Molecular Regulation of Calcium Metabolism

  • James C. Fleet
Part of the Nutrition and Health book series (NH)


In the other chapters in this book, it is apparent that bone is the tissue that is affected during periods of inadequate dietary calcium intake, as a result of changes in physiology or defects in calcium homeostasis. Based on this, one might reasonablybut incorrectly—believe that calcium homeostasis is regulated to maintain bone integrity. As Fig. 1 illustrates, and as Chapter 10 developed in some detail, bone, intestine, and kidney make up a three-tissue axis whose activities are coordinated to maintain serum calcium within a narrow range (8.9–10.2 mg/dL). In this model, calcium absorption from the intestine is a disturbing signal that elevates serum calcium after a meal while turnover (i.e., the balance between bone formation and resorption) and renal calcium excretion are controlling signals that respond to fluxes in serum calcium. The import of this coordinated regulation can be seen in the table accompanying Fig. 1. This table is based on research by Bronner and Aubert who studied the influence of dietary calcium on calcium homeostasis in growing rats (1). Using calcium kinetics, their studies showed that when calcium intake is inadequate (a lack of Ca input into serum Ca), the body compensates by increasing calcium mobilization from the bone (resorption) as well as the efficiency of both calcium reabsorption from the renal filtrate and calcium absorption from the diet. Similar types of compensatory adaptation would also occur if renal calcium output was too high (e.g., as a result of high dietary salt intake), leading to a drain on serum Ca that promotes compensation at the intestine and bone, or if bone resorption were elevated (e.g., owing to the loss of estrogen), leading to elevated serum Ca that would suppress the activities of the intestine and bone.


Lactate Baran Luminal Estradiol Stein 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bronner F, Aubert JP. Bone metabolism and regulation of the blood calcium level in rats. Am J Physiol 1963;209:887–889.Google Scholar
  2. 2.
    Holick MF. Vitamin D: a millenium perspective. J Cell Biochem 2003;88(2):296–307.Google Scholar
  3. 3.
    White P, Cooke N. The multifunctional properties and characteristics of vitamin D-binding protein. Trends Endocrinol Metab 2000;11(8):320–327.Google Scholar
  4. 4.
    Leheste JR, Melsen F, Wellner M, et al. Hypocalcemia and osteopathy in mice with kidney-specific megalin gene defect. FASEB J 2003;17(2):247–249.Google Scholar
  5. 5.
    Trang HM, Cole DE, Rubin LA, Pierratos A, Siu S, Vieth R. Evidence that vitamin D3 increases serum 25-hydroxyvitamin D more efficiently than does vitamin D2. Am J Clin Nutr 1998;68(4):854–858.Google Scholar
  6. 6.
    Hewison M, Zehnder D, Bland R, Stewart PM. 1alpha-Hydroxylase and the action of vitamin D. J Mol Endocrinol 2000;25(2):141–148.Google Scholar
  7. 7.
    Omdahl JL, Morris HA, May BK. Hydroxylase enzymes of the vitamin D pathway: expression, function, and regulation. Annu Rev Nutr 2002;22:139–166.Google Scholar
  8. 8.
    Boyan BD, Sylvia VL, Dean DD, Schwartz Z. 24,25-(OH)(2)D(3) regulates cartilage and bone via autocrine and endocrine mechanisms. Steroids 2001;66(3–5):363–374.Google Scholar
  9. 9.
    Norman AW, Okamura WH, Bishop JE, Henry HL. Update on biological actions of 1alpha, 25(OH)2-vitamin D3 (rapid effects) and 24R,25(OH)2-vitamin D3. Mol Cell Endocrinol 2002;197(1–2):1–13.Google Scholar
  10. 10.
    Thomas MK, Lloyd-Jones DM, Thadhani RI, et al. Hypovitaminosis D in medical inpatients. N Engl J Med 1998;338(12):777–783.Google Scholar
  11. 11.
    Chapuy MC, Preziosi P, Maamer M, et al. Prevalence of vitamin D insufficiency in an adult normal population. Osteoporos Int 1997;7(5):439–443.Google Scholar
  12. 12.
    Heaney RP, Dowell MS, Hale CA, Bendich A. Calcium absorption varies within the reference range for serum 25-hydroxyvitamin D. J Am Coll Nutr 2003;22(2):142–146.Google Scholar
  13. 13.
    Barger-Lux MJ, Heaney RP, Lanspa SJ, Healy JC, DeLuca HF. An investigation of sources of variation in calcium absorption efficiency. J Clin Endocrinol Metab 1995;80(2):406–411.Google Scholar
  14. 14.
    Heaney RP, Barger-Lux. M.J., Dowell MS, Chen TC, Holick MF. Calcium absorptive effects of vitamin D and its major metabolites. J Clin Endocrinol Metab 1997;82:4111–4116.Google Scholar
  15. 15.
    Devine A, Wilson SG, Dick IM, Prince RL. Effects of vitamin D metabolites on intestinal calcium absorption and bone turnover in elderly women. Am J Clin Nutr 2002;75(2):283–288.Google Scholar
  16. 16.
    Dusso A, Lopez-Hilker S, Rapp N, Slatopolsky E. Extra-renal production of calcitriol in chronic renal failure. Kidney Int 1988;34(3):368–375.Google Scholar
  17. 17.
    Jongen MJ, Van der vijgh WJ, Lips P, Netelenbos JC. Measurement of vitamin D metabolites in anephric subjects. Nephron 1984;36(4):230–234.Google Scholar
  18. 18.
    Whitlatch LW, Young MV, Schwartz GG, et al. 25-Hydroxyvitamin D-1alpha-hydroxylase activity is diminished in human prostate cancer cells and is enhanced by gene transfer. J Steroid Biochem Mol Biol 2002;81(2):135–140.Google Scholar
  19. 19.
    Lou YR, Laaksi I, Syvala H, et al. 25-Hydroxyvitamin D3 is an active hormone in human primary prostatic stromal cells. FASEB J 2004;18(2):332–334.Google Scholar
  20. 20.
    Zehnder D, Bland R, Williams MC, et al. Extrarenal expression of 25-hydroxyvitamin d(3)-1 alphahydroxylase. J Clin Endocrinol Metab 2001;86(2):888–894.Google Scholar
  21. 21.
    Vieth R, Milojevic S, Peltekova V. Improved cholecalciferol nutrition in rats is noncalcemic, suppresses parathyroid hormone and increases responsiveness to 1, 25-dihydroxycholecalciferol. J Nutr 2000;130(3):578–584.Google Scholar
  22. 22.
    Haussler MR, Whitfield GK, Haussler CA, Hsieh et al. The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. J Bone Miner Res 1998;13(3):325–349.Google Scholar
  23. 23.
    Malloy PJ, Feldman D. Hereditary 1,25-dihydroxyvitamin D-resistant rickets. Endocr Dev 2003;6:175–199.Google Scholar
  24. 24.
    Yoshizawa T, Handa Y, Uematsu Y, et al. Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat Genet 1997;16:391–396.Google Scholar
  25. 25.
    Li YC, Pirro AE, Amling M, et al. Targeted ablation of the vitamin D receptor: An animal model of vitamin D-dependent rickets type II with alopecia. Proc Natl Acad Sci USA 1997;94:9831–9835.Google Scholar
  26. 26.
    Song Y, Kato S, Fleet JC. Vitamin D receptor (VDR) knockout mice reveal VDR-independent regulation of intestinal calcium absorption and ECaC2 and calbindin D(9k) mRNA. J Nutr 2003;133(2):374–380.Google Scholar
  27. 27.
    Bouillon R, Van Cromphaut S, Carmeliet G. Intestinal calcium absorption: Molecular vitamin D mediated mechanisms. J Cell Biochem 2003;88(2):332–339.Google Scholar
  28. 28.
    Barsony J, Pike JW, DeLuca HF, Marx SJ. Immunocytology with microwave-fixed fibroblasts shows 1 alpha, 25-dihydroxyvitamin D3-dependent rapid and estrogen-dependent slow reorganization of vitamin D receptors. J Cell Biol 1990;111 (6 Pt 1):2385–2395.Google Scholar
  29. 29.
    Prufer K, Barsony J. Retinoid X receptor dominates the nuclear import and export of the unliganded vitamin D receptor. Mol Endocrinol 2002;16(8):1738–1751.Google Scholar
  30. 30.
    Barsony J, Renyi I, McKoy W. Subcellular distribution of normal and mutant vitamin D receptors in living cells. J Biol Chem 1997;272:5774–5782.Google Scholar
  31. 31.
    Prufer K, Racz A, Lin GC, Barsony J. Dimerization with retinoid X receptors promotes nuclear localization and subnuclear targeting of vitamin D receptors. J Biol Chem 2000;275(52):41114–41123.Google Scholar
  32. 32.
    Paredes R, Gutierrez J, Gutierrez S, et al. Interaction of the 1alpha, 25-dihydroxyvitamin D3 receptor at the distal promoter region of the bone-specific osteocalcin gene requires nucleosomal remodelling. Biochem J 2002;363 (Pt 3):667–676.Google Scholar
  33. 33.
    Berger SL. Histone modifications in transcriptional regulation. Curr Opin Genet Dev 2002;12(2):142–148.Google Scholar
  34. 34.
    Dilworth FJ, Chambon P. Nuclear receptors coordinate the activities of chromatin remodeling complexes and coactivators to facilitate initiation of transcription. Oncogene 2001;20(24):3047–3054.Google Scholar
  35. 35.
    Rachez C, Freedman LP. Mediator complexes and transcription. Current Opinion in Cell Biology 2001;13:274–280.Google Scholar
  36. 36.
    Freedman LP. Increasing the complexity of coactivation in nuclear receptor signaling. Cell 1999;97:5–8.Google Scholar
  37. 37.
    Chen H, Lin RJ, Xie W, Wilpitz D, Evans RM. Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell 1999;98(5):675–686.Google Scholar
  38. 38.
    Belandia B, Orford RL, Hurst HC, Parker MG. Targeting of SWI/SNF chromatin remodelling complexes to estrogen-responsive genes. EMBO J 2002;21(15):4094–4103.Google Scholar
  39. 39.
    Rachez C, Lemon BD, Suldan Z, et al. Ligand-dependent transcription activation by nuclear receptors requires the DRIP complex. Nature 1999;398:824–828.Google Scholar
  40. 40.
    Bronner F, Pansu D, Stein WD. An analysis of intestinal calcium transport across the rat intestine. Am J Physiol 1986;250(5 Pt 1):G561–G569.Google Scholar
  41. 41.
    Giuliano AR, Wood RJ. Vitamin D-regulated calcium transport in Caco-2 cells: unique in vitro model. Am J Physiol 1991;260(2 Pt 1):G207–G212.Google Scholar
  42. 42.
    Peng JB, Brown EM, Hediger MA. Apical entry channels in calcium-transporting epithelia. News Physiol Sci 2003;18:158–163.Google Scholar
  43. 43.
    Song Y, Peng X, Porta A, et al. Calcium transporter 1 and epithelial calcium channel messenger ribonucleic acid are differentially regulated by 1,25 dihydroxyvitamin D3 in the intestine and kidney of mice. Endocrinology 2003;144(9):3885–3894.Google Scholar
  44. 44.
    Hoenderop JG, Vennekens R, Muller D, et al. Function and expression of the epithelial Ca(2+) channel family: comparison of mammalian ECaC1 and 2. J Physiol 2001;537 (Pt 3):747–761.Google Scholar
  45. 45.
    Christakos S, Gabrielides C, Rhoten WB. Vitamin D-dependent calcium binding proteins: Chemistry distribution, functional considerations, and molecular biology. Endocrine Rev 1989;10:3–26.Google Scholar
  46. 46.
    Feher JJ, Fullmer CS, Wasserman RH. Role of facilitated diffusion of calcium by calbindin in intestinal calcium absorption. Am J Physiol 1992;262(2):C517–C526.Google Scholar
  47. 47.
    Fleet JC, Bruns ME, Hock JM, Wood RJ. Growth hormone and parathyroid hormone stimulate intestinal calcium absorption in aged female rats. Endocrinology 1994;134:1755–1760.Google Scholar
  48. 48.
    Dupret JM, Brun P, Perret C, Lomri N, Thomasset M, Cuisinier-Gleizes P. Transcriptional and posttranscriptional regulation of vitamin D-dependent calcium-binding protein gene expression in the rat duodenum by 1,25-dihydroxycholecalciferol. J Biol Chem 1987;262(34):16,553–16,557.Google Scholar
  49. 49.
    Friedman PA, Gesek FA. Cellular calcium transport in renal epithelia: measurement, mechanisms, and regulation. Physiol Rev 1995;75(3):429–471.Google Scholar
  50. 50.
    Wang YZ, Li H, Bruns ME, et al. Effect of 1,25,28-trihydroxyvitamin D2 and 1,24,25-trihydroxyvitamin D3 on intestinal calbindin-D9k mRNA and protein: Is there a correlation with intestinal calcium transport? J Bone Min Res 1993;8:1483–1490.Google Scholar
  51. 51.
    Fleet JC, Eksir F, Hance KW, Wood RJ. Vitamin D-inducible calcium transport and gene expression in three Caco-2 cell lines. Am J Physiol Gastrointest Liver Physiol 2002;283(3):G618–G625.Google Scholar
  52. 52.
    Pannabecker TL, Chandler JS, Wasserman RH. Vitamin D-dependent transcriptional regulation of the intestinal plasma membrane calcium pump. Biochem Biohphys Res Commun 1995;213:499–505.Google Scholar
  53. 53.
    Walters JRF. Calbindin-D9k stimulates the calcium pump in rat enterocyte basolateral membranes. Am J Physiol 1989;256:G124–G128.Google Scholar
  54. 54.
    Nemere I. Vesicular calcium transport in chick intestine. J Nutr 1992;122(3 Suppl):657–661.Google Scholar
  55. 55.
    Zhou LX, Nemere I, Norman AW. A parathyroid-related peptide induces transcaltachia (the rapid, hormonal stimulation of intestinal Ca2+ transport). Biochem Biophys Res Commun 1992;186:69–73.Google Scholar
  56. 56.
    Nemere I, Farach-Carson MC. Membrane receptors for steroid hormones: a case for specific cell surface binding sites for vitamin D metabolites and estrogens. Biochem Biophys Res Comm 1998;248:443–449.Google Scholar
  57. 57.
    Sitrin MD, Bissonnette M, Bolt MJ, et al. Rapid effects of 1,25(OH)2 vitamin D3 on signal transduction systems in colonic cells. Steroids 1999;64(1–2):137–142.Google Scholar
  58. 58.
    Khare S, Bolt MJ, Wali RK, et al. 1,25 dihydroxyvitamin D3 stimulates phospholipase C-gamma in rat colonocytes: role of c-Src in PLC-gamma activation. J Clin Invest 1997;99(8):1831–1841.Google Scholar
  59. 59.
    Wali RK, Baum CL, Sitrin MD, Brasitus TA. 1,25(OH)2 vitamin D3 stimulates membrane phosphoinositide turnover, activates protein kinase C, and increases cytosolic calcium in rat colonic epithelium. J Clin Invest 1990;85(4):1296–1303.Google Scholar
  60. 60.
    Tien X-Y, Katnik C, Qasawa BM, Sitrin MD, Nelson DJ, Brasitus TA. Characterization of the 1,25 dihydroxycholecalcferol-stimulated calcium influx pathway in Caco-2 cells. J Membrane Biol 1993;136:159–168.Google Scholar
  61. 61.
    Wali RK, Bolt MJ, Tien XY, Brasitus TA, Sitrin MD. Differential effect of 1,25-dihydroxycholecalciferol on phosphoinositide turnover in the antipodal plasma membranes of colonic epithelial cells. Biochem Biophys Res Commun 1992;187(2):1128–1134.Google Scholar
  62. 62.
    Khare S, Bissonnette M, Scaglione-Sewell B, Wali RK, Sitrin MD, Brasitus TA. 1,25-dihydroxyvitamin D3 and TPA activate phospholipase D in Caco-2 cells: role of PKC-alpha. Am J Physiol 1999;276(4 Pt 1):G993–G1004.Google Scholar
  63. 63.
    Chen A, Davis BH, Bissonnette M, Scaglione-Sewell B, Brasitus TA. 1,25-Dihydroxyvitamin D(3) stimulates activator protein-1-dependent caco-2 cell differentiation. J Biol Chem 1999;274(50):35,505–35,513.Google Scholar
  64. 64.
    Wali RK, Baum CL, Sitrin MD, Bolt MJG, Dudeja PK, Brasitus TA. Effect of vitamin-D status on the rapid actions of 1,25-dihydroxycholecalciferol in rat colonic membranes. Am J Physiol 1992;262(6):G945–G953.Google Scholar
  65. 65.
    Harvey BJ, Alzamora R, Healy V, Renard C, Doolan CM. Rapid responses to steroid hormones: from frog skin to human colon. A homage to Hans Ussing. Biochim Biophys Acta 2002;1566(1–2):116–128.Google Scholar
  66. 66.
    Farach-Carson MC, Nemere I. Membrane receptors for vitamin D steroid hormones: potential new drug targets. Curr Drug Targets 2003;4(1):67–76.Google Scholar
  67. 67.
    Buitrago C, Vazquez G, de Boland AR, Boland RL. Activation of Src kinase in skeletal muscle cells by 1, 1,25-(OH(2))-vitamin D(3) correlates with tyrosine phosphorylation of the vitamin D receptor (VDR) and VDR-Src interaction. J Cell Biochem 2000;79(2):274–281.Google Scholar
  68. 68.
    Buitrago C, Vazquez G, de Boland AR, Boland R. The vitamin D receptor mediates rapid changes in muscle protein tyrosine phosphorylation induced by 1,25(OH)(2)D(3). Biochem Biophys Res Commun 2001;289(5):1150–1156.Google Scholar
  69. 69.
    Bettoun DJ, Burris TP, Houck KA, Buck DW, Stayrook KR, Khalifa B et al. Retinoid X Receptor is a Non-Silent Major Contributor to Vitamin D Receptor-Mediated Transcriptional Activation. Mol Endocrinol 2003.Google Scholar
  70. 70.
    Erben RG, Soegiarto DW, Weber K, Zeitz U, Lieberherr M, Gniadecki R et al. Deletion of deoxyribonucleic acid binding domain of the vitamin D receptor abrogates genomic and nongenomic functions of vitamin D. Molecular Endocrinology 2002;16(7):1524–1537.Google Scholar
  71. 71.
    Wali RK, Kong J, Sitrin MD, Bissonnette M, Li YC. Vitamin D receptor is not required for the rapid actions of 1,25-dihydroxyvitamin D3 to increase intracellular calcium and activate protein kinase C in mouse osteoblasts. J Cell Biochem 2003;88(4):794–801.Google Scholar
  72. 72.
    Boyan BD, Dean DD, Sylvia VL, Schwartz Z. Steroid hormone action in musculoskeletal cells involves membrane receptor and nuclear receptor mechanisms. Connect Tissue Res 2003;44 Suppl 1:130–135.Google Scholar
  73. 73.
    Boyan BD, Sylvia VL, Dean DD, t al. 1,25-(OH)2D3 modulates growth plate chondrocytes via membrane receptor-mediated protein kinase C by a mechanism that involves changes in phospholipid metabolism and the action of arachidonic acid and PGE2. Steroids 1999;64(1–2):129–136.Google Scholar
  74. 74.
    Boyan BD, Dean DD, Sylvia VL, Schwartz Z. Nongenomic regulation of extracellular matrix events by vitamin D metabolites. J Cell Biochem 1994;56:331–339.Google Scholar
  75. 75.
    Shi H, Norman AW, Okamura WH, Sen A, Zemel MB. 1alpha, 25-Dihydroxyvitamin D3 modulates human adipocyte metabolism via nongenomic action. FASEB J 2001;15(14):2751–2753.Google Scholar
  76. 76.
    Loos RJ, Rankinen T, Leon AS, et al. Calcium intake is associated with adiposity in Black and White men and White women of the HERITAGE Family Study. J Nutr 2004;134(7):1772–1778.Google Scholar
  77. 77.
    Zemel MB. Role of calcium and dairy products in energy partitioning and weight management. Am J Clin Nutr 2004;79(5):907S–912S.Google Scholar
  78. 78.
    Koyama H, Inaba M, Nishizawa Y, Ohno S, Morii H. Protein kinase C is involved in 24-hydroxylase gene expression induced by 1,25(OH)2D3 in rat intestinal epithelial cells. J Cell Biochem 1994;55:230–240.Google Scholar
  79. 79.
    Armbrecht HJ, Boltz MA, Hodam TL, Kumar VB. Differential responsiveness of intestinal epithelial cells to 1,25-dihydroxyvitamin D3-role of protein kinase C. J Endocrinol 2001;169(1):145–151.Google Scholar
  80. 80.
    Desai RK, van Wijnen AJ, Stein JL, Stein GL, Lian JB. Control of 1,25-dihydroxyvitamin D3 receptormediated enhancement of osteoclacin gene transcription: effects of perturbing phosphorylation pathwasy by okadaic acid and staurosporine. Endocrinology 1995;136:5685–5693.Google Scholar
  81. 81.
    Dwivedi PP, Hii CS, Ferrante A, et al. Role of MAP kinases in the 1,25-dihydroxyvitamin D3-induced transactivation of the rat cytochrome P450C24 (CYP24) promoter. Specific functions for ERK1/ERK2 and ERK5. J Biol Chem 2002;277(33):29,643–29,653.Google Scholar
  82. 82.
    Buitrago C, Boland R, de Boland AR. The tyrosine kinase c-Src is required for 1,25(OH)2-vitamin D3 signalling to the nucleus in muscle cells. Biochim Biophys Acta 2001;1541(3):179–187.Google Scholar
  83. 83.
    Hara H, Yasunami Y, Adachi T. Alteration of cellular phosphorylation state affects vitamin D receptormediated CYP3A4 mRNA induction in Caco-2 cells. Biochem Biophys Res Commun 2002;296(1):182–188.Google Scholar
  84. 84.
    Baran DT, Sorensen AM, Shalhoub V, Owen T, Stein G, Lian J. The rapid nongenomic actions of 1 alpha, 25-dihydroxyvitamin D3 modulate the hormone-induced increments in osteocalcin gene transcription in osteoblast-like cells. J Cell Biochem 1992;50(2):124–129.Google Scholar
  85. 85.
    Barletta F, Freedman LP, Christakos S. Enhancement of VDR-mediated transcription by phosphorylation: correlation with increased interaction between the VDR and DRIP205, a subunit of the VDRinteracting protein coactivator complex. Mol Endocrinol 2002;16(2):301–314.Google Scholar
  86. 86.
    Juppner H, Gadella T, Brown E, Kronenberg H, Potts J. Parathyroid hormone and parathyroid hormone-related peptide in the regulation of calcium homeostasis and bone development. In: DeGroot L, Jameson J, eds. Endocrinology. W.B. Saunders Company, Philadelphia, PA: 2000; pp. 969–998.Google Scholar
  87. 87.
    Silver J, Yalcindag C, Sela-Brown A, Kilav R, Naveh-Many T. Regulation of the parathyroid hormone gene by vitamin D, calcium and phosphate. Kidney Int Suppl 1999;73:S2–S7.Google Scholar
  88. 88.
    Whybro A, Jagger H, Barker M, Eastell R. Phosphate supplementation in young men: lack of effect on calcium homeostasis and bone turnover. Eur J Clin Nutr 1998;52(1):29–33.Google Scholar
  89. 89.
    Hebert SC, Brown EM, Harris HW. Role of the Ca(2+)-sensing receptor in divalent mineral ion homeostasis. J Exp Biol 1997;200 (Pt 2):295–302.Google Scholar
  90. 90.
    Nishishita T, Okazaki T, Ishikawa T, et al. A negative vitamin D response DNA element in the human parathyroid hormone-related peptide gene binds to vitamin D receptor along with Ku antigen to mediate negative gene regulation by vitamin D. J Biol Chem 1998;273(18):10,901–10,907.Google Scholar
  91. 91.
    Russell J, Ashok S, Koszewski NJ. Vitamin D receptor interactions with the rat parathyroid hormone gene: synergistic effects between two negative vitamin D response elements. J Bone Miner Res 1999;14(11):1828–1837.Google Scholar
  92. 92.
    Gardella TJ, Juppner H. Molecular properties of the PTH/PTHrP receptor. Trends Endocrinol Metab 2001;12(5):210–217.Google Scholar
  93. 93.
    Mahon MJ, Cole JA, Lederer ED, Segre GV. Na+/H+ exchanger-regulatory factor 1 mediates inhibition of phosphate transport by parathyroid hormone and second messengers by acting at multiple sites in opossum kidney cells. Mol Endocrinol 2003;17(11):2355–2364.Google Scholar
  94. 94.
    Lau K, Bourdeau JE. Parathyroid hormone action in calcium transport in the distal nephron. Curr Opin Nephrol Hypertens 1995;4(1):55–63.Google Scholar
  95. 95.
    Barry EL, Gesek FA, Yu AS, Lytton J, Friedman PA. Distinct calcium channel isoforms mediate parathyroid hormone and chlorothiazide-stimulated calcium entry in transporting epithelial cells. J Membr Biol 1998;161(1):55–64.Google Scholar
  96. 96.
    Peng JB, Chen XZ, Berger UV, Vassilev PM, Brown EM, Hediger MA. A rat kidney-specific calcium transporter in the distal nephron. J Biol Chem 2000;275(36):28,186–28,194.Google Scholar
  97. 97.
    Zierold C, Mings JA, DeLuca HF. Regulation of 25-hydroxyvitamin D3-24-hydroxylase mRNA by 1,25-dihydroxyvitamin D3 and parathyroid hormone. J Cell Biochem 2003;88(2):234–237.Google Scholar
  98. 98.
    Armbrecht HJ, Boltz MA, Hodam TL. PTH increases renal 25(OH)D3-1alpha-hydroxylase (CYP1alpha) mRNA but not renal 1,25(OH)2D3 production in adult rats. Am J Physiol Renal Physiol 2003;284(5):F1032–F1036.Google Scholar
  99. 99.
    Jimi E, Nakamura I, Amano H, et al. Osteoclast function is activated by osteoblastic cells through a mechamism involving cell-to-cell contact. Endocrinology 1996;137:2187–2190.Google Scholar
  100. 100.
    Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature 2003;423(6937):337–342.Google Scholar
  101. 101.
    Fu Q, Jilka RL, Manolagas SC, O’Brien CA. Parathyroid hormone stimulates receptor activator of NFkappa B ligand and inhibits osteoprotegerin expression via protein kinase A activation of cAMPresponse element-binding protein. J Biol Chem 2002;277(50):48,868–48,875.Google Scholar
  102. 102.
    Rubin J, Fan D, Wade A, et al. Transcriptional regulation of the expression of macrophage colony stimulating factor. Mol Cell Endocrinol 2000;160(1–2):193–202.Google Scholar
  103. 103.
    Hock JM, Gera I. Effects of continuous and intermittent administration and inhibition of resorption on the anabolic response of bone to parathyroid hormone. J Bone Miner Res 1992;7(1):65–72.Google Scholar
  104. 104.
    Bellido T, Ali AA, Plotkin LI, et al. Proteasomal degradation of Runx2 shortens parathyroid hormoneinduced anti-apoptotic signaling in osteoblasts. A putative explanation for why intermittent administration is needed for bone anabolism. J Biol Chem 2003;278(50):50,259–50,272.Google Scholar
  105. 105.
    Heaney RP, Recker RR, Saville PD. Menopausal changes in bone remodeling. J Lab Clin Med 1978;92(6):964–970.Google Scholar
  106. 106.
    Riggs BL, Khosla S, Melton LJ, III. Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 2002;23(3):279–302.Google Scholar
  107. 107.
    Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Spelsberg TC, Riggs BL. Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology 1999;140(9):4367–4370.Google Scholar
  108. 108.
    Sarma U, Edwards M, Motoyoshi K, Flanagan AM. Inhibition of bone resorption by 17beta-estradiol in human bone marrow cultures. J Cell Physiol 1998;175(1):99–108.Google Scholar
  109. 109.
    McCauley LK, Tozum TF, Rosol TJ. Estrogen receptors in skeletal metabolism: lessons from genetically modified models of receptor function. Crit Rev Eukaryot Gene Expr 2002;12(2):89–100.Google Scholar
  110. 110.
    Kousteni S, Chen JR, Bellido T, et al. Reversal of bone loss in mice by nongenotropic signaling of sex steroids. Science 2002;298(5594):843–846.Google Scholar
  111. 111.
    Riggs BL, Khosla S, Melton LJ. A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Min Res 1998;13:763–773.Google Scholar
  112. 112.
    Gennari C, Agnusdei D, Nardi P, Civitelli R. Estrogen preserves a normal intestinal responsiveness to 1,25-dihydroxyvitamin D3 in oophorectomized women. J Clin Endocrinol Metab 1990;71(5):1288–1293.Google Scholar
  113. 113.
    Chen C, Noland KA, Kalu DN. Modulation of intestinal vitamin D receptor by ovariectomy, estrogen and growth hormone. Mech Ageing and Develop 1997;99:109–122.Google Scholar
  114. 114.
    Arjmandi BH, Holis BW, Kalu DN. In vivo effect of 17 β-estradiol on intestinal calcium absorption in rats. Bone and Mineral 1994;26:181–189.Google Scholar
  115. 115.
    Liel Y, Shany S, Smirnoff P, Schwartz B. Estrogen increases 1,25-dihydroxyvitamin D receptors expression and bioresponse in the rat duodenal mucosa. Endocrinology 1999;140(1):280–285.Google Scholar
  116. 116.
    Colin EM, van den Bemd GJ, Van Aken M, et al. Evidence for involvement of 17beta-estradiol in intestinal calcium absorption independent of 1,25-dihydroxyvitamin D3 level in the Rat. J Bone Miner Res 1999;14(1):57–64.Google Scholar
  117. 117.
    Van Abel M, Hoenderop JG, van der Kemp AW, van Leeuwen JP, Bindels RJ. Regulation of the epithelial Ca2+ channels in small intestine as studied by quantitative mRNA detection. Am J Physiol Gastrointest Liver Physiol 2003.Google Scholar
  118. 118.
    Inzerillo AM, Zaidi M, Huang CL. Calcitonin: the other thyroid hormone. Thyroid 2002;12(9):791–798.Google Scholar
  119. 119.
    Mora S, Pitukcheewanont P, Nelson JC, Gilsanz V. Serum levels of insulin-like growth factor I and the density, volume, and cross-sectional area of cortical bone in children. J Clin Endocrinol Metab 1999;84(8):2780–2783.Google Scholar
  120. 120.
    Boot AM, Engels MA, Boerma GJ, Krenning EP, De Muinck Keizer-Schrama SM. Changes in bone mineral density, body composition, and lipid metabolism during growth hormone (GH) treatment in children with GH deficiency. J Clin Endocrinol Metab 1997;82(8):2423–2428.Google Scholar
  121. 121.
    Rudman D, Feller AG, Nagrajm H.S., et al. Effects of human growth hormone in men over 60 years old. N Engl J Med 1990;323:1–6.Google Scholar
  122. 122.
    Hock JM, Gera I, Fonseca J, Raisz LG. Human parathyroid hormone-(1–34) increases bone mass in ovariectomized and orchidectomized rats. Endocrinology 1988;122(6):2899–2904.Google Scholar
  123. 123.
    Hill PA, Tumber A, Meikle MC. Multiple extracellular signals promote osteoblast survival and apoptosis. Endocrinology 1997;138(9):3849–3858.Google Scholar
  124. 124.
    Zoidis E, Gosteli-Peter M, Ghirlanda-Keller C, Meinel L, Zapf J, Schmid C. IGF-I and GH stimulate Phex mRNA expression in lungs and bones and 1,25-dihydroxyvitamin D(3) production in hypophysectomized rats. Eur J Endocrinol 2002;146(1):97–105.Google Scholar
  125. 125.
    Ritchie LD, Fung EB, Halloran BP, et al. A longitudinal study of calcium homeostasis during human pregnancy and lactation and after resumption of menses. Am J Clin Nutr 1998;67(4):693–701.Google Scholar
  126. 126.
    Breslau NA, Zerwekh JE. Relationship of estrogen and pregnancy to calcium homeostasis in pseudohypoparathyroidism. J Clin Endocrinol Metab 1986;62(1):45–51.Google Scholar
  127. 127.
    Whitehead M, Lane G, Young O, et al. Interrelations of calcium-regulating hormones during normal pregnancy. Br Med J (Clin Res Ed) 1981;283(6283):10–12.Google Scholar
  128. 128.
    Quan-Sheng D, Miller SC. Calciotrophic hormone levels and calcium absorption during pregnancy in rats. Am J Physiol 1989;257(1 Pt 1):E118–E123.Google Scholar
  129. 129.
    Kalkwarf HJ, Specker BL. Bone mineral changes during pregnancy and lactation. Endocrine 2002;17(1):49–53.Google Scholar
  130. 130.
    Kalkwarf HJ, Specker BL, Heubi JE, Vieira NE, Yergey AL. Intestinal calcium absorption of women during lactation and after weaning. Am J Clin Nutr 1996;63(4):526–531.Google Scholar
  131. 131.
    Kalkwarf HJ, Specker BL, Ho M. Effects of calcium supplementation on calcium homeostasis and bone turnover in lactating women. J Clin Endocrinol Metab 1999;84(2):464–470.Google Scholar
  132. 132.
    Boass A, Toverud SU, Pike JW, Haussler MR. Calcium metabolism during lactation: enhanced intestinal calcium absorption in vitamin D-deprived, hypocalcemic rats. Endocrinology 1981;109(3):900–907.Google Scholar
  133. 133.
    Charoenphandhu N, Limlomwongse L, Krishnamra N. Prolactin directly stimulates transcellular active calcium transport in the duodenum of female rats. Can J Physiol Pharmacol 2001;79(5):430–438.Google Scholar
  134. 134.
    Wood RJ, Fleet JC. The genetics of osteoporosis: vitamin D receptor polymorphisms. Annu Rev Nutr 1998;18:233–258.Google Scholar
  135. 135.
    Hunter DJ, Lange M, Snieder H, et al. Genetic contribution to renal function and electrolyte balance: a twin study. Clin Sci (Lond) 2002;103(3):259–265.Google Scholar
  136. 136.
    Liu YZ, Liu YJ, Recker RR, Deng HW. Molecular studies of identification of genes for osteoporosis: the 2002 update. J Endocrinol 2003;177(2):147–196.Google Scholar
  137. 137.
    Little RD, Carulli JP, Del Mastro RG, et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet 2002;70(1):11–19.Google Scholar
  138. 138.
    Morrison NA, Qi JC, Tokita A, et al. Prediction of bone density from vitamin D receptor alleles. Nature 1994;367(6460):284–287.Google Scholar
  139. 139.
    Grant SF, Reic DM, Blake G, Herd F, Fogelman I, Ralston SH. Reduced bone density and osteoporosis associated with a polymorphic Sp1 binding site in the collagen type I alpha 1 gene. Nat Genet 1996;14:203–205.Google Scholar
  140. 140.
    Mann V, Hobson EE, Li B, et al. A COL1A1 Sp1 binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality. J Clin Invest 2001;107(7):899–907.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2006

Authors and Affiliations

  • James C. Fleet
    • 1
  1. 1.Department of Foods and NutritionPurdue UniversityWest Lafayette

Personalised recommendations