Novel Natural Products From Rainforest Endophytes

  • Gary Strobel
  • Bryn Daisy
  • Uvidelio Castillo


Endophytic microorganisms are found in virtually every higher plant on earth. These organisms reside in the living tissues of the host plant and do so in a variety of relationships, ranging from symbiotic to pathogenic. Endophytes may contribute to their host plant by producing a plethora of substances that provide protection and survival value to the plant. Ultimately, these compounds, once isolated and characterized, may also have potential for use in modern medicine. Novel antibiotics, antimycotics, immunosuppressants, and anticancer compounds are only a few examples of what has been found after the isolation and culturing of individual endophytes followed by purification and characterization of some of their natural products. The potential of finding new drugs that may be effective candidates for treating newly developing diseases in humans is great.

Key Words

Munumbicins Kakadumycin Taxol volatile antibiotics streptomycetes anticancer agents immunosuppressants 


  1. 1.
    Lane GA, Christensen MJ, Miles, CO. Coevolution of fungal endophytes with grasses: the significance of secondary metabolites. In: Bacon CW, White JF (eds), Microbial Endophytes, Marcel Dekker, New York: 2000.Google Scholar
  2. 2.
    Bacon C, White JF (eds). Microbial Endophytes; Marcel Dekker, New York: 2000.Google Scholar
  3. 3.
    NIAID Global Health Research Plan for HIV/AIDS, Malaria and Tuberculosis. U.S. Department of Health and Human Services, Bethesda, MD, 2001.Google Scholar
  4. 4.
    Demain AL. Industrial microbiology. Science 1981;214:987–994.PubMedCrossRefGoogle Scholar
  5. 5.
    Schutz, B. in Bioactive Fungal Metabolites-Impact and Exploitation. British Mycological Society, International Symposium Proceedings, Swansea: University of Wales, U.K., 2001, p. 20.Google Scholar
  6. 6.
    Tan R X, Zou WX. Endophytes: a rich source of functional metabolites. Nat Prod Rep 2000;18:448–459.CrossRefGoogle Scholar
  7. 7.
    Redlin, SC, Carris LM (eds), Endophytic Fungi in Grasses and Woody Plants. APS, St. Paul: 1996.Google Scholar
  8. 8.
    Hawksworth DC, Rossman AY. Where are the undescribed fungi? Phytopathology 1987;87: 888–891.CrossRefGoogle Scholar
  9. 9.
    Dreyfuss MM, Chapela IH. Potential of fungi in the discovery of novel, low-molecular weight pharmaceuticals. In: Gullo VP (ed), The Discovery of Natural Products with Therapeutic Potential. Butterworth-Heinemann, Boston: 1994; pp. 49–80.Google Scholar
  10. 10. Mittermeier RA, Myers N, Gil PR, Mittermeier CG. Hotspots: Earth’s Biologically Richest and Most Endangered Ecoregions. Washington DC. CEMEX Conservation International, 1999.Google Scholar
  11. 11.
    Strobel GA, Li JY, Sugawara F, Koshino H, Harper J, Hess WM., Oocydin A, a chlorinated macrocyclic lactone with potent anti-oomycete activity from Serratia marcescens. Microbiololgy 1999;145:3557–3564.Google Scholar
  12. 12.
    Castillo UF, Strobel GA, Ford EJ, et al. Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiolology 2002;148: 2675–2685.Google Scholar
  13. 13.
    Strobel GA, Stierle A, Stierle D, Hess WM. Taxomyces andreanae a proposed new taxon for a bulbilliferous hyphomycete associated with Pacific yew. Mycotaxon 1993;47:71–78.Google Scholar
  14. 14.
    Redell P, Gordon V. Lessons from nature: can ecology provide new leads in the search for novel bioactive chemicals from rainforests? In: Wrigley SK, Hayes MA, Thomas R, Chrystal EJT, Nicholson, N (eds), Biodiversity: New Leads for Pharmaceutical and Agrochemical Industries. The Royal Society of Chemistry: UK, Cambridge, UK: 2000; pp. 205–212.Google Scholar
  15. 15.
    Bills G, Dombrowski A, Pelaez F, Polishook J. Recent and future discoveries of pharmacologically active metabolites from tropical fungi. In: Watling R, Frankland JC, Ainsworth AM, Issac S, Robinson CH, Eda, Z. Tropical Mycology: Micromycetes. New York: CABI Publishing. 2002;2:165–194.Google Scholar
  16. 16.
    Stierle A, Strobel GA, Stierle D. Taxol and taxane production by Taxomyces andreanae. Science 1993;260:214–216.PubMedCrossRefGoogle Scholar
  17. 17.
    Strobel GA. Microbial gifts from rain forests. Can J Plant Path 2002;24:14–20.Google Scholar
  18. 18.
    Strobel GA. Rainforest endophytes and bioactive products. Crit Rev Biotechnol 2002;22:315–333.PubMedCrossRefGoogle Scholar
  19. 19.
    Li JY, Strobel GA, Sidhu R, Hess WM, Ford E. Endophytic taxol producing fungi from Bald Cypress Taxodium distichum. Microbiololgy 1996;142:2223–2226.Google Scholar
  20. 20.
    Strobel G, Yang X, Sears J, Kramer R, Sidhu RS, Hess WM. Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallichiana. Microbiology 1996;142:435–440.PubMedCrossRefGoogle Scholar
  21. 21.
    Stinson M, Ezra D, Strobel GA. An endophytic Gliocladium sp. of Eucryphia cordifolia producing selective volatile antimicrobial compounds. Plant Sci 2003;165:913–922.CrossRefGoogle Scholar
  22. 22.
    Strobel GA, Miller RV, Miller C, Condron M, Teplow DB, Hess WM. Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology 1999;145:1919–1926.PubMedGoogle Scholar
  23. 23.
    Walsh TA. Inhibitors of ?-glucan synthesis. In: Sutcliffe JA, Georgopapadakou NH (eds), Emerging Targets in Antibacterial and Antifungal Chemotherapy. Chapman & Hall, London: 1992; pp. 349–373.Google Scholar
  24. 24.
    Li JY, Strobel GA, Harper JK, Lobkovsky E, Clardy J. Cryptocin, a potent tetramic acid antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Org Lett 2000;2:767–770.PubMedCrossRefGoogle Scholar
  25. 25.
    Li JY, Harper JK, Grant DM, et al. Ambuic acid, a highly functionalized cyclohexenone with antifungal activity from Pestalotiopsis spp. and Monochaetia sp. Phytochemistry 2001;56:463–468.PubMedCrossRefGoogle Scholar
  26. 26.
    Lee JC, Yang X, Schwartz M, Strobel GA, Clardy J. The relationship between an endangered North Americn tree and an endophytic fungus. Chem & Biol 1995;2:721–727.CrossRefGoogle Scholar
  27. 27.
    Pulici M, Sugawara F, Koshino H, et al. Pestalotiopsin-A and pestalotiopsin-B-new caryophyllenes from an endophytic fungus of Taxus brevifolia. J Org Chem 1996;61:2122–2124.CrossRefGoogle Scholar
  28. 28.
    Pulici M, Sugawara F, Koshino H, et al. A new isodrimeninol from Pestalotiopsis sp. J Nat Prod 1996;59:47–48.CrossRefGoogle Scholar
  29. 29.
    Pulici M, Sugawara F, Koshino H, et al. Metabolites of endophytic fungi of Taxus brevifolia—the first highly functionalized humulane of fungal origin. J Chem Res 1996;378–379.Google Scholar
  30. 30.
    Li JY, Strobel GA. Jesterone and hydroxy-jesterone antioomycete cyclohexenenone epoxides from the endophytic fungus Pestalotiopsis jesteri. Phytochemistry 2001;57:261–265.PubMedCrossRefGoogle Scholar
  31. 31.
    Hu Y, Chaomin L, Kulkarni B, et al. Exploring chemical diversity of epoxyquinoid natural products: synthesis and biological activity of jesterone and related molecules. J Org Lett 2001;3:1649–1652.CrossRefGoogle Scholar
  32. 32.
    Horn WS, Simmonds MS J, Schwartz RE, Blaney WM, Phomopsichalasin, a novel antimicrobial agent from an endophytic Phomopsis sp. Tetrahedron 1995;14:3969–3978.CrossRefGoogle Scholar
  33. 33.
    Brady SF, Clardy J. CR377, a new pentaketide antifungal agent isolated from an endophytic fungus. J Nat Prod 2000;63:1447–1448.PubMedCrossRefGoogle Scholar
  34. 34.
    Zou WX, Meng JC, Lu H, et al. Metabolites of Colletotrichum gloeosporioides, an endophytic fungus in Artemisia mongolica. J Nat Prod 2000;63:529–1530.CrossRefGoogle Scholar
  35. 35.
    Lu H, Zou WX, Meng JC, Hu J, Tan RX. New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Sci 2000;151:67–73.CrossRefGoogle Scholar
  36. 36.
    Miller RV, Miller CM, Garton-Kinney D, et al. Ecomycins, unique antimycotics from Pseudomonas viridiflava. J Appl Microbiol 1998;84:937–944.PubMedCrossRefGoogle Scholar
  37. 37.
    Harrison L, Teplow D, Rinaldi M, Strobel GA. Pseudomycins, a family of novel peptides from Pseudomonas syringae, possessing broad spectrum antifungal activity. J Gen Microbiol 1991;137:2857–2865.PubMedGoogle Scholar
  38. 38.
    Ballio A, Bossa F, DiGiogio P, et al. Structure of the pseudomycins, new lipodepsipeptides produced by Pseudomonas syringae MSU 16H. FEBS Lett 1994;355:96–100.PubMedCrossRefGoogle Scholar
  39. 39.
    Zhang YZ, Sun X, Zechner D, et al. Synthesis and antifungal activities of novel 3-amido bearing pseudomycin analogs. Bioorg & Med Chem 2001;1:903–907.CrossRefGoogle Scholar
  40. 40.
    Keiser T, Bibb MJ, Buttner MJ, Charter KF, Hopwood DA, Practical Streptomycetes Genetics. The John Innes Foundation, Norwich: 2000.Google Scholar
  41. 41.
    Guerny KA, Mantle PG. Biosynthesis of 1-N-methylalbonoursin by an endophytic Streptomyces sp. J Nat Prod 1993;56:1194–1199.CrossRefGoogle Scholar
  42. 42.
    Kunoh HJ. Endophytic actinomycetes: attractive biocontrol agents. Gen Plant Pathol 2002;68:249–252.CrossRefGoogle Scholar
  43. 43.
    Castillo U, Harper JK, Strobel GA, et al. Kakadumycins, novel antibiotics from Streptomyces sp. NRRL 30566, an endophyte of Grevillea pteridifolia. FEMS Lett 2003;224:183–190.CrossRefGoogle Scholar
  44. 44.
    Ezra D, Castillo U, Strobel GA, et al. Coronamycins, peptide antibiotics produced by a verticillated Streptomyces sp. (MSU-2110) endophytic on Monstera sp. Microbiology 2004;150:785–793.PubMedCrossRefGoogle Scholar
  45. 45.
    Guo B, Dai J, Ng S, et al. Cytonic acids A & B: novel tridepside inhibitors of hCMV protease from the endophytic fungus Cytonaema species. J Nat Prod 2000;63:602–604.PubMedCrossRefGoogle Scholar
  46. 46.
    Worapong J, Strobel GA, Ford E J, Li JY, Baird G, Hess WM. Muscodor albus gen. et sp. nov., an endophyte from Cinnamomum zeylanicum. Mycotaxon 2001;79:67–79.Google Scholar
  47. 47.
    Strobel GA, Dirksie E, Sears J, Markworth C. Volatile antimicrobials from a novel endophytic fungus. Microbiology 2001;147:2943–2950.PubMedGoogle Scholar
  48. 48.
    Ezra D, Strobel GA. Effect of substrate on the bioactivity of volatile antimicrobials produced by Muscodor albus. Plant Sci 2003;65:1229–1238.CrossRefGoogle Scholar
  49. 49.
    Worapong J, Strobel GA, Daisy B, Castillo U, Baird G, Hess WM. Muscodor roseus anna. nov. an endophyte from Grevillea pteridifolia. Mycotaxon. 2002;81:463–475.Google Scholar
  50. 50.
    Wani, MC, Taylor H L, Wall ME, Goggon P, McPhail AT. Plant antitumor agents,V1. The isolation of taxol, a novel antitumor agent from Taxus brevifolia. J Am Chem Soc 1971;93: 2325–2327.PubMedCrossRefGoogle Scholar
  51. 51.
    Strobel GA, Hess WM, Li JY, et al. Pestalotiopsis guepinii, a taxol producing endophyte of the Wollemi Pine, Wollemia nobilis. Aust J Bot 1997;45:1073–1082.CrossRefGoogle Scholar
  52. 52.
    Strobel GA, Ford E, Li JY, Sears J, Sidhu R, Hess WM. Seimatoantlerium tepuiense gen. nov. a unique epiphytic fungus producing taxol from the Venezuelan Guyana. System Appl Microbiol 1999;22:426–433.Google Scholar
  53. 53.
    Li JY, Sidhu RS, Ford E, Hess WM, Strobel GA. The induction of taxol production in the endophytic fungus Periconia sp. from Torreya grandifolia. J Ind Microbiol 1998;20:259–264.CrossRefGoogle Scholar
  54. 54.
    Bashyal B, Li JY, Strobel GA, Hess WM. Seimatoantlerium nepalense, an endophytic taxol producing coelomycete from Himalayan yew (Taxus wallichiana). Mycotaxon 1999;72:33–42.Google Scholar
  55. 55.
    Young DH, Michelotti EJ, Sivendell CS, Krauss NE. Antifungal properties of taxol and various analogues. Experientia 1992;48:882–885.PubMedCrossRefGoogle Scholar
  56. 56.
    Wang J, Li G, Lu H, Zheng Z, Huang Y, Su W. Taxol from Tubercularia sp. strain TF5, an endophytic fungus of Taxus mairei. FEMS Microbiol Lett 2000;193:249–253.PubMedCrossRefGoogle Scholar
  57. 57.
    Shrestha K, Strobel GA, Prakash S, Gewali M. Evidence for paclitaxel from three new endophytic fungi of Himalayan yew of Nepal. Planta Medica 2001;67:374–376.PubMedCrossRefGoogle Scholar
  58. 58.
    Hoffman A, Khan W, Worapong J, et al. Bioprospecting for taxol in Angiosperm plant extracts. Spectroscopy 1998;13:22–32.Google Scholar
  59. 59.
    Lee JC, Strobel GA, Lobkovsky E, Clardy JC. Torreyanic acid: a selectively cytotoxic quinone dimer from the endophytic fungus Pestalotiopsis microspora. J Org Chem 1996;61:3232–3233.CrossRefGoogle Scholar
  60. 60.
    Li C, Johnson RP, Porco JA. Total synthesis of the quinine epoxide dimer (+) torreyanic acid: Application of a biomimetic oxidation/ electrocyclization/Diels-Alder dimerization cascade. J Am Chem Soc 2003;125:5059–5106.Google Scholar
  61. 61.
    Wagenaar M, Corwin J, Strobel GA, Clardy J. Three new chytochalasins produced by an endophytic fungus in the genus Rhinocladiella. J Nat Prod 2000;63:1692–1695.PubMedCrossRefGoogle Scholar
  62. 62.
    Strobel GA, Ford E, Worapong J, et al. Ispoestacin, an isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities. Phytochemistry 2002;60:179–183.PubMedCrossRefGoogle Scholar
  63. 63.
    Harper JK, Ford EJ, Strobel GA, et al. Pestacin: a 1,3-dihydro isobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities. Tetrahedron 2003;59:2471–2476.CrossRefGoogle Scholar
  64. 64.
    Zhang B, Salituro G, Szalkowski D, et al. Discovery of small molecule insulin mimetic with antidiabetic activity in mice. Science 1999;284:974–981.PubMedCrossRefGoogle Scholar
  65. 65.
    Lee J, Lobkovsky E, Pliam NB, Strobel GA, Clardy J. Subglutinols A & B: immunosuppressive compounds from the endophytic fungus Fusarium subglutinans. J Org Chem 1995;60:7076–7077.CrossRefGoogle Scholar
  66. 66.
    Long DE, Smidmansky ED, Archer AJ, Strobel GA. In vivo addition of telomeric repeats to foreign DNA generates chromosomal DNAs in the taxol-producing fungus Pestalotiopsis microspora. Fungal Genetics Biol 1998;24:335–344.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Gary Strobel
    • 1
  • Bryn Daisy
    • 1
  • Uvidelio Castillo
    • 1
  1. 1.Department of Plant ScienceMontana State UniversityBozeman

Personalised recommendations