res., 144, 282–287, 1995.PubMedCrossRefGoogle Scholar
  27. 27.
    Marti, T. M., Kunz, C., and Fleck, O. DNA mismatch repair and mutation avoidance pathways. J. Cell. Physiol., 191, 28–41, 2002.PubMedCrossRefGoogle Scholar
  28. 28.
    Toft, N. J., and Arends, M. J. DNA mismatch repair and colorectal cancer. J. Pathol., 185, 123–129, 1998.PubMedCrossRefGoogle Scholar
  29. 29.
    Berry, S. E., Garces, C., Hwang, H.-S., et al. The mismatch repair protein, hMLH1, mediates 5-substituted halogenated thymidine analogue cytotoxicity, DNA incorporation, and radiosensitization in human colon cancer cells. Cancer Res., 59, 1840–1845, 1999.PubMedGoogle Scholar
  30. 30.
    Berry, S. E., Davis, T. W., Schupp, J. E., Hwang, H.-S., de Wind, N., and Kinsella, T. J. Selective radiosensitization of drug-resistant MutS homologue-2 (MSH2) mismatch repair-deficient cells by halogenated thymidine (dThd) analogues: Msh2 mediates dThd analogue DNA levels and the differential cytotoxicity and cell cycle effects of the dThd analogues and 6-thioguanine. Cancer Res., 60, 5773–5780, 2003.Google Scholar
  31. 31.
    Berry, S. E., Loh, T., Yan, T., and Kinsella, T. J. Role of MutSαin the recognition of iododeoxyuridine in DNA. Cancer Research 63, 5490–5495. 2003.PubMedGoogle Scholar
  32. 32.
    Taverna, P., Hwang, H.-S., Schupp, J. E., et al. Inhibition of base excision repair potentiates iododeoxyuridine-induced cytotoxicity and radiosensitization. Cancer Res., 63, 838–846, 2003.PubMedGoogle Scholar
  33. 33.
    Meuth, M., and Green, H. Induction of a deoxycytidineless state in cultured mammalian cells by bromodeoxyuridine. Cell, 2, 109–112, 1974.PubMedCrossRefGoogle Scholar
  34. 34.
    Ashman, C. R., and Davidson, R. L. Bromodeoxyuridine mutagenesis in mammalian cells is related to deoxyribonucleotide pool imbalance. Mol. Cell. Biol., 1, 254–260, 1981.PubMedGoogle Scholar
  35. 35.
    Shewach, D. S., Ellero, J., Mancini, W. R., and Ensminger, W. D. Decrease in TTP pools mediated by 5-bromo-2′-deoxyuridine exposure in a human glioblas-toma cell line. Biochem. Pharmacol., 43, 1579–1585, 1992.PubMedCrossRefGoogle Scholar
  36. 36.
    Epstein, A. H., Lebovics, R. S., Goffman, T., et al. Treatment of locally advanced cancer of the head and neck with 5′-iododeoxyuridine and hyperfractionated radiation-therapy—measurement of cell labeling and thymidine replacement. J.N.C.I., 86, 1775–1780, 1994.CrossRefGoogle Scholar
  37. 37.
    Greenberg, H. S., Chandler, W. R, Diaz, R. R, et al. Intra-arterial bromodeoxyuri-dine radiosensitization and radiation in treatment of malignant astrocytomas. J. Neurosurg., 69, 500–505, 1988.PubMedGoogle Scholar
  38. 38.
    Sullivan, F. J., Herscher, L. L., Cook, J. A., et al. National-Cancer-Institute (Phase-II) study of high-grade glioma treated with accelerated hyperfractionated radiation and iododeoxyuridine—results in anaplastic astrocytoma. Int. J. Radiat. Oncol. Biol. Phys., 30, 583–590, 1991.Google Scholar
  39. 39.
    Phillips, T. L., Levin, V. A., Ahn, D. K., et al. Evaluation of bromodeoxyuridine in glioblastoma-multiforme—a Northern California Cancer Center phase-II study. Int. J. Radiat. Oncol. Biol. Phys., 21, 709–714, 1991.PubMedGoogle Scholar
  40. 40.
    Goffman, T., Tochner, Z., and Glatstein, E. Primary-treatment of large and massive adult sarcomas with iododeoxyuridine and aggressive hyperfractionated irradiation. Cancer, 67, 572–576, 1991.PubMedCrossRefGoogle Scholar
  41. 41.
    Robertson, J. M., Sondak, V. K., Weiss, S. A., Sussman, J. J., Chang, A. E., and Lawrence, T. S. Preoperative radiation-therapy and iododeoxyuridine for large retroperitoneal sarcomas. Int. J. Radiat. Oncol. Biol. Phys., 31, 87–92, 1995.PubMedCrossRefGoogle Scholar
  42. 42.
    Chang, A. E., Collins, J. M., Speth, P. A. J., et al. A phase-I study of intraarterial iododeoxyuridine in patients with colorectal liver metastases. J. Clin. Oncol., 7, 662–668, 1989.PubMedGoogle Scholar
  43. 43.
    Eisbruch, A., Robertson, J. M., Johnston, C. M., et al. Bromodeoxyuridine alternating with radiation for advanced uterine cervix cancer: a phase I and drug incorporation study. J. Clin. Oncol., 17, 31–40, 1999.PubMedGoogle Scholar
  44. 44.
    Levin, V. A., Prados, M. R., Wara, W. M., et al. Radiation-therapy and bromodeoxyuridine chemotherapy followed by procarbazine, lomustine, and vincristine for the treatment of anaplastic gliomas. Int. J. Radiat. Oncol. Biol. Phys., 32, 75–83, 1995.PubMedCrossRefGoogle Scholar
  45. 45.
    Prados, M. D., Scott, C., Sandler, H., et al. A phase 3 randomized study of radiotherapy plus procarbazine, CCNU, and vincristine (PCV) with or without BUdR for the treatment of anaplastic astrocytoma: a preliminary report of RTOG 9404. Int. J. Radiat. Oncol. Biol. Phys., 45, 1109–1115, 1999.PubMedCrossRefGoogle Scholar
  46. 46.
    Ensminger, W. D., Walker, S. C., Stetson, P. L., et al. Clinical-pharmacology of hepatic arterial infusions of 5-bromo-2′-deoxyuridine. Cancer Res., 54, 2121–2124, 1994.PubMedGoogle Scholar
  47. 47.
    Prados, M. D., Scott, C. B., Rotman, M., et al. Influence of bromodeoxyuridine radiosensitization on malignant glioma patient survival: a retrospective comparison of survival data from the northern California Oncology Group (NCOG) and Radiation Therapy Oncology Group trials (RTOG) for glioblastoma multiforme and anaplastic astrocytoma. Int. J. Radiat. Oncol. Biol. Phys., 40, 653–659, 1998.PubMedCrossRefGoogle Scholar
  48. 48.
    Knol, J. A., Walker, S. C., Robertson, J. M., et al. Incorporation of 5-bromo-2′-deoxyuridine into colorectal liver metastases and liver in patients receiving a 7-d hepatic arterial infusion. Cancer Res., 55, 3687–3691, 1995.PubMedGoogle Scholar
  49. 49.
    Lawrence, T. S., Davis, M. A., Stetson, P. L., Maybaum, J., and Ensminger, W. D. Kinetics of bromodeoxyuridine elimination from human colon-cancer cells in-vitro and in-vivo. Cancer Res., 54, 2964–2968, 1994.PubMedGoogle Scholar
  50. 50.
    Efficacy of intravenous continuous infusion of fluorouracil compared with bolus administration in advanced colorectal cancer. Meta-analysis Group in Cancer. J. Clin. Oncol., 16, 301–308, 1998.Google Scholar
  51. 51.
    Modulation of fluorouracil by leucovorin in patients with advanced colorectal cancer: evidence in terms of response rate. Advanced Colorectal Cancer Meta-Analysis Project. J. Clin. Oncol., 10, 896–903, 1992.Google Scholar
  52. 52.
    Saltz, L. B., Cox, J. V., Blanke, C., et al. Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan Study Group. N. Engl. J. Med., 343, 905–914, 2000.PubMedCrossRefGoogle Scholar
  53. 53.
    Ensminger, W. D. Intrahepatic arterial infusion of chemotherapy: pharmacologic principles. Semin. Oncol., 29, 119–125, 2002.PubMedCrossRefGoogle Scholar
  54. 54.
    Abeles, R. H., and Alston, T. A. Enzyme-inhibition by fluoro compounds. J. Biol. Chem., 265, 16,705–16,708, 1990.PubMedGoogle Scholar
  55. 55.
    Wohlhueter, R. M., Mcivor, R. S., and Plagemann, P. G. W. Facilitated transport of uracil and 5-fluorouracil, and permeation of orotic-acid into cultured mammalian-cells. J. Cell. Physiol., 104, 309–319, 1980.PubMedCrossRefGoogle Scholar
  56. 56.
    Ardalan, B., and Glazer, R. An update on the biochemistry of 5-fluorouracil. Cancer Treat. Rev., 8, 157–167, 1981.PubMedCrossRefGoogle Scholar
  57. 57.
    Myers, C. E. The pharmacology of the fluoropyrimidines. Pharmacol. Rev., 33, 1–15, 1981.PubMedGoogle Scholar
  58. 58.
    Longley, D. B., Harkin, D. P., and Johnston, P. G. 5-Fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer, 3, 330–338, 2003.PubMedCrossRefGoogle Scholar
  59. 59.
    Harris, B. E., Song, R., Soong, S. J., and Diasio, R. B. Relationship between dihydropyrimidine dehydrogenase activity and plasma 5-fluorouracil levels with evidence for circadian variation of enzyme activity and plasma drug levels in cancer patients receiving 5-fluorouracil by protracted continuous infusion. Cancer Res., 50, 197–201, 1990.PubMedGoogle Scholar
  60. 60.
    Baccanari, D. P., Davis, S. T., Knick, V. C., and Spector, T. 5-Ethynyluracil (776C85): a potent modulator of the pharmacokinetics and antitumor efficacy of 5-fluorouracil. Proc. Natl. Acad. Sci. U. S. A., 90, 11064–11068, 1993.PubMedCrossRefGoogle Scholar
  61. 61.
    Spector, T., Cao, S., Rustum, Y. M., Harrington, J. A., and Porter, D. J. Attenuation of the antitumor activity of 5-fluorouracil by (R)-5-fluoro-5,6-dihydrouracil. Cancer Res., 55, 1239–1241, 1995.PubMedGoogle Scholar
  62. 62.
    Lang, T. T., Selner, M., Young, J. D., and Cass, C. E. Acquisition of human con-centrative nucleoside transporter 2 (hCNT2) activity by gene transfer confers sensitivity to fluoropyrimidine nucleosides in drug-resistant leukemia cells. Mol. Pharmacol., 60, 1143–1152, 2001.PubMedGoogle Scholar
  63. 63.
    Ingraham, H. A., Tseng, B. Y., and Goulian, M. Nucleotide levels and incorporation of 5-fluorouracil and uracil into DNA of cells treated with 5-fluorodeoxyuri dine. Mol. Pharmacol., 21, 211–216, 1982.PubMedGoogle Scholar
  64. 64.
    Canman, C. E., Lawrence, T. S., Shewach, D. S., Tang, H.-Y., and Maybaum, J. Resistance to fluorodeoxyuridine-induced DNA damage and cytotoxicity correlates with an elevation of deoxyuridine triphosphatase activity and failure to accumulate deoxyuridine triphosphate. Cancer Res., 53, 5219–5223, 1993.PubMedGoogle Scholar
  65. 65.
    Ingraham, H. A., Tseng, B. Y., and Goulian, M. Nucleotide levels and incorporation of 5-fluorouracil and uracil into DNA of cells treated with 5-fluorodeoxyuri-dine. Mol. Pharmacol., 21, 211–216, 1982.PubMedGoogle Scholar
  66. 66.
    Kufe, D. W., Major, P. P., Egan, E. M., and Loh, E. 5-Fluoro-2′-deoxyuridine incorporation in L1210 DNA. J. Biol. Chem., 256, 8885–8888, 1981.PubMedGoogle Scholar
  67. 67.
    Davis, M. A., Tang, H. Y., Maybaum, J., and Lawrence, T. S. Dependence of flu-orodeoxyuridine-mediated radiosensitization on S-phase progression. Int. J. Radiat. Oncol. Biol. Phys., 67, 509–517, 1995.Google Scholar
  68. 68.
    Danenberg, P. V. Thymidylate synthetase—target enzyme in cancer chemotherapy. Biochim. Biophys. Acta, 473, 73–92, 1977.PubMedGoogle Scholar
  69. 69.
    Bruso, C. E., Shewach, D. S., and Lawrence, T. S. Fluorodeoxyuridine-induced radiosensitization and inhibition of DNA double strand break repair in human colon cancer cells. Int. J. Radiat. Oncol. Biol. Phys., 19, 1411–1417, 1990.PubMedGoogle Scholar
  70. 70.
    Tattersall, M. H. N., and Harrap, K. R. Changes in the deoxyribonucleotide triphosphate pools of mouse 5178Y lymphoma cells following exposure to methotrexate or 5-fluorouracil. Cancer Res., 33, 3086–3090, 1973.PubMedGoogle Scholar
  71. 71.
    Chong, L., and Tattersall, M. H. N. 5,10-Dideazatetrahydrofolic acid reduces toxicity and deoxyadenosine triphosphate pool expansion in cultured L1210 cells treated with inhibitors of thymidylate synthase. Biochem. Pharmacol., 49, 819–827, 1995.PubMedCrossRefGoogle Scholar
  72. 72.
    Yoshioka, A., Tanaka, S., Hiraoka, O., et al. Deoxyribonucleotide triphosphate imbalance. J. Biol. Chem., 262, 8235–8241, 1987.PubMedGoogle Scholar
  73. 73.
    Cheng, Y., and Nakayama, K. Effects of 5-fluoro-2?-deoxyuridine on DNA metabolism in HeLa cells. Mol. Pharmacol., 23, 171–174, 1983.PubMedGoogle Scholar
  74. 74.
    Houghton, J. A., Tillman, D. M., and Harwood, F. G. Ratio of 2′-deoxyadenosine-5′-triphosphate thymidine-5′-triphosphate influences the commitment of human colon carcinoma cells to thymineless death. Clin. Cancer Res., 1, 723–730, 1995.PubMedGoogle Scholar
  75. 75.
    Buchholz, D. J., Lepek, K. J., Rich, T. A., and Murray, D. 5-Fluorouracil-radiation interactions in human colon adenocarcinoma cells. Int. J. Radiat. Oncol. Biol. Phys., 32, 1053–1058, 1995.PubMedCrossRefGoogle Scholar
  76. 76.
    McGinn, C. J., Miller, E. M., Lindstrom, M. J., Kunugi, K. A., Johnston, P. G., and Kinsella, T. J. The role of cell cycle redistribution in radiosensitization: implications regarding the mechanism of fluorodeoxyuridine radiosensitization. Int. J. Radiat. Oncol. Biol. Phys., 30, 851–859, 1994.PubMedGoogle Scholar
  77. 77.
    Naida, J. D., Davis, M. A., and Lawrence, T. S. The effect of activation of wild-type p53 function on fluoropyrimidine-mediated radiosensitization. Int. J. Radiat. Oncol. Biol. Phys., 41, 675–680, 1998.PubMedCrossRefGoogle Scholar
  78. 78.
    Lawrence, T. S., Davis, M. A., and Loney, T. L. Fluoropyrimidine-mediated radiosensitization depends on cyclin E-dependent kinase activation. Cancer Res., 56, 3203–3206, 1996.PubMedGoogle Scholar
  79. 79.
    Tang, H. Y., Davis, M. A., Strickfaden, S. M., Maybaum, J., and Lawrence, T. S. Influence of cell-cycle phase on radiation-induced cytotoxicity and DNA-damage in human colon-cancer (Ht29) and Chinese-hamster ovary cells. Radiat. Res., 138, S109–S112, 1994.PubMedCrossRefGoogle Scholar
  80. 80.
    Kufe, D. W., and Major, P. P. 5-Fluorouracil incorporation into human breast carcinoma RNA correlates with cytotoxicity. J. Biol. Chem., 256, 9802–9805, 1981.PubMedGoogle Scholar
  81. 81.
    Lawrence, T. S., Davis, M. A., and Maybaum, J. Dependence of 5-fluorouracil-mediated radiosensitization on DNA-directed effects. Int. J. Radiat. Oncol. Biol. Phys., 29, 519–523, 1994.PubMedGoogle Scholar
  82. 82.
    Hwang, H. S., Davis, T. W., Houghton, J. A., and Kinsella, T. J. Radiosensitivity of thymidylate synthase-deficient human tumor cells is affected by progression through the G(1) restriction point into S-phase: implications for fluoropyrimidine radiosensitization. Cancer Res., 60, 92–100, 2000.PubMedGoogle Scholar
  83. 83.
    Lawrence, T. S., Blackstock, A. W., and McGinn, C. The mechanism of action of radiosensitization of conventional chemotherapeutic agents. Semin. Radiat. Oncol., 13, 13–21, 2003.PubMedCrossRefGoogle Scholar
  84. 84.
    Schuetz, J. D., Wallace, H. J., and Diasio, R. B. DNA-repair following incorporation of 5-fluorouracil into DNA of mouse bone-marrow cells. Cancer Chemother. Pharmacol., 21, 208–210, 1988.PubMedCrossRefGoogle Scholar
  85. 85.
    Ingraham, H. A., Dickey, L., and Goulian, M. DNA fragmentation and cytotoxi-city from increased cellular deoxyuridylate. Biochemistry, 25, 3225–3230, 1986.PubMedCrossRefGoogle Scholar
  86. 86.
    Canman, C. E., Tang, H.-Y., Normolle, D. P., Lawrence, T. S., and Maybaum, J. Variations in patterns of DNA damage induced in human colorectal tumor cells by 5-fluorodeoxyuridine: implications for mechanisms of resistance and cytotox-icity. Proc. Natl. Acad. Sci. U. S. A., 89, 10,474–10,478, 1992.PubMedCrossRefGoogle Scholar
  87. 87.
    Lawrence, T. S., Davis, M. A., Chang, E. Y., Canman, C. E., Maybaum, J., and Radany, E. H. Lack of dependence of 5-fluorodeoxyuridine-mediated radiosensitization on cytotoxicity. Radiat. Res., 143, 281–285, 1995.PubMedCrossRefGoogle Scholar
  88. 88.
    Chu, E., Voeller, D. M., Jones, K. L., et al. Identification of a thymidylate syn-thase ribonucleoprotein complex in human colon-cancer cells. Mol. Cell. Biol., 14, 207–213, 1994.PubMedGoogle Scholar
  89. 89.
    Tillman, D. M., Petak, I., and Houghton, J. A. A Fas-dependent component in 5-fluorouracil/leucovorin-induced cytotoxicity in colon carcinoma cells. Clin. Cancer Res., 5, 425–430, 1999.PubMedGoogle Scholar
  90. 90.
    Paull, T. T., Rogakou, E. P., Yamazaki, V., Kirchgessner, C. U., Gellert, M., and Bonner, W. M. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Current Biol., 10, 886–895, 2000.CrossRefGoogle Scholar
  91. 91.
    McGinn, C. J., Shewach, D. S., and Lawrence, T. S. Radiosensitizing nucleo-sides. J.N.C.I., 4, 1193–1203, 1996.CrossRefGoogle Scholar
  92. 92.
    Bartelink, H., Roelofsen, F., Eschwege, F., et al. Concomitant radiotherapy and chemotherapy is superior to radiotherapy alone in the treatment of locally advanced anal cancer: results of a phase III randomized trial of the European organization for research and treatment of cancer radiotherapy and gastrointestinal cooperative groups. J. Clin. Oncol., 15, 2040–2049, 1997.PubMedGoogle Scholar
  93. 93.
    Browman, G. P., Cripps, C., Hodson, D. I., Eapen, L., Sathya, J., and Levine, M. N. Placebo-controlled randomized trial of infusional fluorouracil during standard radiotherapy in locally advanced head and neck-cancer. J. Clin. Oncol., 12, 2648–2653, 1994.PubMedGoogle Scholar
  94. 94.
    Radiation-therapy combined with adriamycin or 5-fluorouracil for the treatment of locally unresectable pancreatic-carcinoma. Cancer, 56, 2563–2568, 1985.Google Scholar
  95. 95.
    Morris, M., Eifel, P. J., Lu, J. D., et al. Pelvic radiation with concurrent chemotherapy compared with pelvic and para-aortic radiation for high-risk cervical cancer. N. Engl. J. Med., 340, 1137–1143, 1999.PubMedCrossRefGoogle Scholar
  96. 96.
    Merlano, M., Benasso, M., Corvo, R., et al. Five-year update of a randomized trial of alternating radiotherapy and chemotherapy compared with radiotherapy alone in treatment of unresectable squamous cell carcinoma of the head and neck. J.N.C.I., 88, 583–589, 1996.CrossRefGoogle Scholar
  97. 97.
    Wendt, T. G., Grabenbauer, G. G., Rodel, C. M., et al. Simultaneous radiochemotherapy vs radiotherapy alone in advanced head and neck cancer: a randomized multicenter study. J. Clin. Oncol., 16, 1318–1324, 1998.PubMedGoogle Scholar
  98. 98.
    Denis, F., Garaud, P., Bardet, E., et al. Final results of the 94=01 French Head and Neck Oncology and Radiotherapy Group randomized trial comparing radiotherapy alone with concomitant radiochemotherapy in advanced-stage oropharynx carcinoma. J. Clin. Oncol., 22, 69–76, 2004.PubMedCrossRefGoogle Scholar
  99. 99.
    Vokes, E. E., Kies, M. S., Haraf, D. J., et al. Concomitant chemoradiotherapy as primary therapy for locoregionally advanced head and neck cancer. J. Clin. Oncol., 18, 1652–1661, 2000.PubMedGoogle Scholar
  100. 100.
    Villalona-Calero, M. A., Weiss, G. R., Burris, H. A., et al. Phase I and pharmaco-kinetic study of the oral fluoropyrimidine capecitabine in combination with pacli-taxel in patients with advanced solid malignancies. J. Clin. Oncol., 17, 1915–1925, 1999.PubMedGoogle Scholar
  101. 101.
    Minsky, B. D. UFT plus oral leucovorin calcium (Orzel) and radiation in combined modality therapy: a comprehensive review. Int. J. Cancer, 96, 1–10, 2001.PubMedCrossRefGoogle Scholar
  102. 102.
    Corvo, R., Pastrone, I., Scolaro, T., Marcenaro, M., Berretta, L., and Chiara, S. Radiotherapy and oral capecitabine in the preoperative treatment of patients with rectal cancer: rationale, preliminary results and perspectives. Tumori, 89, 361–367, 2003.PubMedGoogle Scholar
  103. 103.
    Robertson, J. M., Lawrence, T. S., Andrews, J. C., Walker, S., Kessler, M. L., and Ensminger, W. D. Long-term results of hepatic artery fluorodeoxyuridine and conformal radiation therapy for primary hepatobiliary cancers. Int. J. Radiat. Oncol. Biol. Phys., 37, 325–330, 1997.PubMedCrossRefGoogle Scholar
  104. 104.
    Miller, R., Dewar, E. P., Kapadia, C. R., et al. Randomized clinical trial of adjuvant radiotherapy and 5-fluorouracil infusion in colorectal cancer (AXIS). Br. J. Surg., 90, 1200–1212, 2003.CrossRefGoogle Scholar
  105. 105.
    Kaye, S. B. Gemcitabine: current status of phase I and II trials. J. Clin. Oncol., 12, 1527–1531, 1994.PubMedGoogle Scholar
  106. 106.
    Moore, M., Andersen, J., Burris, H., et al. A randomized trial of gemcitabine (Gem) vs 5FU as first-line therapy in advanced pancreatic cancer. Proc. Am. Soc. Clin. Oncol., 14, 199, 1995.Google Scholar
  107. 107.
    Burris, H. A. I., Moore, M. J., Green, M. R., et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J. Clin. Oncol., 15, 2403–2413, 1997.PubMedGoogle Scholar
  108. 108.
    Abratt, R., Bezwoda, W. R., Falkson, G., Goedhals, L., Hacking, D., and Rugg, T. Efficacy and safety profile of gemcitabine in non-small-cell lung cancer: a phase II study. J. Clin. Oncol., 12, 1535–1540, 1994.PubMedGoogle Scholar
  109. 109.
    Abratt, R. P., Bezwoda, W. R., Goedhals, L., and Hacking, D. J. Weekly gemcitabine with monthly cisplatin: effective chemotherapy for advanced non-small-cell lung cancer. J. Clin. Oncol., 15, 744–749, 1997.PubMedGoogle Scholar
  110. 110.
    Plunkett, W., Huang, P., Searcy, C. E., and Gandhi, V. Gemcitabine: preclinical pharmacology and mechanisms of action. Semin. Oncol., 23, 3–15, 1996.PubMedGoogle Scholar
  111. 111.
    Burke, T., Lee, S., Ferguson, P. J., and Hammond, J. R. Interaction of 2′,2′-diflu-orodeoxycytidine (gemcitabine) and formycin B with the Na+-dependent and-independent nucleoside transporters of Ehrlich ascites tumor cells. J. Pharmacol. Exp. Ther., 286, 1333–1340, 1998.PubMedGoogle Scholar
  112. 112.
    Hammond, J. R., Lee, S., and Ferguson, P. J. [H-3]Gemcitabine uptake by nucleoside transporters in a human head and neck squamous carcinoma cell line. J. Pharmacol. Exp. Ther., 288, 1185–1191, 1999.PubMedGoogle Scholar
  113. 113.
    Heinemann, V., Hertel, L. W., Grindey, G. B., and Plunkett, W. Comparison of the cellular pharmacokinetics and toxicity of 2′,2′-difluorodeoxycytidine and 1-β-D-arabinofuranosylcytosine. Cancer Res., 48, 4024–4031, 1988.PubMedGoogle Scholar
  114. 114.
    Shewach, D. S., Reynolds, K. K., and Hertel, L. Nucleotide specificity of human deoxycytidine kinase. Mol. Pharmacol., 42, 518–524, 1992.PubMedGoogle Scholar
  115. 115.
    Baker, C. H., Banzon, J., Bollinger, J. M., et al. 2′-Deoxy-2′-methylenecyti-dine and 2′-deoxy-2′,2′-difluorocytidine 5′-diphosphates: Potent mechanism-based inhibitors of ribonucleotide reductase. J. Med. Chem., 34, 1879–1884, 1991.PubMedCrossRefGoogle Scholar
  116. 116.
    Heinemann, V., Xu, Y.-Z., Chubb, S., et al. Inhibition of ribonucleotide reduction in CCRF-CEM cells by 2′,2′-difluorodeoxycytidine. Mol.Pharmacol., 38, 567–572, 1990.PubMedGoogle Scholar
  117. 117.
    Lawrence, T. S., Chang, E. Y., Hahn, T. M., Hertel, L. W., and Shewach, D. S. Radiosensitization of pancreatic cancer cells by 2′,2′-difluoro-2′-deoxycytidine. Int. J. Radiat. Oncol. Biol. Phys., 34, 867–872, 1996.PubMedCrossRefGoogle Scholar
  118. 118.
    Shewach, D. S., Hahn, T. M., Chang, E., Hertel, L. W., and Lawrence, T. S. Metabolism of 2′,2′-difluoro-2′-deoxycytidine and radiation sensitization of human colon carcinoma cells. Cancer Res., 54, 3218–3223, 1994.PubMedGoogle Scholar
  119. 119.
    Ostruszka, L. J., and Shewach, D. S. The role of DNA synthesis inhibition in the cytotoxicity of 2′,2′-difluoro-2′-deoxycytidine. Cancer Chemother. Pharmacol., 52, 325–332, 2003.PubMedCrossRefGoogle Scholar
  120. 120.
    Huang, P., Chubb, S., Hertel, L. W., Grindey, G. B., and Plunkett, W. Action of 2′,2′-difluorodeoxycytidine on DNA synthesis. Cancer Res., 51, 6110–6117, 1991.PubMedGoogle Scholar
  121. 121.
    Ross, D. D., and Cuddy, D. P. Molecular effects of 2′,2′-difluorodeoxycytidine (gemcitabine) on DNA replication in intact HL-60 cells. Biochem. Pharmacol., 48, 1619–1630, 1994.PubMedCrossRefGoogle Scholar
  122. 122.
    Jiang, H. Y., Hickey, R. J., Abdel-Aziz, W., and Malkas, L. H. Effects of gemcitabine and araC on in vitro DNA synthesis mediated by the human breast cell DNA synthesome. Cancer Chemother. Pharmacol., 45, 320–328, 2000.PubMedCrossRefGoogle Scholar
  123. 123.
    Schy, W. E., Hertel, L. W., Kroin, J. S., Bloom, L. B., Goodman, M. E, and Richardson, F. C. Effect of a template-located 2′,2′-difluorodeoxycytidine on the kinetics and fidelity of base insertion by Klenow (3′-5′exonuclease-) fragment. Cancer Res., 53, 4582–4587, 1993.PubMedGoogle Scholar
  124. 124.
    Ruiz van Haperen, V. W. T., Veerman, G., Vermorken, J. B., and Peters, G. J. 2′,2′-Difluoro-deoxycytidine (gemcitabine) incorporation into RNA and DNA of tumour cell lines. Biochem. Pharmacol., 46, 762–766, 1993.CrossRefGoogle Scholar
  125. 125.
    Abbruzzese, J. L., Grunewald, R., Weeks, E. A., et al. A phase I clinical, plasma, and cellular pharmacology study of gemcitabine. J. Clin. Oncol., 9, 491–498, 1991.PubMedGoogle Scholar
  126. 126.
    Heinemann, V., Xu, Y.-Z., Chubb, S., Sen, A., Hertel, L. W., Grindey, G. B., and Plunkett, W. Cellular elimination of 2′,2′-difluorodeoxycytidine 5′-triphosphate: a mechanism of self-potentiation. Cancer Res., 52, 533–539, 1992.PubMedGoogle Scholar
  127. 127.
    Rockwell, S., and Grindey, G. B. Effect of 2′,2′-difluorodeoxycytidine on the viability and radiosensitivity of EMT6 cells in vitro. Oncol. Res., 4, 151–155, 1992.PubMedGoogle Scholar
  128. 128.
    Lawrence, T. S., Chang, E. Y., Hahn, T. M., and Shewach, D. S. Delayed radiosensitization of human colon carcinoma cells after a brief exposure to 2′,2′-difluoro-2′-deoxycytidine (gemcitabine). Clin. Cancer Res., 6, 777–782, 1997.Google Scholar
  129. 129.
