Vitamin C and Eye Health

Part of the Nutrition and Health book series (NH)


Vitamin C is a water-soluble vitamin that is essential for the biosynthesis of collagen, carnitine, and catecholamines. It serves as a strong antioxidant and protects proteins, lipids, and DNA from oxidative damage. The eye contains the highest concentrations of vitamin C found in the human body. Vitamin C is important to eye health because of its role in protecting the proteins of the crystalline lens from oxidation, in serving as a free radical scavenger in the retina, and in promoting wound healing in the cornea. Scurvy, the classic syndrome of vitamin C deficiency, includes some findings of ophthalmological importance, including vascular abnormalities of the conjunctiva, dry eyes, and hemorrhages of the conjunctiva, orbit, anterior chamber, and retina. Vitamin C may become increasingly important to ocular health with demographic changes such as increasing life span and a larger aging population, and with the continued depletion of the stratospheric ozone layer (1).


Aqueous Humor Corneal Epithelium Ascorbic Acid Concentration Dehydroascorbic Acid Estimate Average Requirement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rose RC, Richer SP, Bode AM. Ocular oxidants and antioxidant protection. Proc Soc Exp Biol Med 1998;217:397–407.Google Scholar
  2. 2.
    Carpenter KJ. The History of Scurvy and Vitamin C. Cambridge, Cambridge University Press, 1986.Google Scholar
  3. 3.
    Hess AF. Scurvy Past and Present. Philadelphia, J. B. Lippincott, 1920.Google Scholar
  4. 4.
    Holst A, Frölich T. Experimental studies relating to ship beri-beri and scurvy. II. On the etiology of scurvy. J Hygiene 1907;7:634–671.Google Scholar
  5. 5.
    Svirbely JL, Szent-Györgyi A. The chemical nature of vitamin C. Biochem J 1932;26:865–870.Google Scholar
  6. 6.
    King CG, Waugh WA. Isolation and identification of vitamin C. J Biol Chem 1932;97:325–331.Google Scholar
  7. 7.
    Haworth WN, Hirst EL. Synthesis of ascorbic acid. Chemistry and Industry 1933;52:645–656.Google Scholar
  8. 8.
    Birch TW, Dann WJ. Estimation and distribution of ascorbic acid (vitamin C) and glutathione in animal tissues. Nature 1933;131:469–470.Google Scholar
  9. 9.
    Harris LJ. Chemical test for vitamin C, and the reducing substances present in tumour and other tissues. Nature 1933;132:27–28.Google Scholar
  10. 10.
    Von Euler H, Martius C. Über den Gehalt der Augenlinsen an Sulfhydrylverbindungen und an Ascorbinsäure. Hoppe Seylers Z Physiol Chem 1933;222:65–69.Google Scholar
  11. 11.
    Birch TW, Dann WJ. Ascorbic acid in the eye-lens and aqueous humour of the ox. Biochem J 1934;28: 638–641.Google Scholar
  12. 12.
    Bietti G, Cartenì A. Ricerche sul contenuto in acido ascorbico (vitamina C) del cristallino di cavie a dieta scorbutigena. Boll Soc Ital Biol Sper 1934;9:983–985.Google Scholar
  13. 13.
    Muller MHK. La vitamine C et le problème de la cataracte. Bull Soc Belge Opht 1934;69:65–70.Google Scholar
  14. 14.
    Müller HK, Buschke W. Vitamin C in Linse, Kammerwasser und Blut bei normalem und pathologischem Linsenstoffwechsel. Arch Augenheilk 1934;108:368–390.Google Scholar
  15. 15.
    Müller HK, Buschke W. Linsenatmung und Vitamin C des Kammerwassers. Arch Augenheilk 1934; 108:592–596.Google Scholar
  16. 16.
    Fischer FP. Über das C-Vitamin der Linse. Klin Wochenschr 1934;13:596–597.Google Scholar
  17. 17.
    Monjukowa NK, Fradkin MJ. Neue experimentelle Befunde über die Pathogenese der Katarakt. Arch Ophthalmol (Berlin) 1935;133:328–338.Google Scholar
  18. 18.
    Bietti G. La vitamin C (acido ascorbico) nei liquidi e tessuti oculari: suoi rapporti colla biologia del cristallino. Boll Oculist 1935;14:3–33.Google Scholar
  19. 19.
    Nakamura B, Nakamura O. Über das Vitamin C in der Linse und dem Kammerwasser der menschlichen Katarakte. Arch Ophthal (Berlin) 1935;134:197–200.Google Scholar
  20. 20.
    Bellows J. Biochemistry of the lens. V. Cevitamic acid content of the blood and urine of subjects with senile cataract. Arch Ophthalmol 1936;15:78–83.Google Scholar
  21. 21.
    Bellows J. Biochemistry of the lens. VII. Some studies on vitamin C and the lens. Arch Ophthalmol 1936; 16:58–64.Google Scholar
  22. 22.
    Johnson SW. Cataract and ascorbic acid in the guinea-pig eye. Biochem J 1936;30:1430–1437.Google Scholar
  23. 23.
    Sato P, Udenfriend S. Scurvy-prone animals, including man, monkey, and guinea pig, do not express the gene for gulonolactone oxidase. Arch Biochem Biophys 1978;187:158–162.Google Scholar
  24. 24.
    Pennington JAT. Bowes & Church’s Food Values of Portions Commonly Used. Seventeenth Edition. Philadelphia, Lippincott Williams & Wilkins, 1998.Google Scholar
  25. 25.
    USDA National Nutrient Database for Standard Reference, Release 18. USDA Food Composition Data. Agricultural Research Service, Nutrient Data Laboratory ( Scholar
  26. 25.
    Rumsey SC, Levine M. Absorption, transport, and disposition of ascorbic acid in humans. J Nutr Biochem 1998;9:116–130.Google Scholar
  27. 26.
    Jacob RA. Vitamin C. In: Shils ME, Olson JA, Shike M, Ross AC (eds). Modern Nutrition in Health and Disease. Ninth edition. Baltimore, Williams & Wilkins: 1999; pp. 467–483.Google Scholar
  28. 27.
    Blanchard J, Tozer TN, Rowland M. Pharmacokinetic perspectives on megadoses of ascorbic acid. Am J Clin Nutr 1997;66:1165–1171.Google Scholar
  29. 28.
    Baker EM, Hodges RE, Hood J, Sauberlich HE, March SC, Canham JE. Metabolism of 14C-and 3H-labeled L-ascorbic acid in human scurvy. Am J Clin Nutr 1971;24:444–454.Google Scholar
  30. 29.
    Brubaker RF, Bourne WM, Bachman LA, McLaren JW. Ascorbic acid content of human corneal epithelium. Invest Ophthalmol Vis Sci 2000;41:1681–1683.Google Scholar
  31. 30.
    Halliwell B, Whiteman M. Antioxidant and prooxidant properties of vitamin C. In: Packer L, Fuchs J (eds). Vitamin C in Health and Disease. New York, Marcel Dekker: 1997; pp. 59–73.Google Scholar
  32. 31.
    Eipper BA, Mains RE. The role of ascorbate in the biosynthesis of neuroendocrine peptides. Am J Clin Nutr 1991;54:1153S–1156S.Google Scholar
  33. 32.
    Food and Nutrition Board, Institute of Medicine. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids: A Report of the Panel on Dietary Antioxidants and Related Compounds. Washington, D.C., National Academy Press, 2000.Google Scholar
  34. 33.
    Sherlock P, Rothschild EO. Scurvy produced by a Zen macrobiotic diet. JAMA 1967;199:794–798.Google Scholar
  35. 34.
    Pangan Al, Robinson D. Hemarthrosis as initial presentation of scurvy. J Rheumatol 2001;28:1923–1925.Google Scholar
  36. 35.
    Levin NA, Greer KE. Scurvy in an unrepentant carnivore. Cutis 2000;66:39–44.Google Scholar
  37. 36.
    Tamura Y, Welch DC, Zic JA, Cooper WO, Stein SM, Hummell DS. Scurvy presenting as painful gait with bruising in a young boy. Arch Pediatr Adolesc Med 2000;154:732–735.Google Scholar
  38. 37.
    Assi ME, Thomas G, Taub SJ, Thomas H, Thomas JR, Stang RJ. Scurvy in a nonalcoholic person in the United States. J Am Osteopath Assoc 1992;92:1529–1931.Google Scholar
  39. 38.
    Statters DJ, Asokan VS, Littlewood SM, Snape J. Carcinoma of the caecum in a scorbutic patient. Brit J Clin Pract 1990;44:738–740.Google Scholar
  40. 39.
    Fain O, Mathieu E, Thomas M. Scurvy in patients with cancer. BMJ 1998;316:1661–1662.Google Scholar
  41. 40.
    Oeffinger KC. Scurvy: more than historical relevance. Am Fam Physician 1993;48:609–613.Google Scholar
  42. 41.
    Lowik MR, Hulshof KF, Schneijder P, Schrijver J, Colen AA, van Houten P. Vitamin C status in elderly women: a comparison between women living in a nursing home and women living independently. J Am Diet Assoc 1993;93:167–172.Google Scholar
  43. 42.
    McClean HE, Dodds PM, Stewart AW, Beaven DW, Riley CG. Nutrition of elderly men living alone. Part 2. Vitamin C and thiamine status. N Z Med J 1976;84:345–358.Google Scholar
  44. 43.
    Yetley E, Johnson C. Nutritional applications of the Health and Nutrition Examination Surveys (HANES). Annu Rev Nutr 1987;7:441–463.Google Scholar
  45. 44.
    Cheadle WB. Clinical lecture on three cases of scurvy supervening on rickets in young children. Lancet 1878;2:685–687.Google Scholar
  46. 45.
    Cheadle WB. Osteal or periosteal cachexia and scurvy. Lancet 1882;2:48–49.Google Scholar
  47. 46.
    Barlow T. On cases described as “acute rickets” which are probably a combination of scurvy and rickets, the scurvy being an essential, and the rickets a variable, element. Med Chir Trans 1883;66:159–219Google Scholar
  48. 47.
    Mimasaka S, Funayama M, Adachi N, Nata M, Morita M. A fatal case of infantile scurvy. Int J Legal Med 2000;114:122–124.Google Scholar
  49. 48.
    Riepe FG, Eichmann D, Oppermann HC, Schmitt HJ, Tunnessen WW Jr. Infantile scurvy. Arch Pediatr Adolesc Med 2001;155:607–608.Google Scholar
  50. 49.
    Sauberlich HE. Laboratory Tests for the Assessment of Nutritional Status. Second Edition. Boca Raton, CRC Press, 1999.Google Scholar
  51. 50.
    Schectman G, Byrd JC, Hoffmann R. Ascorbic acid requirements for smokers: analysis of a population survey. Am J Clin Nutr 1991;53:1466–1470.Google Scholar
  52. 51.
    Cohen IK, Keiser HR. Disruption of healed scars in scurvy-the result of a disequilibrium in collagen metabolism. Plast Recontr Surg 1976;57:213–215.Google Scholar
  53. 52.
    Dunnington JH. Exophthalmos in infantile scurvy. Arch Ophthalmol 1931;6:731–739.Google Scholar
  54. 53.
    Magnus. Exophthalmus auf skorbutischer Grundlage. Deutsch Med Wochenschr 1878; No. 29:365.Google Scholar
  55. 54.
    Spicer WTH. Orbital haemorrhages occurring in young children. Trans Ophthalmol Soc UK 1892;12: 33–38.Google Scholar
  56. 55.
    Heubner O. Ueber die Barlow’sche Krankheit. Berl klin Wochenschrift 1903;40:285–292.Google Scholar
  57. 56.
    Hirschberg J. Ein Fall von Barlow’scher Krankheit. Centralbl prakt Augenheilk 1903;27;206–207.Google Scholar
  58. 57.
    Schlesinger E. Zur Symptomatologie der Barlowschen Krankheit. Münch Med Wochenschr 1905;(October 24):2073–2075.Google Scholar
  59. 58.
    Meding CB. Two cases of subperiosteal hemorrhage of the orbit from scurvy. Arch Ophthalmol 1905; 34:611–612.Google Scholar
  60. 59.
    Snow I. Eye symptoms of infantile scurvy. A case of infantile scurvy with extreme protrusion of the right eyeball, shown by autopsy to be due to a large retrobulbar hematoma. Arch Pediatr 1905;22:576–580.Google Scholar
  61. 60.
    Still GF. A clinical lecture on infantile scurvy. Brit Med J 1906;2:186–190.Google Scholar
  62. 61.
    Dewey JH. The ocular symptoms of infantile scurvy. Annals Ophthalmol 1911;20:307–315.Google Scholar
  63. 62.
    Steindorff K. Ueber Barlowsche Krankheit mit besonderer Berücksichtigung der dabei beobachteten Augenerscheinungen. Zeitschr Augenheilk 1911;25:180–185.Google Scholar
  64. 63.
    Brandes. Contribution a l’étude des hématomes spontanées de l’rbite. Recueil d’Ophtalmologie 1911;(4 ser) 33:176–177.Google Scholar
  65. 64.
    De Buys LR. Exophthalmos in scurvy. J Am Med Assoc 1912;59:2040–2043.Google Scholar
  66. 65.
    Stephenson S. The ocular manifestations of infantile scurvy. Ophthalmoscope 1915;13:132–135.Google Scholar
  67. 66.
    Thielmann. Über die skorbutischen Augen-Entzündungen. Graefe-Saemisch Handbuch der gesamten Augen-heilkunde. Vol. 14. Berlin, Julius Springer: 1915–1918; pp. 197–205.Google Scholar
  68. 67.
    Steele HM. Exophthalmos, due to scorbutus. Arch Pediatr 1921;38:52–53.Google Scholar
  69. 68.
    Blake EM. Ocular changes in infantile scurvy. Am J Ophthalmol 1921;4:736–738.Google Scholar
  70. 69.
    Eaton PJ. Scorbutus, with exophthalmos. Trans Am Ped Soc 1923;35:395–398.Google Scholar
  71. 70.
    Potter PS. Scorbutus with exophthalmos. Arch Pediatr 1924;41:355–356.Google Scholar
  72. 71.
    Tallei E. Le manifestazioni oculari dello scorbuto infantile. Boll Ocul 1925;4:247–263.Google Scholar
  73. 72.
    Place EC. Unilateral proptosis due to scurvy. Am J Ophthalmol 1925;8:955–957.Google Scholar
  74. 73.
    Jost A. Complications oculaires dans la maladie de Barlow. Bull Soc Ophtal Paris 1926;714–717.Google Scholar
  75. 74.
    Van Duyse M. Exophtalmie et scorbut infantile. Bull Soc Belge Ophtal 1928;57:51–53.Google Scholar
  76. 75.
    Middelhoven CWC. Een ongewone vorm van morbus barlowi. Nederl Tijd Geneesk 1941;85(III): 3536–3538.Google Scholar
  77. 76.
    Richardson OB. Exophthalmos due to infantile scurvy. Bull Acad Med Toronto; 1948;22:51–52.Google Scholar
  78. 77.
    Suman RL, Dabi DR. Scurvy-an unusual cause of proptosis? Indian Pediatr 1998;35:915–916.Google Scholar
  79. 78.
    Griffith JPC, Jennings CG, Morse JL. The American Pediatric Society’s collective investigation on infantile scurvy in North America. Arch Pediatr 1898;15:481–499.Google Scholar
  80. 79.
    Shapiro E, Hurwitz S. Hemorrhage of the brain and retina in scurvy. Arch Pediatr 1938;55:327–333.Google Scholar
  81. 80.
    Sloan B, Kulwin DR, Kersten RC. Scurvy causing bilateral orbital hemorrhage. Arch Ophthalmol 1999; 117:842–843.Google Scholar
  82. 81.
    Harden A, Zilva SS. Experimental scurvy in monkeys. J Pathol Bact 1919;22:246–251.Google Scholar
  83. 82.
    Zilva SS, Still GF. Orbital haemorrhage with proptosis in experimental scurvy. Lancet 1920;1:1008.Google Scholar
  84. 83.
    Hood J, Hodges RE. Ocular lesions in scurvy. Am J Clin Nutr 1969;22:559–567.Google Scholar
  85. 84.
    Mackenzie S. Two cases of idiopathic (progressive pernicious) anaemia with retinal haemorrhages; fatal result. Trans Ophthalmol Soc UK 1880–1881;1:48–57.Google Scholar
  86. 85.
    Fialkowsky. Die scorbutischen Augenerkrankungen. Centralblatt prakt Augenheilk 1880;4:247–252.Google Scholar
  87. 86.
    Seggel. Scorbutische Erkrankung der Augen. Klin Monatsbl Augenheilk 1899;37:298–306.Google Scholar
  88. 87.
    Weill G. Ueber skorbutische Augenleiden. Zeitschr Augenheilk 1903;9:514–519.Google Scholar
  89. 88.
    Kitamura S. Ein Beitrag zur Kenntnis der Netzhautverängerungen beim Skorbut. Deutsche Med Wochenschr 1910;36:403–404.Google Scholar
  90. 89.
    Löwenstein A. Roseolenähnliche Affektion der Regenbogenhaut neben punktförmigen Bindehautblutungen bei hämorrhagischer Diathese. Klin Monatsbl Augenheilk 1917;59:583–588.Google Scholar
  91. 90.
    Thilliez. Hémorragies rétiniennes déterminées par un régime sans vitamines. La Clinique Ophtalmologique 1925;14 (2 ser):594.Google Scholar
  92. 91.
    Bloxham CA, Clough C, Beevers DG. Retinal infarcts and haemorrhages due to scurvy. Postgrad Med J 1990;66:687.Google Scholar
  93. 92.
    Adetona N, Kramarenko W, McGavin CR. Retinal changes in scurvy. Eye 1994;8:709–710.Google Scholar
  94. 93.
    Taube EL. Cataract extraction in subclinical scurvy. Am J Ophthalmol 1938;21:910–911.Google Scholar
  95. 94.
    Schmid AE, Bürki E. Histochemische Untersuchungen zum Nachweis und zur Lokalisation des Vitamin C im Auge. Ophthalmologica 1943;105:65–82.Google Scholar
  96. 95.
    Henkes HE. On the distribution of glutathione and vitamin C in the lens and cornea. Ophthalmologica 1946;112:113–128.Google Scholar
  97. 96.
    Pirie A. Ascorbic acid content of cornea. Biochem J 1946;40:96–100.Google Scholar
  98. 97.
    Reim M, Seidl M, Brucker K. Accumulation of ascorbic acid in the corneal epithelium. Ophthalmic Res 1978;10:135–139.Google Scholar
  99. 98.
    Ringvold A, Anderssen E, Kjønniksen I. Ascorbate in the corneal epithelium of diurnal and nocturnal species. Invest Ophthalmol Vis Sci 1998;39:2774–2777.Google Scholar
  100. 99.
    Ringvold A, Anderssen E, Kjønniksen I. Distribution of ascorbate in the anterior bovine eye. Invest Ophthalmol Vis Sci 2000;41:20–23.Google Scholar
  101. 100.
    Kinsey VE. Transfer of ascorbic acid and related compounds across the blood-aqueous barrier. Am J Ophthalmol 1947;30:1262–1266.Google Scholar
  102. 101.
    Kinsey VE. Dehydroascorbic acid-ascorbic acid in the aqueous humor of rabbits. Am J Ophthalmol 1950;33:257–268.Google Scholar
  103. 102.
    Linnér E. Ascorbic acid as a test substance for measuring relative changes in the rate of plasma flow through the ciliary processes. I. The effect of unilateral ligation of the common carotid artery in rabbits on the ascorbic acid content of the aqueous humour at varying plasma levels. Acta Physiol Scand 1952; 26:57–69.Google Scholar
  104. 103.
    Langham ME. The use of ascorbic acid to measure the rate of flow of plasma through the ciliary processes. J Physiol 1955;130:1–8.Google Scholar
  105. 104.
    Becker B. Ascorbate transport in guinea pig eyes. Invest Ophthalmol 1967;6:410–415.Google Scholar
  106. 105.
    Linnér E, Nordström K. Transfer of D-isoascorbic acid and L-ascorbic acid into guinea pig eyes. Doc Ophthalmol 1969;26:164–170.Google Scholar
  107. 106.
    Kodama T, Kabasawa I, Tamura O, Reddy VN. Dynamics of ascorbate in the aqueous humor and tissues surround ocular chambers. Ophthalmic Res 1985;17:331–337.Google Scholar
  108. 107.
    Chu TC, Candia OA. Active transport of ascorbate across the isolated rabbit ciliary epithelium. Invest Ophthalmol Vis Sci 1988;29:594–599.Google Scholar
  109. 108.
    Bode AM, Vanderpool SS, Carlson EC, Meyer DA, Rose RC. Ascorbic acid uptake and metabolism by corneal endothelium. Invest Ophthalmol Vis Sci 1991;32:2266–2271.Google Scholar
  110. 109.
    DiMattio J. Ascorbic acid entry into cornea of rat and guinea pig. Cornea 1992;11:53–65.Google Scholar
  111. 110.
    Rose RC, Bode AM. Ocular ascorbate transport and metabolism. Comp Biochem Physiol 1991;100A: 273–285.Google Scholar
  112. 111.
    Garland DL. Ascorbic acid and the eye. Am J Clin Nutr 1991;54:S1198–1202.Google Scholar
  113. 112.
    Campbell FW, Ferguson ID. The role of ascorbic acid in corneal vascularization. Br J Ophthalmol 1950; 34:329–334.Google Scholar
  114. 113.
    Delamere NA. Ascorbic acid and the eye. Subcell Biochem 1996;25:313–329.Google Scholar
  115. 114.
    Sulkin DF, Sulkin NM, Nushan H. Corneal fine structure in experimental scorbutus. Invest Ophthalmol 1972;11:633–643.Google Scholar
  116. 115.
    Campbell FW, Ferguson ID. The role of ascorbic acid in corneal vascularization. Br J Ophthalmol 1950; 34:329–334.Google Scholar
  117. 116.
    Levinson RA, Paterson CA, Pfister RR. Ascorbic acid prevents corneal ulceration and perforation following experimental alkali burns. Invest Ophthalmol 1976;15:986–993.Google Scholar
  118. 117.
    Pfister RR, Paterson CA. Additional clinical and morphological observations on the favorable effect of ascorbate in experimental ocular alkali burns. Invest Ophthalmol Vis Sci 1977;16:478–487.Google Scholar
  119. 118.
    Pfister RR, Hayes SA, Paterson CA. The influence of parenteral ascorbate on the strength of corneal wounds. Invest Ophthalmol Vis Sci 1981;21:80–86.Google Scholar
  120. 119.
    Pfister RR, Paterson CA, Hayes SA. Topical ascorbate decreases the incidence of corneal ulceration after experimental alkali burns. Invest Ophthalmol Vis Sci 1978;17:1019–1024.Google Scholar
  121. 120.
    Pfister RR, Paterson CA. Ascorbic acid in the treatment of alkali burns of the eye. Ophthalmology 1980; 87:1050–1057.Google Scholar
  122. 121.
    Pfister RR, Licolaro ML, Paterson CA. Sodium citrate reduces the incidence of corneal ulcerations and perforations in extreme alkali-burned eyes-acetylcysteine and ascorbate have no favorable effect. Invest Ophthalmol Vis Sci 1981;21:486–490.Google Scholar
  123. 122.
    Pfister RR, Haddow JL, Lank KM. Citrate or ascorbate/citrate treatment of established corneal ulcers in the alkali-injured rabbit eye. Invest Ophthalmol Vis Sci 1988;29:1110–1115.Google Scholar
  124. 123.
    Pfister RR, Haddox JL, Yuille-Barr D. The combined effect of citrate/ascorbate treatment in alkali-injured rabbit eyes. Cornea 1991;10:100–104.Google Scholar
  125. 124.
    Reim M, Beil KH, Kammerer G, Krehwinkel S. Influence of systemic ascorbic acid treatment on metabolite levels after regeneration of the corneal epithelium following milk alkali burns. Graefe’s Arch Clin Exp Ophthalmol 1982;218:99–102.Google Scholar
  126. 125.
    Gönül B, Kaplan B, Bilgihan K, Budak MT. Effects of epidermal growth factor in artificial tear on vitamin C levels of corneal wounded eye tissues. Eye 2001;15:213–216.Google Scholar
  127. 126.
    Boyd TAS, Campbell FW. Influence of ascorbic acid on the healing of corneal ulcers in man. Br Med J 1950;2:1145–1148.Google Scholar
  128. 127.
    Much V. Zitronensaftbehandlung bei Tintenstiftverätzungen. Ophthalmologica 1951;121:43.Google Scholar
  129. 128.
    Stellamor-Peskir H. Zur Therapie der Alkaliverätzungen des Auges. Klin Monatsbl Augenheilk 1961; 139:838–841.Google Scholar
  130. 129.
    Ricklefs G, Gossmann K. Bericht über Kalkverätzungen aus den Jahren 1948–1967. Klin Monatsbl Augenheilk 1968;153:59–67.Google Scholar
  131. 130.
    Beare JDL. Eye injuries from assault with chemicals. Br J Ophthalmol 1990;74:514–518.Google Scholar
  132. 131.
    Saini JS, Sharma A. Ocular chemical burns-clinical and demographic profile. Burns 1993;19:67–69.Google Scholar
  133. 132.
    Brodovsky SC, McCarty CA, Snibson G, Loughnan M, Sullivan L, Daniell M, Taylor HR. Management of alkali burns. An 11-year retrospective review. Ophthalmology 2000;107:1829–1835.Google Scholar
  134. 133.
    Gross RL. The effect of ascorbate on wound healing. Int Ophthalmol Clinics 2000;40:51–57.Google Scholar
  135. 134.
    Wendt MD, Soparkar CN, Louie K, Basinger SF, Gross RL. Ascorbate stimulates type I and type III collagen in human Tenon’s fibroblasts. J Glaucoma 1997;6:402–407.Google Scholar
  136. 135.
    Jampel HD, Moon JI, Quigley HA, Barron Y, Lam KW. Aqueous humor uric acid and ascorbic acid concentrations and outcome of trabeculectomy. Arch Ophthalmol 1998;116:281–285.Google Scholar
  137. 136.
    Heath H. The distribution and possible functions of ascorbic acid in the eye. Exp Eye Res 1962;1: 362–367.Google Scholar
  138. 137.
    Ringvold A. Corneal epithelium and UV-protection of the eye. Acta Ophthalmol Scand 1998;76: 149–153.Google Scholar
  139. 138.
    Reiss GR, Werness PG, Zollman PE, Brubaker RF. Ascorbic acid levels in the aqueous humor of nocturnal and diurnal mammals. Arch Ophthalmol 1986;104:753–755.Google Scholar
  140. 139.
    Ringvold A. Aqueous humour and ultraviolet radiation. Acta Ophthalmol 1980;58:69–82.Google Scholar
  141. 140.
    Koskela TK, Reiss GR, Brubaker RF, Ellefson RD. Is the high concentration of ascorbic acid in the eye an adaptation to intense solar radiation? Invest Ophthalmol Vis Sci 1989;30:2265–2267.Google Scholar
  142. 141.
    Ringvold A. In vitro evidence for UV-protection of the eye by the corneal epithelium mediated by the cytoplasmic protein, RNA, and ascorbate. Acta Ophthalmol Scand 1997;75:496–498.Google Scholar
  143. 142.
    Reddy VN, Glin FJ, Lin LR, Chakrapani B. The effect of aqueous humor ascorbate on ultraviolet-Binduced DNA damage in lens epithelium. Invest Ophthalmol Vis Sci 1998;39:344–350.Google Scholar
  144. 143.
    Varma SD, Kumar S, Richards RD. Light-induced damage to ocular lens cation pump: prevention by vitamin C. Proc Natl Acad Sci USA 1979;76:3504–3506.Google Scholar
  145. 144.
    Varma SD, Chand D, Sharma YR, Kuck JF Jr, Richards RD. Oxidative stress on lens and cataract formation: role of light and oxygen. Current Eye Res 1984;3:35–57.Google Scholar
  146. 145.
    Van der Pols JC. A possible role for vitamin C in age-related cataract. Proc Nutr Soc 1999;58:295–301.Google Scholar
  147. 146.
    Blondin J, Baragi V, Schwartz E, Sadowski JA, Taylor A. Delay of UV-induced eye lens protein damage in guinea pigs by dietary ascorbate. J Free Radic Biol Med 1986;2:275–281.Google Scholar
  148. 147.
    Tsao CS, Xu LF, Young M. Effect of dietary ascorbic acid on heat-induced eye lens protein damage in guinea pigs. Ophthalmic Res 1990;22:106–110.Google Scholar
  149. 148.
    Vinson JA, Possanza CJ, Drack AV. The effect of ascorbic acid on galactose-induced cataracts. Nutr Rep Int 1986;33:665–668.Google Scholar
  150. 149.
    Devamanoharan PS, Henein M, Morris S, Ramachandran S, Richards RD, Varma SD. Prevention of selenite cataract by vitamin C. Exp Eye Res 1991;52:563–568.Google Scholar
  151. 150.
    Yokoyama T, Sasaki H, Giblin FJ, Reddy VN. A physiological level of ascorbate inhibits galactose cataract in guinea pigs by decreasing polyol accumulation in the lens epithelium: a dehydroascorbate-linked mechanism. Exp Eye Res 1994;58:207–218.Google Scholar
  152. 151.
    Linklater HA, Dzialoszynski T, McLeod HL, Sanford SE, Trevithick JR. Modelling cortical cataractogenesis. XI. Vitamin C reduces gamma-crystallin leakage from lenses in diabetic rats. Exp Eye Res 1990; 51:241–247.Google Scholar
  153. 152.
    Bates CJ, Cowen TD. Effects of age and dietary vitamin C on the contents of ascorbic acid and acidsoluble thiol in lens and aqueous humour of guinea-pigs. Exp Eye Res 1988;46:937–945.Google Scholar
  154. 153.
    Hegde KR, Varma SD. Protective effect of ascorbate against oxidative stress in the mouse lens. Biochim Biophys Acta 2004;1670:12–18.Google Scholar
  155. 154.
    Bensch KG, Fleming JE, Lohmann W. The role of ascorbic acid in senile cataract. Proc Natl Acad Sci USA 1985;82:7193–7196.Google Scholar
  156. 155.
    Ortwerth BJ, Olesen PR. Ascorbic acid-induced crosslinking of lens proteins: evidence supporting a Maillard reaction. Biochim Biophys Acta 1988;956:10–22.Google Scholar
  157. 156.
    Bron AJ, Brown NAP. Perinuclear lens retrodots: a role for ascorbate in cataractogenesis. Br J Ophthalmol 1987;71:86–95.Google Scholar
  158. 157.
    Bunce GE, Kinoshita J, Horwitz J. Nutritional factors in cataract. Annu Rev Nutr 1990;10:233–254.Google Scholar
  159. 158.
    Taylor A, Jacques PF, Nadler D, Morrow F, Sulsky SI, Shepard D. Relationship in humans between ascorbic acid consumption and levels of total and reduced ascorbic acid in lens, aqueous humor, and plasma. Curr Eye Res 1991;10:751–759.Google Scholar
  160. 159.
    Chandra DB, Varma R, Ahmad S, Varma SD. Vitamin C in the human aqueous humor and cataracts. Int J Vit Nutr Res 1985;56:165–168.Google Scholar
  161. 160.
    Tessier F, Moreaux V, Birlouez-Aragon I, Junes P, Mondon H. Decrease in vitamin C concentration in human lenses during cataract progression. Int J Vit Nutr Res 1998;68:309–315.Google Scholar
  162. 161.
    Organisciak DT, Wang HM, Li ZY, Tso MOM. The protective effect of ascorbate in retinal light damage of rats. Invest Ophthalmol Vis Sci 1985;26:1580–1588.Google Scholar
  163. 162.
    Tso MOM. Retinal photic injury in normal and scorbutic monkeys. Trans Am Ophthalmol Soc 1987;85: 498–556.Google Scholar
  164. 163.
    Fiddick R, Heath H. The in vivo uptake of L-[1-14C] ascorbic acid by the rat retina and adrenal gland. Exp Eye Res 1966;5:329–334.Google Scholar
  165. 164.
    Lai YL, Fong D, Lam LW, Wang HM, Tsin AT. Distribution of ascorbate in the retina, subretinal fluid, and pigment epithelium. Curr Eye Res 1986;5:933–938.Google Scholar
  166. 165.
    Woodford BJ, Tso MOM, Lam KW. Reduced and oxidized ascorbates in guinea pig retina under normal and light-exposed conditions. Invest Ophthalmol Vis Sci 1983;24:862–867.Google Scholar
  167. 166.
    Tso MO, Woodford BJ, Lam KW. Distribution of ascorbate in normal primate retina and after photic injury: a biochemical, morphological correlated study. Curr Eye Res 1984;3:181–191.Google Scholar
  168. 167.
    Li ZY, Tso MOM, Wang HM, Organisciak DT. Amelioration of photic injury in rat retina by ascorbic acid: a histopathologic study. Invest Ophthalmol Vis Sci 1985;26:1589–1598.Google Scholar
  169. 168.
    Organisciak DT, Jiang YL, Wang HM, Bicknell I. The protective effect of ascorbic acid in retinal light damage of rats exposed to intermittent light. Invest Ophthalmol Vis Sci 1990;31:1195–1202.Google Scholar
  170. 169.
    Organisciak DT, Bicknell IR, Darrow RM. The effects of L-and D-ascorbic acid administration on retinal tissue levels and light damage in rats. Curr Eye Res 1992;11:231–241.Google Scholar
  171. 170.
    Paterson CA, O’Rourke MC. Vitamin C levels in human tears. Arch Ophthalmol 1987;105:376–77.Google Scholar
  172. 171.
    Dreyer R, Rose RC. Lacrimal gland uptake and metabolism of ascorbic acid. Proc Soc Exp Biol Med 1993;202:212–216.Google Scholar
  173. 172.
    Gogia R, Richer SP, Rose RC. Tear fluid content of electrochemically active components including water soluble antioxidants. Curr Eye Res 1998;17:257–263.Google Scholar
  174. 173.
    Choy CK, Cho P, Chung WY, Benzie IF. Water-soluble antioxidants in human tears: effect of the collection method. Invest Ophthalmol Vis Sci 2001;42:3130–3134.Google Scholar
  175. 174.
    Anderson RE, Kretzer FL, Rapp LM. Free radicals and ocular disease. Adv Exp Med Biol 1994;366: 73–86.Google Scholar
  176. 175.
    Choong YY, Arumugam G. Crystal deposits in cornea from the use of vitamin C eye drops. Med J Malaysia 1999;54:526–527.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Personalised recommendations