Chromosome-Engineered Mouse Models

  • Pentao Liu


Chromosome rearrangements cause genomic disorders and cancer in human. Region-specific low-copy repeats (LCRs) can mediate nonallelic homologous recombination (NAHR) that results in chromosome rearrangements. Using the Cre-loxP site-specific recombination system, chromosome rearrangements that cause genomic disorders and cancer can be recapitulated in the mouse. Technology advancements in mouse genetics, such as recombineering, will undoubtedly facilitate modeling genetic changes associated with genomic disorders in the mouse.


Bacterial Artificial Chromosome Chromosome Rearrangement loxP Site Herpes Simplex Virus Thymidine Kinase Cardiovascular Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lupski JR. Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet 1998;14:417–422.PubMedCrossRefGoogle Scholar
  2. 2.
    Inoue K, Lupski JR. Molecular mechanisms for genomic disorders. Annu Rev Genomics Hum Genet 2002;3:199–242.PubMedCrossRefGoogle Scholar
  3. 3.
    Stankiewicz P, Lupski JR. Genome architecture, rearrangements and genomic disorders. Trends Genet 2002;18:74–82.PubMedCrossRefGoogle Scholar
  4. 4.
    Shaw CJ, Lupski JR. Implications of human genome architecture for rearrangement-based disorders: the genomic basis of disease. Hum Mol Genet 2004;13:R57–R64.PubMedCrossRefGoogle Scholar
  5. 5.
    Samonte RV, Eichler EE. Segmental duplications and the evolution of the primate genome. Nat Rev Genet 2002;3:65–72.PubMedCrossRefGoogle Scholar
  6. 6.
    Bailey JA, Church DM, Ventura M, Rocchi M, Eichler EE. Analysis of segmental duplications and genome assembly in the mouse. Genome Res 2004;14:789–801.PubMedCrossRefGoogle Scholar
  7. 7.
    Madsen O, Scally M, Douady CJ, et al. Parallel adaptive radiations in two major clades of placental mammals. Nature 2001;409:610–614.PubMedCrossRefGoogle Scholar
  8. 8.
    Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA, O’Brien SJ. Molecular phylogenetics and the origins of placental mammals. Nature 2001;409:614–618.PubMedCrossRefGoogle Scholar
  9. 9.
    Waterston RH, Lindblad-Toh K, Birney E, et al. Initial sequencing and comparative analysis of the mouse genome. Nature 2002;420:520–562.PubMedCrossRefGoogle Scholar
  10. 10.
    Morse H. Origins of Inbred Mice. New York, NY: Academic Press, 1978.Google Scholar
  11. 11.
    Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA 1980;77:7380–7384.PubMedCrossRefGoogle Scholar
  12. 12.
    Brinster RL, Chen HY, Trumbauer M, Senear AW, Warren R, Palmiter RD. Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell 1981;27:223–231.PubMedCrossRefGoogle Scholar
  13. 13.
    Costantini F, Lacy E. Introduction of a rabbit beta-globin gene into the mouse germ line. Nature 1981;294:92–94.PubMedCrossRefGoogle Scholar
  14. 14.
    Wagner EF, Stewart TA, Mintz B. The human beta-globin gene and a functional viral thymidine kinase gene in developing mice. Proc Natl Acad Sci USA 1981;78:5016–5020.PubMedCrossRefGoogle Scholar
  15. 15.
    Wagner TE, Hoppe PC, Jollick JD, Scholl DR, Hodinka RL, Gault JB. Microinjection of a rabbit beta-globin gene into zygotes and its subsequent expression in adult mice and their offspring. Proc Natl Acad Sci USA 1981;78:6376–6380.PubMedCrossRefGoogle Scholar
  16. 16.
    Hanahan D. Transgenic mice as probes into complex systems. Science 1989;246:1265–1275.PubMedCrossRefGoogle Scholar
  17. 17.
    Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981;292:154–156.PubMedCrossRefGoogle Scholar
  18. 18.
    Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 1981;78:7634–7638.PubMedCrossRefGoogle Scholar
  19. 19.
    Bradley A, Evans M, Kaufman MH, Robertson E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 1984;309:255–256.PubMedCrossRefGoogle Scholar
  20. 20.
    Smithies O, Gregg RG, Boggs SS, Koralewski MA, Kucherlapati RS. Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature 1985;317:230–234.PubMedCrossRefGoogle Scholar
  21. 21.
    Thomas KR, Capecchi MR. Introduction of homologous DNA sequences into mammalian cells induces mutations in the cognate gene. Nature 1986;324:34–38.PubMedCrossRefGoogle Scholar
  22. 22.
    Thomas KR, Capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 1987;51:503–512.PubMedCrossRefGoogle Scholar
  23. 23.
    Thompson S, Clarke AR, Pow AM, Hooper ML, Melton DW. Germ line transmission and expression of a corrected HPRT gene produced by gene targeting in embryonic stem cells. Cell 1989;56:313–321.PubMedCrossRefGoogle Scholar
  24. 24.
    Zhang H, Hasty P, Bradley A. Targeting frequency for deletion vectors in embryonic stem cells. Mol Cell Biol 1994;14:2404–2410.PubMedGoogle Scholar
  25. 25.
    Russell WL. X-ray-induced mutations in mice. Cold Spring Harb Symp Quant Biol 1951;16:327–336.PubMedGoogle Scholar
  26. 26.
    Russell LB, Hunsicker PR, Cacheiro NL, Bangham JW, Russell WL, Shelby MD. Chlorambucil effectively induces deletion mutations in mouse germ cells. Proc Natl Acad Sci USA 1989;86:3704–3708.PubMedCrossRefGoogle Scholar
  27. 27.
    Stubbs L, Carver EA, Cacheiro NL, Shelby M, Generoso W. Generation and characterization of heritable reciprocal translocations in mice. Methods 1997;13:397–408.PubMedCrossRefGoogle Scholar
  28. 28.
    Sauer B, Henderson N. Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci USA 1988;85:5166–5170.PubMedCrossRefGoogle Scholar
  29. 29.
    Gu H, Zou YR, Rajewsky K. Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell 1993;73:1155–1164.PubMedCrossRefGoogle Scholar
  30. 30.
    Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 1994;265:103–106.PubMedCrossRefGoogle Scholar
  31. 31.
    Ramirez-Solis R, Liu P, Bradley A. Chromosome engineering in mice. Nature 1995;378:720–724.PubMedCrossRefGoogle Scholar
  32. 32.
    Liu P, Zhang H, McLellan A, Vogel H, Bradley A. Embryonic lethality and tumorigenesis caused by segmental aneuploidy on mouse chromosome 11. Genetics 1998;150:1155–1168.PubMedGoogle Scholar
  33. 33.
    Liu P, Jenkins NA, Copeland NG. Efficient Cre-loxP-induced mitotic recombination in mouse embryonic stem cells. Nat Genet 2002;30:66–72.PubMedCrossRefGoogle Scholar
  34. 34.
    Kile BT, Hentges KE, Clark AT, et al. Functional genetic analysis of mouse chromosome 11. Nature 2003;425:81–86.PubMedCrossRefGoogle Scholar
  35. 35.
    Zheng B, Sage M, Cai WW, et al. Engineering a mouse balancer chromosome. Nat Genet 1999;22:375–378.PubMedCrossRefGoogle Scholar
  36. 36.
    You Y, Bergstrom R, Klemm M, et al. Chromosomal deletion complexes in mice by radiation of embryonic stem cells. Nat Genet 1997;15:285–288.PubMedCrossRefGoogle Scholar
  37. 37.
    Chen Y, Yee D, Dains K, et al. Genotype-based screen for ENU-induced mutations in mouse embryonic stem cells. Nat Genet 2000;24:314–317.PubMedCrossRefGoogle Scholar
  38. 38.
    Naf D, Wilson LA, Bergstrom RA, et al. Mouse models forthe Wolf-Hirschhorn deletion syndrome. Hum Mol Genet 2001;10:91–98.PubMedCrossRefGoogle Scholar
  39. 39.
    Zheng B, Mills AA, Bradley A. A system for rapid generation of coat color-tagged knockouts and defined chromosomal rearrangements in mice. Nucleic Acids Res 1999;27:2354–2360.PubMedCrossRefGoogle Scholar
  40. 40.
    Adams DJ, Biggs PJ, Cox T, et al. Mutagenic nsertion and chromosome engineering resource (MICER). Nat Genet 2004;36:867–871.PubMedCrossRefGoogle Scholar
  41. 41.
    Mills AA, Bradley A. From mouse to man: generating megabase chromosome rearrangements. Trends Genet 2001;17:331–339.PubMedCrossRefGoogle Scholar
  42. 42.
    Hasty P, Rivera-Perez J, Chang C, Bradley A. Target frequency and integration pattern for insertion and replacement vectors in embryonic stem cells. Mol Cell Biol 1991;11:4509–4517.PubMedGoogle Scholar
  43. 43.
    Zhang Y, Buchholz F, Muyrers JP, Stewart AF. A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 1998;20:123–128.PubMedCrossRefGoogle Scholar
  44. 44.
    Copeland NG, Jenkins NA, Court DL. Recombineering: a powerful new tool for mouse functional genomics. Nat Rev Genet 2001;2:769–779.PubMedCrossRefGoogle Scholar
  45. 45.
    Court DL, Sawitzke JA, Thomason LC. Genetic engineering using homologous recombination. Annu Rev Genet 2002;36:361–388.PubMedCrossRefGoogle Scholar
  46. 46.
    Yu D, Ellis HM, Lee EC, Jenkins NA, Copeland NG, Court DL. An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci USA 2000;97:5978–5983.PubMedCrossRefGoogle Scholar
  47. 47.
    Lee EC, Yu D, Martinez de Velasco J, et al. A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 2001;73:56–65.PubMedCrossRefGoogle Scholar
  48. 48.
    Muyrers JP, Zhang Y, Buchholz F, Stewart AF. RecE/RecT and Redalpha/Redbeta initiate double-stranded break repair by specifically interacting with their respective partners. Genes Dev 2000;14:1971–1982.PubMedGoogle Scholar
  49. 49.
    Liu P, Jenkins NA, Copeland NG. A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res 2003;13:476–484.PubMedCrossRefGoogle Scholar
  50. 50.
    Court DL, Swaminathan S, Yu D, et al. Mini-lambda: a tractable system for chromosome and BAC engineering. Gene 2003;315:63–69.PubMedCrossRefGoogle Scholar
  51. 51.
    Testa G, Zhang Y, Vintersten K, et al. Engineering the mouse genome with bacterial artificial chromosomes to create multipurpose alleles. Nat Biotechnol 2003;21:443–447.PubMedCrossRefGoogle Scholar
  52. 52.
    Scambler PJ. The 22q1 1 deletion syndromes. Hum Mol Genet 2000;9:2421–2426.PubMedCrossRefGoogle Scholar
  53. 53.
    Edelmann L, Pandita RK, Morrow BE. Low-copy repeats mediate the common 3-Mb deletion in patients with velo-cardio-facial syndrome. Am J Hum Genet 1999;64:1076–1086.PubMedCrossRefGoogle Scholar
  54. 54.
    Edelmann L, Pandita RK, Spiteri E, et al. A common molecular basis for rearrangement disorders on chromosome 22q11. Hum Mol Genet 1999;8:1157–1167.PubMedCrossRefGoogle Scholar
  55. 55.
    Shaikh TH, Kurahashi H, Emanuel BS. Evolutionarily conserved low copy repeats (LCRs) in 22q1 1 mediate deletions, duplications, translocations, and genomic instability: an update and literature review. Genet Med 2001;3:6–13.PubMedCrossRefGoogle Scholar
  56. 56.
    Lindsay EA, Botta A, Jurecic V, et al. Congenital heart disease in mice deficient for the DiGeorge syndrome region. Nature 1999;401:379–383.PubMedGoogle Scholar
  57. 57.
    Lindsay EA, Vitelli F, Su H,et al. Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 2001;410:97–101.PubMedCrossRefGoogle Scholar
  58. 58.
    Merscher S, Funke B, Epstein JA, et al. TBX1 is responsible for cardiovascular defects in velo-cardio-facial/ DiGeorge syndrome. Cell 2001;104:619–629.PubMedCrossRefGoogle Scholar
  59. 59.
    Jerome LA, Papaioannou VE. DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat Genet 2001;27:286–291.PubMedCrossRefGoogle Scholar
  60. 60.
    Yagi H, Furutani Y, Hamada H, et al. Role of TBX1 in human del22q11.2 syndrome. Lancet 2003;362:1366–1373.PubMedCrossRefGoogle Scholar
  61. 61.
    Stockton DW, Das P, Goldenberg M, D’Souza RN, Patel PI. Mutation of PAX9 is associated with oligodontia. Nat Genet 2000;24:18–19.PubMedCrossRefGoogle Scholar
  62. 62.
    Peters H, Neubuser A, Kratochwil K, Balling R. Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev 1998;12:2735–2747.PubMedGoogle Scholar
  63. 63.
    Satokata I, Ma L, Ohshima H, et al. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nat Genet 2000;24:391–395.PubMedCrossRefGoogle Scholar
  64. 64.
    Wilkie AO, Tang Z, Elanko N, et al. Functional haploinsufficiency of the human homeobox gene MSX2 causes defects in skull ossification. Nat Genet 2000;24:387–390.PubMedCrossRefGoogle Scholar
  65. 65.
    Greenberg F, Guzzetta V, Montes de Oca-Luna R, et al. Molecular analysis of the Smith-Magenis syndrome: a possible contiguous-gene syndrome associated with del(17)(p1 1.2). Am J Hum Genet 1991;49:1207–1218.PubMedGoogle Scholar
  66. 66.
    Chen KS, Manian P, Koeuth T, et al. Homologous recombination of a flanking repeat gene cluster is a mechanism for a common contiguous gene deletion syndrome. Nat Genet 1997;17:154–163.PubMedCrossRefGoogle Scholar
  67. 67.
    Potocki L, Chen KS, Park SS, et al. Molecular mechanism for duplication 17p1 1.2-the homologous recombination reciprocal of the Smith-Magenis microdeletion. Nat Genet 2000;24:84–87.PubMedCrossRefGoogle Scholar
  68. 68.
    Walz K, Caratini-Rivera S, Bi W, et al. Modeling del(17)(p11.2p11.2) and dup(17)(p11.2p11.2) contiguous gene syndromes by chromosome engineering in mice: phenotypic consequences of gene dosage imbalance. Mol Cell Biol 2003;23:3646–3655.PubMedCrossRefGoogle Scholar
  69. 69.
    Walz K, Spencer C, Kaasik K, Lee CC, Lupski JR, Paylor R. Behavioral characterization of mouse models for Smith-Magenis syndrome and dup(17)(p11.2p11.2). Hum Mol Genet 2004;13:367–378.PubMedCrossRefGoogle Scholar
  70. 70.
    Slager RE, Newton TL, Vlangos CN, Finucane B, Elsea SH. Mutations in RAI1 associated with Smith-Magenis syndrome. Nat Genet 2003;33:466–468.PubMedCrossRefGoogle Scholar
  71. 71.
    Albertson DG, Collins C, McCormick F, Gray JW. Chromosome aberrations in solid tumors. Nat Genet 2003;34:369–376.PubMedCrossRefGoogle Scholar
  72. 72.
    Rabbitts TH. Chromosomal translocations in human cancer. Nature 1994;372:143–149.PubMedCrossRefGoogle Scholar
  73. 73.
    Rowley JD. The critical role of chromosome translocations in human leukemias. Annu Rev Genet 1998;32:495–519.PubMedCrossRefGoogle Scholar
  74. 74.
    Daser A, Rabbitts TH. Extending the repertoire of the mixed-lineage leukemia gene MLL in leukemogenesis. Genes Dev 2004;18:965–974.PubMedCrossRefGoogle Scholar
  75. 75.
    Forster A, Pannell R, Drynan LF, et al. Engineering de novo reciprocal chromosomal translocations associated with Mll to replicate primary events of human cancer. Cancer Cell 2003;3:449–458.PubMedCrossRefGoogle Scholar
  76. 76.
    Zheng B, Sage M, Sheppeard EA, Jurecic V, Bradley A. Engineering mouse chromosomes with Cre-loxP: range, efficiency, and somatic applications. Mol Cell Biol 2003;20:648–655.CrossRefGoogle Scholar
  77. 77.
    Shayesteh L, Lu Y, Kuo WL, et al. PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet 1999;21:99–102.PubMedCrossRefGoogle Scholar
  78. 78.
    Farag SS, Archer KJ, Mroze kK, etal. Isolated trisomyof chromosomes 8,11,13 and21 is an adverse prognostic factor in adults with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B 8461. Int J Oncol 2002;21:1041–1051.PubMedGoogle Scholar
  79. 79.
    Solinas-Toldo S, Lampel S, Stilgenbauer S, et al. Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer 1997;20:399–407.PubMedCrossRefGoogle Scholar
  80. 80.
    Pinkel D, Segraves R, Sudar D, et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 1998;20:207–211.PubMedCrossRefGoogle Scholar
  81. 81.
    Pollack JR, Perou CM, Alizadeh AA, et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet 1999;23:41–46.PubMedCrossRefGoogle Scholar
  82. 82.
    Cai WW, Mao JH, Chow CW, Damani S, Balmain A, Bradley A. Genome-wide detection of chromosomal imbalances in tumors using BAC microarrays. Nat Biotechnol 2002;20:393–396.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2006

Authors and Affiliations

  • Pentao Liu
    • 1
  1. 1.The Sanger InstituteWellcome Trust Genome CampusCambridge

Personalised recommendations