    Rosier, J. E, Beauduin, M., Bruniaux, M., et al. The effect of 2′-2 ′difluo-rodeoxycytidine (dFdC, gemcitabine) on radiation-induced cell lethality in two human head and neck squamous carcinoma cell lines differing in intrinsic radiosensitivity. Int. J. Radiat. Biol., 75, 245–251, 1999.PubMedCrossRefGoogle Scholar
  130. 130.
    Shewach, D. S., and Lawrence, T. S. Gemcitabine and radiosensitization in human tumor cells. Invest. New Drugs, 14, 257–263, 1996.PubMedCrossRefGoogle Scholar
  131. 131.
    Tolis, C., Peters, G. J., Ferreira, C. G., Pinedo, H. M., and Giaccone, G. Cell cycle disturbances and apoptosis induced by topotecan and gemcitabine on human lung cancer cell lines. Eur. J. Cancer, 35, 706–807, 1999.CrossRefGoogle Scholar
  132. 132.
    Cappella, P., Tomasoni, D., Faretta, M., et al. Cell cycle effects of gemcitabine. Int. J. Cancer, 93, 401–408, 2001.PubMedCrossRefGoogle Scholar
  133. 133.
    Latz, D., Fleckenstein, K., Eble, M., Blatter, J., Wannenmacher, M., and Weber, K. J. Radiosensitizing potential of gemcitabine (2′,2′-difluoro-2′-deoxycytidine) within the cell cycle in vitro. Int. J. Radiat. Oncol. Biol. Phys., 41, 875–882, 1998.PubMedCrossRefGoogle Scholar
  134. 134.
    Ostruszka, L. J., and Shewach, D. S. The role of cell cycle progression in radiosensitization by 2′,2′-difluoro-2′-deoxycytidine. Cancer Res., 60, 6080–6088, 2000.PubMedGoogle Scholar
  135. 135.
    Chen, M., Hough, A. M., and Lawrence, T. S. The role of p53 in gemcitabine-mediated cytotoxicity and radiosensitization. Cancer Chemother. Pharmacol., 45, 369–374, 2000.PubMedCrossRefGoogle Scholar
  136. 136.
    Robinson, B. W., and Shewach, D. S. Radiosensitization by gemcitabine in p53 wild-type and mutant MCF-7 breast carcinoma cell lines. Clin. Cancer Res., 7, 2581–2589, 2001.PubMedGoogle Scholar
  137. 137.
    Gregoire, V., Rosier, J. F., De Bast, M., et al. Role of deoxycytidine kinase (dCK) activity in gemcitabine’s radioenhancement in mice and human cell lines in vitro. Radiother. Oncol., 63, 329–338, 2002.PubMedCrossRefGoogle Scholar
  138. 138.
    Gregoire, V., Beauduin, M., Bruniaux, M., DeCoster, B., Octave Prignot, M., and Scalliet, P. Radiosensitization of mouse sarcoma cells by fludarabine (F-ara-A) or gemcitabine (dFdC), two nucleoside analogues, is not mediated by an increased induction or a repair inhibition of DNA double-strand breaks as measured by pulsed-field gel electrophoresis. Int. J. Radiat. Biol., 73, 511–520, 1998.PubMedCrossRefGoogle Scholar
  139. 139.
    Rosier, J. F., Michaux, L., Ameye, G., et al. The radioenhancement of two human head and neck squamous cell carcinomas by 2′-2′difluorodeoxycytidine (gemcitabine; dFdC) is mediated by an increase in radiation-induced residual chromosome aberrations but not residual DNA DSBs. Mut. Res. Fundam. Mol. Mech. Mutagen., 527, 15–26, 2003.CrossRefGoogle Scholar
  140. 140.
    van Putten, J. W. G., Groen, H. J. M., Smid, K., Peters, G. J., and Kampinga, H. H. End-joining deficiency and radiosensitization induced by gemcitabine. Cancer Res., 61, 1585–1591, 2001.PubMedGoogle Scholar
  141. 141.
    Wachters, F. M., van Putten, J. W. G., Maring, J. G., Zdzienicka, M. Z., Groen, H. J. M., and Kampinga, H. H. Selective targeting of homologous DNA recombination repair by gemcitabine. Int. J. Radiat. Oncol. Biol. Phys., 57, 553–562, 2003.PubMedCrossRefGoogle Scholar
  142. 142.
    Kunz, B. A. Genetic effects of deoxyribonucleotide imbalances. Environ. Mutagen., 4, 695–725, 1982.PubMedCrossRefGoogle Scholar
  143. 143.
    Bebenek, K., Roberts, J. D., and Kunkel, T. A. The effects of dNTP pool imbalances on frameshift fidelity during DNA replication. J. Biol. Chem., 267, 3589–3596, 1992.PubMedGoogle Scholar
  144. 144.
    Martomo, S. A., and Mathews, C. K. Effects of biological DNA precursor pool asymmetry upon accuracy of DNA replication in vitro. Mutat. Res. Fundam. Mol. Mech. Mutagen., 499, 197–211, 2002.CrossRefGoogle Scholar
  145. 145.
    Koi, M., Umar, A., Chauhan, D. P., et al. Human chromosome 3 corrects mismatch repair deficiency and microsatellite instability and reducesN-methyl-N?-nitro-N-nitrosoguanidine tolerance in colon tumor cells with homozygous hMLH1 mutation. Cancer Res., 54, 4308–4312, 1994.PubMedGoogle Scholar
  146. 146.
    Jacob, S., Aguado, M., Fallik, D., and Praz, F. The role of the DNA mismatch repair system in the cytotoxicity of the topoisomerase inhibitors camptothecin and etoposide to human colorectal cancer cells. Cancer Res., 61, 6555–6562, 2001.PubMedGoogle Scholar
  147. 147.
    Robinson, B. W., Im, M. L, Ljungman, M., Praz, F., and Shewach, D. S. Enhanced radiosensitization with gemcitabine in mismatch repair-deficient HCT-116 cells. Cancer Res., 63, 6935–6941, 2003.PubMedGoogle Scholar
  148. 148.
    Lawrence, T. S., Davis, M. A., Hough, A., and Rehemtulla, A. The role of apoptosis in 2′,2′-difluoro-2′-deoxycytidine (gemcitabine)-mediated radiosensitization. Clin. Cancer Res., 7, 314–319, 2001.PubMedGoogle Scholar
  149. 149.
    Eisbruch, A., Shewach, D. S., Bradford, C. R., et al. Radiation concurrent with gemcitabine for locally advanced head and neck cancer: a phase I trial and intra-cellular drug incorporation study. J. Clin. Oncol., 19, 792–799, 2001.PubMedGoogle Scholar
  150. 150.
    Eisbruch, A., Lyden, T., Bradford, C. R., et al. Objective assessment of swallowing dysfunction and aspiration after radiation concurrent with chemotherapy for head-and-neck cancer. Int. J. Radiat. Oncol. Biol. Phys., 53, 23–28, 2002.PubMedCrossRefGoogle Scholar
  151. 151.
    Fields, M. T., Eisbruch, A., Normolle, D., et al. Radiosensitization produced in vivo by once-vs. twice-weekly 2′,2′-difluoro-2′-deoxycytidine (gemcitabine). Int. J. Radiat. Oncol. Biol. Phys., 47, 785–791, 2000.PubMedCrossRefGoogle Scholar
  152. 152.
    Blackstock, A. W., Bernard, S. A., Richards, F., et al. Phase I trial of twice-weekly gemcitabine and concurrent radiation in patients with advanced pancreatic cancer. J. Clin. Oncol., 17, 2208–2212, 1999.PubMedGoogle Scholar
  153. 153.
    Pipas, J. M., Mitchell, S. E., Barth, R. J., et al. Phase I study of twice-weekly gemcitabine and concomitant external-beam radiotherapy in patients with a denocar-cinoma of the pancreas. Int. J. Radiat. Oncol. Biol. Phys., 50, 1317–1322, 2001.PubMedCrossRefGoogle Scholar
  154. 154.
    McGinn, C. J., Zalupski, M., Shureiqi, I., et al. Phase I trial of radiation dose escalation with concurrent weekly full-dose gemcitabine in patients with advanced pancreatic cancer. J. Clin. Oncol., 19, 4202–4208, 2001.PubMedGoogle Scholar
  155. 155.
    Mason, K. A., Milas, L., Hunter, N. R., et al. Maximizing therapeutic gain with gemcitabine and fractionated radiation. Int. J. Radiat. Oncol. Biol. Phys., 44, 1125–1135, 1999.PubMedCrossRefGoogle Scholar
  156. 156.
    Milas, L., Fujii, T., Hunter, N., et al. Enhancement of tumor radioresponse in vivo by gemcitabine. Cancer Res., 59, 104–114, 1999.Google Scholar
  157. 157.
    Gregoire, V., Beauduin, M., Rosier, J. F., et al. Kinetics of mouse jejunum radiosensitization by 2′,2′-difluorodeoxycytidine (gemcitabine) and its relationship with pharmacodynamics of DNA synthesis inhibition and cell cycle redistribution in crypt cells. Br. J. Cancer, 76, 1315–1321, 1997.PubMedGoogle Scholar
  158. 158.
    Wolff, R. A., Evans, D. B., Gravel, D. M., et al. Phase I trial of gemcitabine combined with radiation for the treatment of locally advanced pancreatic adenocarcinoma. Clin. Cancer Res., 7, 2246–2253, 2001.PubMedGoogle Scholar
  159. 159.
    Lange, S. M., van Groeningen, C. J., Meijer, O. W. M., et al. Gemcitabine-radio-therapy in patients with locally advanced pancreatic cancer. Eur. J. Cancer, 38, 1212–1217, 2002.PubMedCrossRefGoogle Scholar
  160. 160.
    Talamonti, M. S., Catalano, P. J., Vaughn, D. J., et al. Eastern Cooperative Oncology Group phase I trial of protracted venous infusion fluorouracil plus weekly gemcitabine with concurrent radiation therapy in patients with locally advanced pancreas cancer: a regimen with unexpected early toxicity. J. Clin. Oncol., 18, 3384–3389, 2000.PubMedGoogle Scholar
  161. 161.
    Muler, J. H., McGinn, C. J., Normolle, D., et al. Phase I trial using a time-to-event continual reassessment strategy for dose escalation of cisplatin combined with gemcitabine and radiation therapy in pancreatic cancer. J. Clin. Oncol., 22, 238–243, 2004.PubMedCrossRefGoogle Scholar
  162. 162.
    Trodella, L., Granone, P., Valente, S., et al. Phase I trial of weekly gemcitabine and concurrent radiotherapy in patients with inoperable non-small-cell lung cancer. J. Clin. Oncol., 20, 804–810, 2002.PubMedCrossRefGoogle Scholar
  163. 163.
    Blackstock, A. W., Lesser, G. J., Fletcher-Steede, J., et al. Phase I study of twice-weekly gemcitabine and concurrent thoracic radiation for patients with locally advanced non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys., 51, 1281–1289, 2001.PubMedCrossRefGoogle Scholar
  164. 164.
    Goor, C., Scalliet, P., van Meerbeek, J., et al. A phase II study combining gemcitabine with radiotherapy in stage III NSCLC. Ann. Oncol., 7, 101, 1996.Google Scholar
  165. 165.
    McGinn, C. J., and Zalupski, M. M. Radiation therapy with once-weekly gemcitabine in pancreatic cancer: current status of clinical trials. Int. J. Radiat. Oncol. Biol. Phys., 56, 10–15, 2003.PubMedCrossRefGoogle Scholar
  166. 166.
    Yavuz, A. A., Aydin, F., Yavuz, M. N., Ilis, E., and Ozdemir, F. Radiation therapy and concurrent fixed dose amifostine with escalating doses of twice-weekly gemcitabine advanced pancreatic cancer. Int. J. Radiat. Oncol. Biol. Phys., 51, 974–981, 2001.PubMedCrossRefGoogle Scholar
  167. 167.
    Joschko, M. A., Webster, L. K., Groves, J., et al. Enhancement of radiation-induced regrowth delay by gemcitabine in a human tumor xenograft model. Radiat. Oncol. Invest., 5, 62–71, 1997.CrossRefGoogle Scholar
  168. 168.
    Gandhi, V., and Plunkett, W. Cellular and clinical pharmacology of fludarabine. Clin. Pharmacokinet., 41, 93–103, 2002.PubMedCrossRefGoogle Scholar
  169. 169.
    Iliakis, G., and Bryant, P. E. Effects of the nucleoside analogs α-ara-A,β-ara-A and β-ara-C on cell-growth and repair of both potentially lethal damage and DNA double strand breaks in mammalian-cells in culture. AnticancerRes., 3, 143–149, 1983.Google Scholar
  170. 170.
    Mustafi R., Heaton, D., Brinkman, W., and Schwartz, J. L. Enhancement of X-ray toxicity in squamous-cell carcinoma cell-lines by DNA-polymerase inhibitors. Int. J. Radiat. Biol., 65, 675–681, 1994.PubMedCrossRefGoogle Scholar
  171. 171.
    Kim, J. H., Alfieri, A. A., Kim, S. H., and Fuks, Z. The potentiation of radiation response on murine tumor by fludarabine phosphate. Cancer Lett., 31, 69–76, 1986.PubMedCrossRefGoogle Scholar
  172. 172.
    Tseng, W. C., Derse, D., Cheng, Y., Brockman, R. W., and Bennett, L. L. In vitro biological activity of 9-β-D-arabinofuranosyl-2-fluoroadenine and the biochemical actions of its triphosphate on DNA polymerases and ribonucleotide reductase from HeLa cells. Mol. Pharmacol., 21, 474–477, 1982.PubMedGoogle Scholar
  173. 173.
    Parker, W. B., and Cheng, Y. C. Inhibition of DNA primase by nucleoside triphos-phates and their arabinofuranosyl analogs. Mol. Pharmacol., 31, 146–151, 1987.PubMedGoogle Scholar
  174. 174.
    Catapano, C. V., Perrino, F. W., and Fernandes, D. J. Primer RNA chain termination induced by 9-β-D-arabinofuranosyl-2-fluoroadenine 5′-triphosphate—a mechanism of DNA synthesis inhibition. J. Biol. Chem., 268, 7179–7185, 1993.PubMedGoogle Scholar
  175. 175.
    Yang, S. W., Huang, P., Plunkett, W., Becker, F. F., and Chan, J. Y. H. Dual mode of inhibition of purified DNA ligase I from human cells by 9-β-D-arabinofura-nosyl-2-fluoroadenine triphosphate. J. Biol. Chem., 267, 2345–2349, 1992.PubMedGoogle Scholar
  176. 176.
    Chang, C.-H., and Cheng, Y. Effects of deoxyadenosine triphosphate and 9-β-D-arabinofuranosyladenine 5′-triphosphate on human ribonucleotide reductase from Molt-4F cells and the concept of “self-potentiation.” Cancer Res., 40, 3555–3558, 1980.PubMedGoogle Scholar
  177. 177.
    White, E. L., Shaddix, S. C., Brockman, R. W., and Bennett, L. L. Comparison of the actions of 9-β-D-arabinofuranosyl-2-fluoroadenine and 9-β-D-arabinofura-nosyladenine on target enzymes from mouse tumor cells. Cancer Res., 42, 2260–2264, 1982.PubMedGoogle Scholar
  178. 178.
    Huang, P., Chubb, S., and Plunkett, W. Termination of DNA synthesis by 9-β-D-arabinofuranosyl-2-fluoroadenine. A mechanism for cytotoxicity. J. Biol. Chem., 265, 16,617–16,625, 1990.PubMedGoogle Scholar
  179. 179.
    Huang, P., and Plunkett, W. Fludarabine-and gemcitabine-induced apoptosis: incorporation of analogs into DNA is a critical event. Cancer Chemother. Pharmacol., 36, 181–188, 1995.PubMedCrossRefGoogle Scholar
  180. 180.
    Gregoire, V., Hunter, N., Brock, W. A., Milas, L., Plunkett, W., and Hittelman, W. N. Fludarabine improves the therapeutic ratio of radiotherapy in mouse-tumors after single-dose irradiation. Int. J. Radiat. Oncol. Biol. Phys., 30, 363–371, 1994.PubMedGoogle Scholar
  181. 181.
    Gregoire, V., Hunter, N., Milas, L., Brock, W. A., Plunkett, W., and Hittelman, W. N. Potentiation of radiation-induced regrowth delay in murine tumors by fludarabine. Cancer Res., 54, 468–474, 1994.PubMedGoogle Scholar
  182. 182.
    Gregoire, V., Van, N. T., Stephens, C., et al. The role of fludarabine-induced apoptosis and cell cycle synchronization in enhanced murine tumor radiation response in vivo. Cancer Res., 54, 6201–6209, 1994.PubMedGoogle Scholar
  183. 183.
    Li, L., Liu, X. M., Glassman, A. B., et al. Fludarabine triphosphate inhibits nucleotide excision repair of cisplatin-induced DNA adducts in vitro. Cancer Res., 57, 1487–1494, 1997.PubMedGoogle Scholar
  184. 184.
    Yamauchi, T., Nowak, B. J., Keating, M. J., and Plunkett, W. DNA repair initiated in chronic lymphocytic leukemia lymphocytes by 4-hydroperoxycyclophos-phamide is inhibited by fludarabine and clofarabine. Clin. Cancer Res., 7, 3580–3589, 2001.PubMedGoogle Scholar
  185. 185.
    Laurent, D., Pradier, O., Schmidberger, H., Rave-Frank, M., Frankenberg, D., and Hess, C. F. Radiation rendered more cytotoxic by fludarabine monophosphate in a human oropharynx carcinoma cell line than in fetal lung fibroblasts. J. Cancer Res. Clin. Oncol., 124, 485–492, 1998.PubMedCrossRefGoogle Scholar
  186. 186.
    Gregoire, V., Ruifrok, A. C. C., Price, R. E., et al. Effect of intra-peritoneal fludarabine on rat spinal-cord tolerance to fractionated-irradiation. Radiother. Oncol., 36, 50–55, 1995.PubMedCrossRefGoogle Scholar
  187. 187.
    Gregoire, V., Ang, K. K., Rosier, J. F., et al. A phase I study of fludarabine combined with radiotherapy in patients with intermediate to locally advanced head and neck squamous cell carcinoma. Radiother. Oncol., 63, 187–193, 2002.PubMedCrossRefGoogle Scholar
  188. 188.
    McCarthy, J. R., Matthews, D. P., Stemerick, D. M., et al. Stereospecific method to E-terminal and Z-terminal fluoro olefins and its application to the synthesis of 2′-deoxy-2′-fluoromethylene nucleosides as potential inhibitors of ribonucle-oside diphosphate reductase. J. Am. Chem. Soc., 113, 7439–7440, 1991.CrossRefGoogle Scholar
  189. 189.
    Takahashi, T., Nakashima, A., Kanazawa, J. J., et al. Metabolism and ribonu-cleotide reductase inhibition of (E)-2 ′-deoxy-2 ′-(fluoromethylene)cytidine, MDL 101,731 in human cervical carcinoma HeLa S-3 cells. Cancer Chemother. Pharmacol., 41, 268–274, 1998.PubMedCrossRefGoogle Scholar
  190. 190.
    van der Donk, W. A., Yu, G., Silva, D. J., and Stubbe, J. Inactivation of ribonucleotide reductase by (E)-2′-fluoromethylene-2′-deoxycytidine 5′-diphosphate: a paradigm for nucleotide mechanism-based inhibitors. Biochem., 35, 8381–8391, 1996.CrossRefGoogle Scholar
  191. 191.
    Zhou, Y., Achanta, G., Pelicano, H., Gandhi, V., Plunkett, W., and Huang, P. Action of (E)-2′-deoxy-2?′(fluoromethylene)cytidine on DNA metabolism: incorporation, excision, and cellular response. Mol. Pharmacol., 61, 222–229, 2002.PubMedCrossRefGoogle Scholar
  192. 192.
    Bitonti, A. J., Dumont, J. A., Bush, T. L., et al. Regression of human breast tumor xenografts in response to (E)-2′-deoxy-2′-(fluoromethylene)cytidine, and inhibitor of ribonucleoside diphosphate reductase. Cancer Res., 54, 1485–1490, 1994.PubMedGoogle Scholar
  193. 193.
    Piepmeier, J. M., Rabidou, N., Schold, S. C., Bitonti, A. J., Prakash, N. J., and Bush, T. L. In vitro and in vivo inhibition of glioblastoma and neuroblastoma with MDL 101,731, a ribonucleoside diphosphate reductase inhibitor. Cancer Res., 56, 359–361, 1996.PubMedGoogle Scholar
  194. 194.
    Miwa, M., Eda, H., Ura, M., et al. High susceptibility of human cancer xenografts with higher levels of cytidine deaminase to a 2 ′-deoxycytidine antimetabolite, 2′-deoxy-2 ′-methylidenecytidine. Clin. Cancer Res., 4, 493–497, 1998.PubMedGoogle Scholar
  195. 195.
    Snyder, R. D. Effect of 2′-deoxy-2′-(fluoromethylene) cytidine on the ultraviolet and x-ray-sensitivity of HeLa-cells. Oncol. Res., 6, 177–182, 1994.PubMedGoogle Scholar
  196. 196.
    Coucke, P. A., Decosterd, L. A., Li, Y. X., et al. The ribonucleoside diphosphate reductase inhibitor (E)-2′-deoxy(fluoromethylene)cytidine as a cytotoxic radiosensitizer in vitro. Cancer Res., 59, 5219–5226, 1999.PubMedGoogle Scholar
  197. 197.
    Li, Y. X., Sun, L. Q., Weber-Johnson, K., Paschoud, N., and Coucke, P. A. Potentiation of cytotoxicity and radiosensitization of (E)-2-deoxy-2′-(fluorometh-ylene) cytidine by pentoxifylline in vitro. Int. J. Cancer, 80, 155–160, 1999.PubMedCrossRefGoogle Scholar
  198. 198.
    Sun, L.-Q., Li, Y.-X., Guillou, L., and Coucke, P. A. (E)-2′-Deoxy-2′-(fluo-romethylene) cytidine potentiates radioresponse of two human solid tumor xenografts. Cancer Res., 58, 5411–5417, 1998.PubMedGoogle Scholar
  199. 199.
    Rodriguez, G. I., Jones, R. E., Orenberg, E. K., Stoltz, M. L., and Brooks, D. J. Phase I clinical trials of tezacitabine [(E)-2 ′-deoxy-2 ′-(fluoromethylene)cytidine] in patients with refractory solid tumors. Clin. Cancer Res., 8, 2828–2834, 2002.PubMedGoogle Scholar
  200. 200.
    Masuda, N., Negoro, S., Takeda, K., et al. Phase I and pharmacologic study of oral (E)-2′-deoxy-2′-(fluoromethylene) cytidine: on a daily × 5-d schedule. Invest. New Drugs, 16, 245–254, 1998.PubMedCrossRefGoogle Scholar
  201. 201.
    Eda, H., Ura, M., Ouchi, K. E, Tanaka, Y., Miwa, M., and Ishitsuka, H. The antiproliferative activity of DMDC is modulated by inhibition of cytidine deaminase. Cancer Res., 58, 1165–1169, 1998.PubMedGoogle Scholar
  202. 202.
    Reichard, P. Interactions between deoxyribonucleotide and DNA synthesis. Annu. Rev. Biochem., 57, 349–374, 1988.PubMedCrossRefGoogle Scholar
  203. 203.
    Yarbro, J. W. Mechanism of action of hydroxyurea. Semin. Oncol., 19, 1–10, 1992.PubMedGoogle Scholar
  204. 204.
    Donehower, R. C. An overview of the clinical experience with hydroxyurea. Semin. Oncol., 19, 11–19, 1992.PubMedGoogle Scholar
  205. 205.
    Nocentini, G. Ribonucleotide reductase inhibitors: new strategies for cancer chemotherapy. Crit. Rev. Oncol./Hematol., 22, 89–126, 1996.CrossRefGoogle Scholar
  206. 206.
    Lori, F., Malykh, A., Cara, A., et al. Hydroxyurea as an inhibitor of human immunodeficiency virus-type 1 replication. Science, 266, 801–805, 1994.PubMedCrossRefGoogle Scholar
  207. 207.
    Stubbe, J. Ribonucleotide reductases. Adv. Enzymol., 63, 349–419, 1990.PubMedGoogle Scholar
  208. 208.
    Jordan, A., and Reichard, P. Ribonucleotide reductases. Annu. Rev. Biochem., 67, 71–98, 1998.PubMedCrossRefGoogle Scholar
  209. 209.
    Fox, R. M. Changes in deoxynucleoside triphosphate pools induced by inhibitors and modulators of ribonucleotide reductase. Pharmacol. Ther., 30, 31–42, 1985.PubMedCrossRefGoogle Scholar
  210. 210.
    Arner, E. S. J., and Eriksson, S. Mammalian deoxyribonucleoside kinases. Pharmacol. Ther., 67, 155–186, 1995.PubMedCrossRefGoogle Scholar
  211. 211.
    Moore, E. C., and Hurlbert, R. B. Regulation of mammalian deoxyribonucleotide biosynthesis by nucleotides as activators and inhibitors. J. Biol. Chem., 241, 4802–4809, 1966.PubMedGoogle Scholar
  212. 212.
    Nutter, L. M., and Cheng, Y. C. Nature and properties of mammalian ribonucle-oside diphosphate reductase. Pharmacol. Ther., 26, 191–207, 1984.PubMedCrossRefGoogle Scholar
  213. 213.
    Gandhi, V., Kantarjian, H., Talpaz, M., Robertson, L. E., and O’Brien, S. Cellular pharmacodynamics and plasma pharmacokinetics of parenterally infused hydrox-yurea during a phase I clinical trial in chronic myelogenous leukemia. J. Clin. Oncol., 16, 2321–2331, 1998.PubMedGoogle Scholar
  214. 214.
    Giles, F. J., Fracasso, P. M., Kantarjian, H. M., et al. Phase I and pharmacody-namic study of Triapine, a novel ribonucleotide reductase inhibitor, in patients with advanced leukemia. Leuk. Res., 27, 1077–1083, 2003.PubMedCrossRefGoogle Scholar
  215. 215.
    Sinclair, W. K. Hydroxyurea—differential lethal effects on cultured mammalian cells during cell cycle. Science, 150, 1729, 1965.PubMedCrossRefGoogle Scholar
  216. 216.
    Sinclair, W. K. The combined effect of hydroxyurea and x-rays on Chinese hamster cells in vitro. Cancer Res., 28, 198–206, 1968.PubMedGoogle Scholar
  217. 217.
    Sinclair, W. K. X-ray survival and DNA synthesis in Chinese hamster cells. I. The effect of inhibitors added before x-irradiation. Proc. Natl. Acad. Sci. U. S. A, 58, 115–122, 1967.PubMedCrossRefGoogle Scholar
  218. 218.
    Ward, J. E, Joner, E. L, and Blakely, W. F. Effects of inhibitors of DNA strand break repair on HeLa cell radiosensitivity. Cancer Res., 44, 59–63, 1984.PubMedGoogle Scholar
  219. 219.
    Fram, R. J., and Kufe, D. W. Inhibition of DNA excision repair and the repair of x-ray-induced DNA damage by cytosine arabinoside and hydroxyurea. Pharmacol. Ther., 31, 165–176, 1985.PubMedCrossRefGoogle Scholar
  220. 220.
    Kuo, M.-L., Kunugi, K. A., Lindstrom, M. J., and Kinsella, T. J. The interaction of hydroxyurea and iododeoxyuridine on the radiosensitivity of human bladder cancer cells. Cancer Res., 55, 2800–2805, 1995.PubMedGoogle Scholar
  221. 221.
    Kinsella, T. J. Radiosensitization and cell kinetics: clinical implications for S-phase-specific radiosensitizers. Semin. Oncol., 19, 41–47, 1992.PubMedGoogle Scholar
  222. 222.
    Hreshchyshyn, M. M., Aron, B. S., Boronow, R. C., et al. Hydroxyurea or placebo combined with radiation to treat stages HTB and IV cervical cancer confined to the pelvis. Int. J. Radiat. Oncol. Biol. Phys., 5, 317–322, 1979.PubMedGoogle Scholar
  223. 223.
    Piver, M., Khalil, M., and Emrich, L. J. Hydroxyurea plus pelvic irradiation vs placebo plus pelvic irradiation in nonsurgically staged stage IIIB cervical cancer. J. Surg. Oncol., 42, 120–125, 1989.PubMedCrossRefGoogle Scholar
  224. 224.
    Prados, M. D., Larson, D. A., Lamborn, K., et al. Radiation therapy and hydroxyurea followed by the combination of 6-thioguanine and BCNU for the treatment of primary malignant brain tumors. Int. J. Radiat. Oncol. Biol. Phys., 40, 57–63, 1998.PubMedCrossRefGoogle Scholar
  225. 225.
    Beitler, J. J., Anderson, P., Haynes, H., et al. Phase I clinical trial of parenteral hydroxyurea in combination with pelvic and para-aortic external radiation and brachytherapy for patients with advanced squamous cell cancer of the uterine cervix. Int. J. Radiat. Oncol. Biol. Phys., 52, 637–642, 2002.PubMedCrossRefGoogle Scholar
  226. 226.
    Argiris, A., Haraf, D. J., Kies, M. S., and Vokes, E. E. Intensive concurrent chemoradiotherapy for head and neck cancer with 5-fluorouracil-and hydrox-yurea-based regimens: reversing a pattern of failure. Oncologist, 8, 350–360, 2003.PubMedCrossRefGoogle Scholar
  227. 227.
    Beitler, J. J., Anderson, P., Haynes, H., et al. Phase I clinical trial of parenteral hydroxyurea in combination with pelvic and para-aortic external radiation and brachytherapy for patients with advanced squamous cell cancer of the uterine cervix. Int. J. Radiat. Oncol. Biol. Phys., 52, 637–642, 2002.PubMedCrossRefGoogle Scholar
  228. 228.
    Wadler, S., Horowitz, R., Rao, J., Mao, X., Schlesinger, K., and Schwartz, E. L. Interferon augments the cytotoxicity of hydroxyurea without enhancing its activity against the M2 subunit of ribonucleotide reductase: effects in wild-type and resistant human colon cancer cells. Cancer Chemother. Pharmacol., 38, 522–528, 1996.PubMedCrossRefGoogle Scholar
  229. 229.
    Robinson, B. W., and Shewach, D. S. Gemcitabine enhances the mutation rate in mismatch repair deficient but not in mismatch repair proficient HCT116 cells. Proc. Am. Assoc. Cancer Res., 44, 1173, 2003.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2006

Authors and Affiliations

  • Donna S. Shewach
    • 1
  • Theodore S. Lawrence
    • 1
  1. 1.Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations