Advertisement

Chemokine Receptors in Allergic Lung Disease

  • Dennis M. Lindell
  • Nicholas W. Lukacs
Chapter
  • 592 Downloads
Part of the The Receptors book series (REC)

Abstract

This chapter is an attempt to integrate recent studies concerning the role of chemokine receptors in the initiation, development, and maintenance of allergic lung diseases collectively referred to as asthma. The pathogenesis of asthma involves the coordinated trafficking of inflammatory cells to the lungs and draining lymph nodes, as well as the activation of these inflammatory cells. Chemokine receptors and their ligands play a prominent role in directing the inflammation associated with allergic lung disease. T lymphocyte-mediated immune responses can be broadly categorized as being type 1 or type 2, based on the cell types present and the associated cytokines produced. Allergic lung disease is a predominately type 2-mediated disease. The chemokine receptors CCR4, CCR6, and CCR8 serve to promote the recruitment of type 2 T (T helper 2; Th2) cells, whereas CXCR3 antagonizes type 2 and promotes type 1 T (T helper 1; Th1) cells. The pathophysiologic manifestations of asthma, including excessive mucus production, eosinophilia, and airway hyperreactivity, are dependent upon the trafficking and activation of eosinophils, mast cells, and goblet cells. Roles for chemokine receptors, including CCR4, CCR2, and CXCR4, in the trafficking and activation of these cell types during allergic lung disease are discussed. Finally, the incidence of allergic lung disease is increasing, and the costs associated with it are substantial. Chemokine receptor expression and use by inflammatory cells during allergic lung disease makes chemokine receptors an attractive therapeutic target. Implications for drug development are discussed in the context of experimental results.

Key Words

Allergy asthma lung pulmonary T cell mast cell eosinophil inflammation dendritic cell Ige B cell 

References

  1. 1.
    Morgan AJ, Symon FA, Berry MA, Pavord ID, Corrigan CJ, Wardlaw AJ. IL-4-expressing bronchoalveolar T cells from asthmatic and healthy subjects preferentially express CCR 3 and CCR 4. J Allergy Clin Immunol 2005;116(3):594–600.PubMedCrossRefGoogle Scholar
  2. 2.
    Hartl D, Griese M, Nicolai T, et al. Pulmonary chemokines and their receptors differentiate children with asthma and chronic cough. J Allergy Clin Immunol 2005;115(4):728–736.PubMedCrossRefGoogle Scholar
  3. 3.
    Panina-Bordignon P, Papi A, Mariani M, et al. The C-C chemokine receptors CCR4 and CCR8 identify airway T cells of allergen-challenged atopic asthmatics. J Clin Invest 2001;107(11):1357–1364.PubMedCrossRefGoogle Scholar
  4. 4.
    Kallinich T, Schmidt S, Hamelmann E, et al. Chemokine-receptor expression on T cells in lung compartments of challenged asthmatic patients. Clin Exp Allergy 2005;35(1):26–33.PubMedCrossRefGoogle Scholar
  5. 5.
    Loetscher P, Pellegrino A, Gong JH, et al. The ligands of CXC chemokine receptor 3, I-TAC, Mig, and IP10, are natural antagonists for CCR3. J Biol Chem 2001;276(5):2986–2991.PubMedCrossRefGoogle Scholar
  6. 6.
    Weng Y, Siciliano SJ, Waldburger KE, et al. Binding and functional properties of recombinant and endogenous CXCR3 chemokine receptors. J Biol Chem 1998;273(29):18288–18291.PubMedCrossRefGoogle Scholar
  7. 7.
    Hirata H, Arima M, Cheng G, et al. Production of TARC and MDC by naive T cells in asthmatic patients. J Clin Immunol 2003;23(1):34–45.PubMedCrossRefGoogle Scholar
  8. 8.
    Ying S, O’Connor B, Ratoff J, et al. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J Immunol 2005;174(12):8183–8190.PubMedGoogle Scholar
  9. 9.
    Sekiya T, Yamada H, Yamaguchi M, et al. Increased levels of a TH2-type CC chemokine thymus and activation-regulated chemokine (TARC) in serum and induced sputum of asthmatics. Allergy 2002;57(2):173–177.PubMedCrossRefGoogle Scholar
  10. 10.
    Lezcano-Meza D, Negrete-Garcia MC, Dante-Escobedo M, Teran LM. The monocyte-derived chemokine is released in the bronchoalveolar lavage fluid of steady-state asthmatics. Allergy 2003;58(11):1125–1130.PubMedCrossRefGoogle Scholar
  11. 11.
    Sekiya T, Miyamasu M, Imanishi M, et al. Inducible expression of a Th2-type CC chemokine thymus-and activation-regulated chemokine by human bronchial epithelial cells. J Immunol 2000;165(4):2205–2213.PubMedGoogle Scholar
  12. 12.
    Berin MC, Eckmann L, Broide DH, Kagnoff MF. Regulated production of the T helper 2-type T-cell chemoattractant TARC by human bronchial epithelial cells in vitro and in human lung xenografts. Am J Respir Cell Mol Biol 2001;24(4):382–389.PubMedGoogle Scholar
  13. 13.
    Bochner BS, Hudson SA, Xiao HQ, Liu MC. Release of both CCR4-active and CXCR3-active chemokines during human allergic pulmonary late-phase reactions. J Allergy Clin Immunol 2003;112(5):930–934.PubMedCrossRefGoogle Scholar
  14. 14.
    Pilette C, Francis JN, Till SJ, Durham SR. CCR4 ligands are up-regulated in the airways of atopic asthmatics after segmental allergen challenge. Eur Respir J 2004;23(6):876–884.PubMedCrossRefGoogle Scholar
  15. 15.
    Conroy DM, Jopling LA, Lloyd CM, et al. CCR4 blockade does not inhibit allergic airways inflammation. J Leukoc Biol 2003;74(4):558–563.PubMedCrossRefGoogle Scholar
  16. 16.
    Gonzalo JA, Pan Y, Lloyd CM, et al. Mouse monocyte-derived chemokine is involved in airway hyperreactivity and lung inflammation. J Immunol 1999;163(1):403–411.PubMedGoogle Scholar
  17. 17.
    Kawasaki S, Takizawa H, Yoneyama H, et al. Intervention of thymus and activation-regulated chemokine attenuates the development of allergic airway inflammation and hyperresponsiveness in mice. J Immunol 2001;166(3):2055–2062.PubMedGoogle Scholar
  18. 18.
    Lloyd CM, Delaney T, Nguyen T, et al. CC chemokine receptor (CCR)3/eotaxin is followed by CCR4/monocyte-derived chemokine in mediating pulmonary T helper lymphocyte type 2 recruitment after serial antigen challenge in vivo. J Exp Med 2000;191(2):265–274.PubMedCrossRefGoogle Scholar
  19. 19.
    Schuh JM, Power CA, Proudfoot AE, Kunkel SL, Lukacs NW, Hogaboam CM. Airway hyperresponsiveness, but not airway remodeling, is attenuated during chronic pulmonary allergic responses to Aspergillus in CCR4-/- mice. FASEB J 2002;16(10):1313–1315.PubMedGoogle Scholar
  20. 20.
    Hogaboam CM, Carpenter KJ, Schuh JM, Buckland KF. Aspergillus and asthma-any link? Med Mycol 2005;43(Suppl 1):S197–202.PubMedCrossRefGoogle Scholar
  21. 21.
    Carpenter KJ, Hogaboam CM. Immunosuppressive effects of CCL17 on pulmonary antifungal responses during pulmonary invasive aspergillosis. Infect Immun 2005;73(11):7198–7207.PubMedCrossRefGoogle Scholar
  22. 22.
    Abi-Younes S, Si-Tahar M, Luster AD. The CC chemokines MDC and TARC induce platelet activation via CCR4. Thromb Res 2001;101(4):279–289.PubMedCrossRefGoogle Scholar
  23. 23.
    Iellem A, Mariani M, Lang R, et al. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. J Exp Med 1001;194(6):847–853.CrossRefGoogle Scholar
  24. 24.
    Yang ZZ, Novak AJ, Stenson MJ, Witzig TE, Ansell SM. Intratumoral CD4+CD25+ regulatory T-cell-mediated suppression of infiltrating CD4+ T-cells in B-cell non-Hodgkin lymphoma. Blood 2006;107(9):3639–3646.PubMedCrossRefGoogle Scholar
  25. 25.
    Amin K, Janson C, Harvima I, Venge P, Nilsson G. CC chemokine receptors CCR1 and CCR4 are expressed on airway mast cells in allergic asthma. J Allergy Clin Immunol 2005;116(6):1383–1386.PubMedCrossRefGoogle Scholar
  26. 26.
    Krzysiek R, Lefevre EA, Bernard J, et al. Regulation of CCR6 chemokine receptor expression and responsiveness to macrophage inflammatory protein-3alpha/CCL20 in human B cells. Blood 2000;96(7):2338–2345.PubMedGoogle Scholar
  27. 27.
    Fitzhugh DJ, Naik S, Gonzalez E, Caughman SW, Hwang ST. CC chemokine receptor 6 (CCR6) is a marker for memory T cells that arrest on activated human dermal microvascular endothelium under shear stress. J Invest Dermatol 2000;115(2):332.PubMedCrossRefGoogle Scholar
  28. 28.
    Kleinewietfeld M, Puentes F, Borsellino G, Battistini L, Rotzschke O, Falk K. CCR6 expression defines regulatory effector/memory-like cells within the CD25+CD4+ T-cell subset. Blood 2005;105(7):2877–2886.PubMedCrossRefGoogle Scholar
  29. 29.
    Cook DN, Prosser DM, Forster R, et al. CCR6 mediates dendritic cell localization, lymphocyte homeostasis, and immune responses in mucosal tissue. Immunity 2000;12(5):495–503.PubMedCrossRefGoogle Scholar
  30. 30.
    Dieu MC, Vanbervliet B, Vicari A, et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J Exp Med 1998;188(2):373–386.PubMedCrossRefGoogle Scholar
  31. 31.
    Starner TD, Barker CK, Jia HP, Kang Y, McCray PB Jr. CCL20 is an inducible product of human airway epithelia with innate immune properties. Am J Respir Cell Mol Biol 2003;29(5):627–633.PubMedCrossRefGoogle Scholar
  32. 32.
    Reibman J, Hsu Y, Chen LC, Bleck B, Gordon T. Airway epithelial cells release MIP-3alpha/CCL20 in response to cytokines and ambient particulate matter. Am J Respir Cell Mol Biol 2003;28(6):648–654.PubMedCrossRefGoogle Scholar
  33. 33.
    Lukacs NW, Prosser DM, Wiekowski M, Lira SA, Cook DN. Requirement for the chemokine receptor CCR6 in allergic pulmonary inflammation. J Exp Med 2001;194(4):551–555.PubMedCrossRefGoogle Scholar
  34. 34.
    Lundy SK, Lira SA, Smit JJ, Cook DN, Berlin AA, Lukacs NW. Attenuation of allergen-induced responses in CCR6-/- mice is dependent upon altered pulmonary T lymphocyte activation. J Immunol 2005;174(4):2054–2060.PubMedGoogle Scholar
  35. 35.
    Chung CD, Kuo F, Kumer J, et al. CCR8 is not essential for the development of inflammation in a mouse model of allergic airway disease. J Immunol 2003;170(1):581–587.PubMedGoogle Scholar
  36. 36.
    Chensue SW, Lukacs NW, Yang TY, et al. Aberrant in vivo T helper type 2 cell response and impaired eosinophil recruitment in CC chemokine receptor 8 knockout mice. J Exp Med 2001;193(5):573–584.PubMedCrossRefGoogle Scholar
  37. 37.
    Goya I, Villares R, Zaballos A, et al. Absence of CCR8 does not impair the response to ovalbumin-induced allergic airway disease. J Immunol 2003;170(4):2138–2146.PubMedGoogle Scholar
  38. 38.
    Freeman CM, Chiu BC, Stolberg VR, et al. CCR8 is expressed by antigen-elicited, IL-10-producing CD4+CD25+ T cells, which regulate Th2-mediated granuloma formation in mice. J Immunol 2005;174(4):1962–1970.PubMedGoogle Scholar
  39. 39.
    Gombert M, Dieu-Nosjean MC, Winterberg F, et al. CCL1-CCR8 interactions: an axis mediating the recruitment of T cells and Langerhans-type dendritic cells to sites of atopic skin inflammation. J Immunol 2005;174(8):5082–5091.PubMedGoogle Scholar
  40. 40.
    Thomas MS, Kunkel SL, Lukacs NW. Regulation of cockroach antigen-induced allergic airway hyperreactivity by the CXCR3 ligand CXCL9. J Immunol 2004;173(1):615–623.PubMedGoogle Scholar
  41. 41.
    Thomas MS, Kunkel SL, Lukacs NW. Differential role of IFN-gamma-inducible protein 10kDa in a cockroach antigen-induced model of allergic airway hyperreactivity: systemic versus local effects. J Immunol 2002;169(12):7045–7053.PubMedGoogle Scholar
  42. 42.
    Campbell JJ, Brightling CE, Symon FA, et al. Expression of chemokine receptors by lung T cells from normal and asthmatic subjects. J Immunol 2001;166(4):2842–2848.PubMedGoogle Scholar
  43. 43.
    Kurashima K, Fujimura M, Myou S, et al. Effects of oral steroids on blood CXCR3+ and CCR4+ T cells in patients with bronchial asthma. Am J Respir Crit Care Med 2001;164(5):754–758.PubMedGoogle Scholar
  44. 44.
    Liu LY, Jarjour NN, Busse WW, Kelly EA. Chemokine receptor expression on human eosinophils from peripheral blood and bronchoalveolar lavage fluid after segmental antigen challenge. J Allergy Clin Immunol 2003;112(3):556–562.PubMedCrossRefGoogle Scholar
  45. 45.
    Aksoy MO, Yang Y, Ji R, et al. CXCR3 Surface expression in human airway epithelial cells: cell cycle dependence and effect on cell proliferation. Am J Physiol Lung Cell Mol Physiol 2005;290(5):L909–918.PubMedCrossRefGoogle Scholar
  46. 46.
    Brightling CE, Kaur D, Berger P, Morgan AJ, Wardlaw AJ, Bradding P. Differential expression of CCR3 and CXCR3 by human lung and bone marrow-derived mast cells: implications for tissue mast cell migration. J Leukoc Biol 2005;77(5):759–766.PubMedCrossRefGoogle Scholar
  47. 47.
    Brightling CE, Ammit AJ, Kaur D, et al. The CXCL10/CXCR3 axis mediates human lung mast cell migration to asthmatic airway smooth muscle. Am J Respir Crit Care Med 2005;171(10):1103–1108.PubMedCrossRefGoogle Scholar
  48. 48.
    Cheong HS, Park CS, Kim LH, et al. CXCR3 polymorphisms associated with risk of asthma. Biochem Biophys Res Commun 2005;334(4):1219–1225.PubMedCrossRefGoogle Scholar
  49. 49.
    Bandeira-Melo C, Bozza PT, Weller PF. The cellular biology of eosinophil eicosanoid formation and function. J Allergy Clin Immunol 2002;109(3):393–400.PubMedCrossRefGoogle Scholar
  50. 50.
    Kampen GT, Stafford S, Adachi T, et al. Eotaxin induces degranulation and chemotaxis of eosinophils through the activation of ERK2 and p38 mitogen-activated protein kinases. Blood 2000;95(6):1911–1917.PubMedGoogle Scholar
  51. 51.
    Cui CH, Adachi T, Oyamada H, et al. The role of mitogen-activated protein kinases in eotaxin-induced cytokine production from bronchial epithelial cells. Am J Respir Cell Mol Biol 2002;27(3):329–335.PubMedGoogle Scholar
  52. 52.
    Ying S, Robinson DS, Meng Q, et al. Enhanced expression of eotaxin and CCR3 mRNA and protein in atopic asthma. Association with airway hyperresponsiveness and predominant co-localization of eotaxin mRNA to bronchial epithelial and endothelial cells. Eur J Immunol 1997;27(12):3507–3516.PubMedCrossRefGoogle Scholar
  53. 53.
    Lilly CM, Woodruff PG, Camargo CA Jr, et al. Elevated plasma eotaxin levels in patients with acute asthma. J Allergy Clin Immunol 1999;104(4 Pt 1):786–790.PubMedCrossRefGoogle Scholar
  54. 54.
    Robinson DS, North J, Zeibecoglou K, et al. Eosinophil development and bone marrow and tissue eosinophils in atopic asthma. Int Arch Allergy Immunol 1999;118(2–4):98–100.PubMedCrossRefGoogle Scholar
  55. 55.
    Zeibecoglou K, Ying S, Yamada T, et al. Increased mature and immature CCR3 messenger RNA+ eosinophils in bone marrow from patients with atopic asthma compared with atopic and nonatopic control subjects. J Allergy Clin Immunol 1999;103(1 Pt 1):99–106.PubMedCrossRefGoogle Scholar
  56. 56.
    Wang CR, Chen PC, Liu MF. Increased circulating CCR3+ type 2 helper T cells in house dust mite-sensitive Chinese patients with allergic diseases. Asian Pac J Allergy Immunol 2003;21(4):205–210.PubMedGoogle Scholar
  57. 57.
    Ravensberg AJ, Ricciardolo FL, van Schadewijk A, et al. Eotaxin-2 and eotaxin-3 expression is associated with persistent eosinophilic bronchial inflammation in patients with asthma after allergen challenge. J Allergy Clin Immunol 2005;115(4):779–785.PubMedCrossRefGoogle Scholar
  58. 58.
    Humbles AA, Lu B, Friend DS, et al. The murine CCR3 receptor regulates both the role of eosinophils and mast cells in allergen-induced airway inflammation and hyperresponsiveness. Proc Natl Acad Sci U S A 2002;99(3):1479–1484.PubMedCrossRefGoogle Scholar
  59. 59.
    Pope SM, Zimmermann N, Stringer KF, Karow ML, Rothenberg ME. The eotaxin chemokines and CCR3 are fundamental regulators of allergen-induced pulmonary eosinophilia. J Immunol 2005;175(8):5341–5350.PubMedGoogle Scholar
  60. 60.
    Leckie MJ, ten Brinke A, Khan J, et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 2000;356(9248):2144–2148.PubMedCrossRefGoogle Scholar
  61. 61.
    Flood-Page PT, Menzies-Gow AN, Kay AB, Robinson DS. Eosinophil’s role remains uncertain as anti-interleukin-5 only partially depletes numbers in asthmatic airway. Am J Respir Crit Care Med 2003;167(2):199–204.PubMedCrossRefGoogle Scholar
  62. 62.
    Buttner C, Lun A, Splettstoesser T, Kunkel G, Renz H. Monoclonal anti-interleukin-5 treatment suppresses eosinophil but not T-cell functions. Eur Respir J 2003;21(5):799–803.PubMedCrossRefGoogle Scholar
  63. 63.
    Bertrand CP, Ponath PD. CCR3 blockade as a new therapy for asthma. Expert Opin Invest Drugs 2000;9(1):43–52.CrossRefGoogle Scholar
  64. 64.
    Sabroe I, Peck MJ, Van Keulen BJ, et al. A small molecule antagonist of chemokine receptors CCR1 and CCR3. Potent inhibition of eosinophil function and CCR3-mediated HIV-1 entry. J Biol Chem 2000;275(34):25985–25992.PubMedCrossRefGoogle Scholar
  65. 65.
    White JR, Lee JM, Dede K, et al. Identification of potent, selective non-peptide CC chemokine receptor-3 antagonist that inhibits eotaxin-, eotaxin-2-, and monocyte chemotactic protein-4-induced eosinophil migration. J Biol Chem 2000;275(47):36626–36631.PubMedCrossRefGoogle Scholar
  66. 66.
    Saeki T, Ohwaki K, Naya A, et al. Identification of a potent and nonpeptidyl ccr3 antagonist. Biochem Biophys Res Commun 2001;281(3):779–782.PubMedCrossRefGoogle Scholar
  67. 67.
    Wacker DA, Santella JB 3rd, Gardner DS, et al. CCR3 antagonists: a potential new therapy for the treatment of asthma. Discovery and structure-activity relationships. Bioorg Med Chem Lett 2002;12(13):1785–1789.PubMedCrossRefGoogle Scholar
  68. 68.
    Morokata T, Suzuki K, Masunaga Y, et al. A novel, selective, and orally available antagonist for CC chemokine receptor 3. J Pharmacol Exp Ther 2006;317(1):244–250.PubMedCrossRefGoogle Scholar
  69. 69.
    Stellato C, Brummet ME, Plitt JR, et al. Expression of the C-C chemokine receptor CCR3 in human airway epithelial cells. J Immunol 2001;166(3):1457–1461.PubMedGoogle Scholar
  70. 70.
    Price KS, Friend DS, Mellor EA, De Jesus N, Watts GF, Boyce JA. CC chemokine receptor 3 mobilizes to the surface of human mast cells and potentiates immunoglobulin E-dependent generation of interleukin 13. Am J Respir Cell Mol Biol 2003;28(4):420–427.PubMedCrossRefGoogle Scholar
  71. 71.
    Joubert P, Lajoie-Kadoch S, Labonte I, et al. CCR3 expression and function in asthmatic airway smooth muscle cells. J Immunol 2005;175(4):2702–2708.PubMedGoogle Scholar
  72. 72.
    Lukacs NW, Standiford TJ, Chensue SW, Kunkel RG, Strieter RM, Kunkel SL. C-C chemokine-induced eosinophil chemotaxis during allergic airway inflammation. J Leukoc Biol 1996;60(5):573–578.PubMedGoogle Scholar
  73. 73.
    Gonzalo JA, Lloyd CM, Wen D, et al. The coordinated action of CC chemokines in the lung orchestrates allergic inflammation and airway hyperresponsiveness. J Exp Med 1998;188(1):157–167.PubMedCrossRefGoogle Scholar
  74. 74.
    Blease K, Mehrad B, Standiford TJ, et al. Airway remodeling is absent in CCR1-/- mice during chronic fungal allergic airway disease. J Immunol 2000;165(3):1564–1572.PubMedGoogle Scholar
  75. 75.
    Carpenter KJ, Ewing JL, Schuh JM, et al. Therapeutic targeting of CCR1 attenuates established chronic fungal asthma in mice. Br J Pharmacol 2005;145(8):1160–1172.PubMedCrossRefGoogle Scholar
  76. 76.
    Schaller M, Hogaboam CM, Lukacs N, Kunkel SL. Respiratory viral infections drive chemokine expression and exacerbate the asthmatic response. J Allergy Clin Immunol 2006;118(2):295–302.PubMedCrossRefGoogle Scholar
  77. 77.
    John AE, Gerard CJ, Schaller M, et al. Respiratory syncytial virus-induced exaggeration of allergic airway disease is dependent upon CCR1-associated immune responses. Eur J Immunol 2005;35(1):108–116.PubMedCrossRefGoogle Scholar
  78. 78.
    John AE, Berlin AA, Lukacs NW. Respiratory syncytial virus-induced CCL5/RANTES contributes to exacerbation of allergic airway inflammation. Eur J Immunol 2003;33(6):1677–1685.PubMedCrossRefGoogle Scholar
  79. 79.
    Schaller MA, Lundy SK, Huffnagle GB, Lukacs NW. CD8+ T cell contributions to allergen induced pulmonary inflammation and airway hyperreactivity. Eur J Immunol 2005;35(7):2061–2070.PubMedCrossRefGoogle Scholar
  80. 80.
    Mattoli S, Ackerman V, Vittori E, Marini M. Mast cell chemotactic activity of RANTES. Biochem Biophys Res Commun 1995;209(1):316–321.PubMedCrossRefGoogle Scholar
  81. 81.
    Elsner J, Petering H, Hochstetter R, et al. The CC chemokine antagonist Met-RANTES inhibits eosinophil effector functions through the chemokine receptors CCR1 and CCR3. Eur J Immunol 1997;27(11):2892–2898.PubMedCrossRefGoogle Scholar
  82. 82.
    Chvatchko Y, Proudfoot AE, Buser R, et al. Inhibition of airway inflammation by amino-terminally modified RANTES/CC chemokine ligand 5 analogues is not mediated through CCR3. J Immunol 2003;171(10):5498–5506.PubMedGoogle Scholar
  83. 83.
    Saeki T, Naya A. CCR1 chemokine receptor antagonist. Curr Pharm Des 2003;9(15):1201–1208.PubMedCrossRefGoogle Scholar
  84. 84.
    Spagnolo P, Renzoni EA, Wells AU, et al. C-C chemokine receptor 2 and sarcoidosis: association with Lofgren’s syndrome. Am J Respir Crit Care Med 2003;168(10):1162–1166.PubMedCrossRefGoogle Scholar
  85. 85.
    Schuyler M, Gott K, Cherne A. Experimental hypersensitivity pneumonitis: role of MCP-1. J Lab Clin Med 2003;142(3):187–195.PubMedCrossRefGoogle Scholar
  86. 86.
    Rose CE Jr, Sung SS, Fu SM. Significant involvement of CCL2 (MCP-1) in inflammatory disorders of the lung. Microcirculation 2003;10(3–4):273–288.PubMedCrossRefGoogle Scholar
  87. 87.
    Hildebrandt GC, Duffner UA, Olkiewicz KM, et al. A critical role for CCR2/MCP-1 interactions in the development of idiopathic pneumonia syndrome after allogeneic bone marrow transplantation. Blood 2004;103(6):2417–2426.PubMedCrossRefGoogle Scholar
  88. 88.
    Moore BB, Paine R 3rd, Christensen PJ, et al. Protection from pulmonary fibrosis in the absence of CCR2 signaling. J Immunol 2001;167(8):4368–4377.PubMedGoogle Scholar
  89. 89.
    Blease K, Mehrad B, Standiford TJ, et al. Enhanced pulmonary allergic responses to Aspergillus in CCR2-/- mice. J Immunol 2000;165(5):2603–2611.PubMedGoogle Scholar
  90. 90.
    Blease K, Mehrad B, Lukacs NW, Kunkel SL, Standiford TJ, Hogaboam CM. Antifungal and airway remodeling roles for murine monocyte chemoattractant protein-1/CCL2 during pulmonary exposure to Asperigillus fumigatus conidia. J Immunol 2001;166(3):1832–1842.PubMedGoogle Scholar
  91. 91.
    Koth LL, Rodriguez MW, Bernstein XL, et al. Aspergillus antigen induces robust Th2 cytokine production, inflammation, airway hyperreactivity and fibrosis in the absence of MCP-1 or CCR2. Respir Res 2004;5(1):12.PubMedCrossRefGoogle Scholar
  92. 92.
    Kim Y, Sung S, Kuziel WA, Feldman S, Fu SM, Rose CE Jr. Enhanced airway Th2 response after allergen challenge in mice deficient in CC chemokine receptor-2 (CCR2). J Immunol 2001;166(8):5183–5192.PubMedGoogle Scholar
  93. 93.
    MacLean JA, De Sanctis GT, Ackerman KG, et al. CC chemokine receptor-2 is not essential for the development of antigen-induced pulmonary eosinophilia and airway hyperresponsiveness. J Immunol 2000;165(11):6568–6575.PubMedGoogle Scholar
  94. 94.
    Campbell EM, Charo IF, Kunkel SL, et al. Monocyte chemoattractant protein-1 mediates cockroach allergen-induced bronchial hyperreactivity in normal but not CCR2-/- mice: the role of mast cells. J Immunol 1999;163(4):2160–2167.PubMedGoogle Scholar
  95. 95.
    Nagase H, Kudo K, Izumi S, et al. Chemokine receptor expression profile of eosinophils at inflamed tissue sites: decreased CCR3 and increased CXCR4 expression by lung eosinophils. J Allergy Clin Immunol 2001;108(4):563–569.PubMedCrossRefGoogle Scholar
  96. 96.
    Gonzalo JA, Lloyd CM, Peled A, Delaney T, Coyle AJ, Gutierrez-Ramos JC. Critical involvement of the chemotactic axis CXCR4/stromal cell-derived factor-1 alpha in the inflammatory component of allergic airway disease. J Immunol 2000;165(1):499–508.PubMedGoogle Scholar
  97. 97.
    Hatse S, Princen K, Bridger G, De Clercq E, Schols D. Chemokine receptor inhibition by AMD3100 is strictly confined to CXCR4. FEBS Lett 2002;527(1–3):255–262.PubMedCrossRefGoogle Scholar
  98. 98.
    Lukacs NW, Berlin A, Schols D, Skerlj RT, Bridger GJ. AMD3100, a CxCR4 antagonist, attenuates allergic lung inflammation and airway hyperreactivity. Am J Pathol 2002;160(4):1353–1360.PubMedGoogle Scholar
  99. 99.
    Matthys P, Hatse S, Vermeire K, et al. AMD3100, a potent and specific antagonist of the stromal cell-derived factor-1 chemokine receptor CXCR4, inhibits autoimmune joint inflammation in IFN-gamma receptor-deficient mice. J Immunol 2001;167(8):4686–4692.PubMedGoogle Scholar
  100. 100.
    Hogaboam CM, Carpenter KJ, Schuh JM, Proudfoot AA, Bridger G, Buckland KF. The therapeutic potential in targeting CCR5 and CXCR4 receptors in infectious and allergic pulmonary disease. Pharmacol Ther 2005;107(3):314–328.PubMedCrossRefGoogle Scholar
  101. 101.
    Widdowson KL, Elliott JD, Veber DF, et al. Evaluation of potent and selective small-molecule antagonists for the CXCR2 chemokine receptor. J Med Chem 2004;47(6):1319–1321.PubMedCrossRefGoogle Scholar
  102. 102.
    Pease JE, Sabroe I. The role of interleukin-8 and its receptors in inflammatory lung disease: implications for therapy. Am J Respir Med 2002;1(1):19–25.PubMedGoogle Scholar
  103. 103.
    Stemmler S, Arinir U, Klein W, et al. Association of interleukin-8 receptor alpha polymorphisms with chronic obstructive pulmonary disease and asthma. Genes Immun 2005;6(3):225–230.PubMedCrossRefGoogle Scholar
  104. 104.
    Persson T, Monsef N, Andersson P, et al. Expression of the neutrophil-activating CXC chemokine ENA-78/CXCL5 by human eosinophils. Clin Exp Allergy 2003;33(4):531–537.PubMedCrossRefGoogle Scholar
  105. 105.
    Persson-Dajotoy T, Andersson P, Bjartell A, Calafat J, Egesten A. Expression and production of the CXC chemokine growth-related oncogene-alpha by human eosinophils. J Immunol 2003;170(10):5309–5316.PubMedGoogle Scholar
  106. 106.
    Schuh JM, Blease K, Hogaboam CM. CXCR2 is necessary for the development and persistence of chronic fungal asthma in mice. J Immunol 2002;168(3):1447–1456.PubMedGoogle Scholar
  107. 107.
    Miller AL, Strieter RM, Gruber AD, Ho SB, Lukacs NW. CXCR2 regulates respiratory syncytial virus-induced airway hyperreactivity and mucus overproduction. J Immunol 2003;170(6):3348–3356.PubMedGoogle Scholar
  108. 108.
    McKinley L, Kim J, Bolgos GL, Siddiqui J, Remick DG. CXC chemokines modulate IgE secretion and pulmonary inflammation in a model of allergic asthma. Cytokine 2005;32(3–4):178–185.PubMedCrossRefGoogle Scholar
  109. 109.
    Umehara H, Goda S, Imai T, et al. Fractalkine, a CX3C-chemokine, functions predominantly as an adhesion molecule in monocytic cell line THP-1. Immunol Cell Biol 2001;79(3):298–302.PubMedCrossRefGoogle Scholar
  110. 110.
    Haskell CA, Cleary MD, Charo IF. Molecular uncoupling of fractalkine-mediated cell adhesion and signal transduction. Rapid flow arrest of CX3CR1-expressing cells is independent of G-protein activation. J Biol Chem 1999;274(15):10053–10058.PubMedCrossRefGoogle Scholar
  111. 111.
    Rimaniol AC, Till SJ, Garcia G, et al. The CX3C chemokine fractalkine in allergic asthma and rhinitis. J Allergy Clin Immunol 2003;112(6):1139–1146.PubMedCrossRefGoogle Scholar
  112. 112.
    El-Shazly A, Berger P, Girodet PO, et al. Fraktalkine produced by airway smooth muscle cells contributes to mast cell recruitment in asthma. J Immunol 2006;176(3):1860–1868.PubMedGoogle Scholar
  113. 113.
    de Nadai P, Charbonnier AS, Chenivesse C, et al. Involvement of CCL18 in allergic asthma. J Immunol 2006;176(10):6286–6293.PubMedGoogle Scholar
  114. 114.
    Debes GF, Dahl ME, Mahiny AJ, et al. Chemotactic responses of IL-4-, IL-10-, and IFN-gamma-producing CD4+ T cells depend on tissue origin and microbial stimulus. J Immunol 2006;176(1):557–566.PubMedGoogle Scholar
  115. 115.
    Fulkerson PC, Zimmermann N, Hassman LM, Finkelman FD, Rothenberg ME. Pulmonary chemokine expression is coordinately regulated by STAT1, STAT6, and IFN-gamma. J Immunol 2004;173(12):7565–7574.PubMedGoogle Scholar
  116. 116.
    Corry DB, Kiss A, Song LZ, et al. Overlapping and independent contributions of MMP2 and MMP9 to lung allergic inflammatory cell egression through decreased CC chemokines. FASEB J 2004;18(9):995–997.PubMedGoogle Scholar
  117. 117.
    Corry DB, Rishi K, Kanellis J, et al. Decreased allergic lung inflammatory cell egression and increased susceptibility to asphyxiation in MMP2-deficiency. Nat Immunol 2002;3(4):347–353.PubMedCrossRefGoogle Scholar
  118. 118.
    McQuibban GA, Gong JH, Tam EM, McCulloch CA, Clark-Lewis I, Overall CM. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science 2000;289(5482):1202–1206.PubMedCrossRefGoogle Scholar
  119. 119.
    McQuibban GA, Butler GS, Gong JH, et al. Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem 2001;276(47):43503–43508.PubMedCrossRefGoogle Scholar
  120. 120.
    McQuibban GA, Gong JH, Wong JP, Wallace JL, Clark-Lewis I, Overall CM. Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo. Blood 2002;100(4):1160–1167.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Dennis M. Lindell
    • 1
  • Nicholas W. Lukacs
    • 2
  1. 1.Department of PathologyUniversity of Michigan Medical SchoolAnn ArborUSA
  2. 2.Department of Pathology and Graduate Program in ImmunologyUniversity of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations