Antioxidant Nutrition and Immunity

  • Laurence S. Harbige
  • M. Eric Gershwin


Human Immunodeficiency Virus Type Natural Killer Cell Activity Total Antioxidant Status Whey Protein Isolate Severe Acute Respiratory Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Frieden, T.R., Sowell, A.L., Henning, K.J., Huff, DL., and Gunn, R.A. (1992) Vitamin A levels and severity of measles. New York City. Am. J. Dis. Child. 146, 182–186.Google Scholar
  2. 2.
    Williams, L.L., Doody, D.M., and Horrocks, L.A. Serum fatty acid proportions are altered during the year following acute Epstein-Barr virus infection. Lipids 23, 981–988.Google Scholar
  3. 3.
    Agostoni, C., Riva, E., Esposito, S., Ferraris, G., Principi, N., and Zuccotti, G.V. (2000) Fatty acid composition of plasma lipids in HIV-infected children. Comparison with seroreverters. Acta Paediatr. 89, 172–176.Google Scholar
  4. 4.
    Beck, M.A. (1999) Selenium and host defence towards viruses. Proc. Nutr. Soc. 58, 707–711.Google Scholar
  5. 5.
    Beck, M.A., Shi, Q., Morris, V.C., and Levander, O.A. (1995) Rapid genomic evolution of a non-virulent coxsackievirus B3 in selenium-deficient mice results in selection of identical virulent isolates. Nat. Med. 1, 433–436.Google Scholar
  6. 6.
    Semba, R.D., Miotti, P.G., Chiphangwi, J.D., et al. (1994) Maternal vitamin A deficiency and mother-to-child transmission of HIV-1. Lancet 343, 1593–1597.Google Scholar
  7. 7.
    Harbige, L.S. (2003) Fatty acids, the immune response, and autoimmunity: a question of n-6 essentiality and the balance between n-6 and n-3. Lipids 38, 323–341.Google Scholar
  8. 8.
    Levander, O.A., Ager, A.L., Jr., and Beck, M.A. (1995) Vitamin E and selenium: contrasting and interacting nutritional determinants of host resistance to parasitic and viral infections. Proc. Nutr. Soc. 54, 475–487.Google Scholar
  9. 9.
    Doyle, W., Jenkins, S., Crawford, M.A., and Puvandendran, K. (1994) Nutritional status of schoolchildren in an inner city area. Arch. Dis. Child. 70, 376–381.Google Scholar
  10. 10.
    Bates, C.J., Prentice, A.M., and Paul, A.A. (1994) Seasonal variations in vitamins A, C, riboflavin and folate intakes and status of pregnant and lactating women in a rural Gambian community: some possible implications. Eur. J. Clin. Nutr. 48, 660–668.Google Scholar
  11. 11.
    Arnaud, J., Fleites, P., Chassagne, M., et al. (2001) Seasonal variations of antioxidant imbalance in Cuban healthy men. Eur. J. Clin. Nutr. 55, 29–38.Google Scholar
  12. 12.
    Yasunaga, T., Kato, H., Ohgaki, K., Inamoto, T., and Hikasa, Y. (1982) Effect of vitamin E as an immunopotentiation agent for mice at optimal dosage and its toxicity at high dosage. J. Nutr. 112, 1075–1084.Google Scholar
  13. 13.
    Moriguchi, S., Kobayashi, N., and Kishino, Y. (1990) High dietary intakes of vitamin E and cellular immune functions in rats. J. Nutr. 120, 1096–1102.Google Scholar
  14. 14.
    Meydani, S.N., Meydani, M., Verdon, C.P., Shapiro, A.A., Blumberg, J.B., and Hayes, K.C. (1986) Vitamin E supplementation suppresses prostaglandin E synthesis and enhances the immune response of aged mice. Mech. Ageing Devl. 34, 191–201.Google Scholar
  15. 15.
    Watzl, B., Bub, A., Brandstetter, B.R., and Rechkemmer, G. (1999) Modulation of human T-lymphocyte functions by the consumption of carotenoid-rich vegetables. Brit. J. Nutr. 82, 383–389.Google Scholar
  16. 16.
    Watson, R.R., Prabhala, RH., Plezia, P.M., and Alberts, D.S. (1991) Effect of beta-carotene on lymphocyte subpopulations in elderly humans: evidence for a dose-response relationship. Am. J. Clin. Nutr. 53, 90–94.Google Scholar
  17. 17.
    Hughes, D.A. (1999) Effects of carotenoids on human immune function. Proc. Nutr. Soc. 58, 713–718.Google Scholar
  18. 18.
    Ashfaq, M.K., Zuberi, H.S., and Anwar Waqar, M. (2000) Vitamin E and betacarotene affect natural killer cell function. Int. J. Food Sci. Nutr. 51 Suppl, 513–520.Google Scholar
  19. 19.
    Jeng, K.C., Yang, C.S., Siu, W.Y., Tsai, Y.S., Liao, W.J., and Kuo, J.S. (1996) Supplementation with vitamins C and E enhances cytokine production by peripheral blood mononuclear cells in healthy adults. Am. J. Clin. Nutr. 64, 960–965.Google Scholar
  20. 20.
    Ziemianski, S., Wartanowicz, M., Klos, A., Raczka, A., and Klos, M. (1986) The effect of ascorbic acid and alpha-tocopherol supplementation on serum proteins and immunoglobulin concentration in the elderly. Nutr. Int. 2, 1–5.Google Scholar
  21. 21.
    Meydani, S.N., Barklund, M.P., Liu, S., et al. (1990) Vitamin E supplementation enhances cell-mediated immunity in healthy elderly subjects. Am. J. Clin. Nutr. 52, 557–563.Google Scholar
  22. 22.
    Alexander, M., Newmark, H., and Miller, R.G. (1985) Oral beta-carotene can increase the number of OKT4+ cells in human blood. Immunol. Lett. 9, 221–224.Google Scholar
  23. 23.
    Purkins, L., Penn, N.D., Kelleher, J., and Heatley, R.V. (1990) Vitamin E alters T cell subsets in elderly patients. Proc. Nutr. Soc. 49, 29A.Google Scholar
  24. 24.
    Kelleher, J. (1991) Vitamin E and the immune response. Proc. Nutr. Soc. 50, 245–249.Google Scholar
  25. 25.
    Kinscherf, R., Fischbach, T., Mihm, S., et al. (1994) Effect of glutathione depletion and oral N-acetyl-cysteine treatment on CD4+ and CD8+ cells. Faseb. J. 8, 448–451.Google Scholar
  26. 26.
    Droge, W. and Breitkreutz, R. (2000) Glutathione and immune function. Proc. Nutr. Soc. 59, 595–600.Google Scholar
  27. 27.
    Droge, W. (2002) Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47–95.Google Scholar
  28. 28.
    Lenton, K.J., Therriault, H., Cantin, A.M., Fulop, T., Payette, H., and Wagner, J.R. (2000) Direct correlation of glutathione and ascorbate and their dependence on age and season in human lymphocytes. Am. J. Clin. Nutr. 71, 1194–1200.Google Scholar
  29. 29.
    Lenton, K.J., Sane, A.T., Therriault, H., Cantin, A.M., Payette, H., and Wagner, J.R. (2003) Vitamin C augments lymphocyte glutathione in subjects with ascorbate deficiency. Am. J. Clin. Nutr. 77, 189–195.Google Scholar
  30. 30.
    Heinzerling, R.H., Nockels, C.F., Quarles, C.L., and Tengerdy, R.P. (1974) Protection of chicks against E. coli infection by dietary supplementation with vitamin E. Proc. Soc. Exp. Biol. Med. 146, 279–283.Google Scholar
  31. 31.
    Tengerdy, R.P. and Brown, J.C. (1977) Effect of vitamin E and A on humoral immunity and phagocytosis in E. coli infected chicken. Poult. Sci. 56, 957–963.Google Scholar
  32. 32.
    Bendich, A. (1990) Antioxidant vitamins and their functions in immune responses. Adv. Exp. Med. Biol. 262, 35–55.Google Scholar
  33. 33.
    Tengerdy, R.P. Immunity and disease resistance in farm animals fed vitamin E supplement. Adv. Exp. Med. Biol. 262, 103–110.Google Scholar
  34. 34.
    Rocha-Vieira, E., Ferreira, E., Vianna, P., et al. (2003) Histopathological outcome of Leishmania major-infected BALB/c mice is improved by oral treatment with N-acetyl-l-cysteine. Immunology 108, 401–408.Google Scholar
  35. 35.
    Wang, J.Y., Liang, B., and Watson, R.R. (1995) Vitamin E supplementation with interferon-gamma administration retards immune dysfunction during murine retrovirus infection. J. Leukoc. Biol. 58, 698–703.Google Scholar
  36. 36.
    Thurnham, D.I. (1997) Impact of disease on markers of micronutrient status. Proc. Nutr. Soc. 56,421–431.Google Scholar
  37. 37.
    Clausen, S. (1931) Carotenemia and resistance to infection. Trans. Am. Ped. Soc. 43,27–30.Google Scholar
  38. 38.
    Villar, J., Merialdi, M., Gulmerzoglu, A.M., et al. (2003) Nutritional interventions during pregnancy for the prevention or treatment of maternal morbidity and preterm delivery: an overviw of randomized controlled trials. J. Nutr. 133, 1606S-1625S.Google Scholar
  39. 39.
    Chavance, M., Herbeth, B., Fournier, C., Janot, C., and Vernhes, G. (1989) Vitamin status, immunity and infections in an elderly population. Eur. J. Clin. Nutr. 43, 827–835.Google Scholar
  40. 40.
    Abrams, B., Duncan, D., and Hertz-Picciotto, I. (1993) A prospective study of dietary intake and acquired immune deficiency syndrome in HIV-seropositive homosexual men. J. Acquir. Immune Defic. Syndr. 6, 949–958.Google Scholar
  41. 41.
    Tang, A.M., Graham, N.M., Kirby, A.J., McCall, L.D., Willett, W.C., and Saah, A.J. (1993) Dietary micronutrient intake and risk of progression to acquired immunodeficiency syndrome (AIDS) in human immunodeficiency virus type 1 (HIV-1)-infected homosexual men. Am. J. Epidemiol. 138, 937–951.Google Scholar
  42. 42.
    Tang, A.M., Graham, N.M., Semba, R.D., and Saah, A.J. (1997) Association between serum vitamin A and E levels and HIV-1 disease progression. AIDS 11, 613–620.Google Scholar
  43. 43.
    Beach, R.S., Mantero-Atienza, E., Shor-Posner, G., et al. (1992) Specific nutrient abnormalities in asymptomatic HIV-1 infection. AIDS 6, 701–708.Google Scholar
  44. 44.
    Lacey, C.J., Murphy, M.E., Sanderson, M.J., Monteiro, E.F., Vail, A., and Schorah, C.J. (1996) Antioxidant-micronutrients and HIV infection. Int. J. Std AIDS 7, 485–489.Google Scholar
  45. 45.
    Treitinger, A., Spada, C., Verdi, J.C., et al. (2000) Decreased antioxidant defence in individuals infected by the human immunodeficiency virus. Eur. J. Clin. Invest. 30, 454–459.Google Scholar
  46. 46.
    Baum, M., Cassetti, L., Bonvehi, P., Shor-Posner, G., Lu, Y., and Sauberlich, H. (1994) Inadequate dietary intake and altered nutrition status in early HIV-1 infection. Nutrition 10, 16–20.Google Scholar
  47. 47.
    Coodley, G.O., Coodley, M.K., Nelson, H.D., and Loveless, M.O. (1993) Micronutrient concentrations in the HIV wasting syndrome. AIDS 7, 1595–1600.Google Scholar
  48. 48.
    Ward, B.J., Humphrey, J.H., and Clement, L. (1993) Vitamin A status in HIVinfection. Nutr. Res. 13, 157–166.Google Scholar
  49. 49.
    Ullrich, R., Schneider, T., Heise, W., et al. (1994) Serum carotene deficiency in HIV-infected patients. Berlin Diarrhoea/Wasting Syndrome Study Group. AIDS 8, 661–665.Google Scholar
  50. 50.
    Garewal, H.S., Ampel, N.M., Watson, R.R., Prabhala, R.H., and Dols, C.L. (1992) A preliminary trial of beta-carotene in subjects infected with the human immunodeficiency virus. J. Nutr. 122, 728–732.Google Scholar
  51. 51.
    Coodley, G.O., Nelson, H.D., Loveless, M.O., and Folk, C. (1993) Beta-Carotene in HIV infection. J. Acquir. Immune Defic. 6, 277–276.Google Scholar
  52. 52.
    Silverman, S., Jr., Kaugars, G.E., Gallo, J., et al. (1994) Clinical and lymphocyte responses to beta-carotene supplementation in 11 HIV-positive patients with chronic oral candidiasis. Oral. Surg. Oral. Med. Oral. Pathol. 78, 442–447.Google Scholar
  53. 53.
    Nimmagadda, A.P., Burni, B.J., Neidlinger, T., O’Brien, W.A., and Goetz, M.B. (1998) Effect of oral beta-carotene supplementation on plasma human immunodeficiency virus (HIV) RNA levels and CD4+ cell counts in HIV-infected patients. Clin. Infect. Dis. 27, 1311–1313.Google Scholar
  54. 54.
    McLemore, J.L., Beeley, P., Thorton, K., Morrisroe, K., Blackwell, W., and Dasgupta, A. (1998) Rapid automated determination of lipid hydroperoxide concentrations and total antioxidant status of serum samples from patients infected with HIV: elevated lipid hydroperoxide concentrations and depleted total antioxidant capacity of serum samples. Am. J. Clin. Pathol. 109, 268–273.Google Scholar
  55. 55.
    Allard, J.P., Aghdassi, E., Chau, J., et al. (1998) Effects of vitamin E and C supplementation on oxidative stress and viral load in HIV-infected subjects. AIDS 12, 1653–1659.Google Scholar
  56. 56.
    Roederer, M., Staal, F.J., Osada, H., and Herzenberg, L.A. (1991) CD4 and CD8 T cells with high intracellular glutathione levels are selectively lost as the HIV infection progresses. Int. Immunol. 3, 933–937.Google Scholar
  57. 57.
    Droge, W. and Holm, E. (1997) Role of cysteine and glutathione in HIV infection and other diseases associated with muscle wasting and immunological dysfunction. Faseb. J. 11, 1077–1089.Google Scholar
  58. 58.
    Buhl, R., Jaffe, H.A., Holroyd, K.J., et al. (1989) Systemic glutathione deficiency in symptom-free HIV-seropositive individuals. Lancet 2, 1294–1298.Google Scholar
  59. 59.
    Staal, F.J., Ela, S.W., Roederer, M., Anderson, M.T., and Herzenberg, L.A. (1992) Glutathione deficiency and human immunodeficiency virus infection. Lancet 339, 909–912.Google Scholar
  60. 60.
    Herzenberg, L.A., De Rosa, S.C., Dubs, J.G., et al. (1997) Glutathione deficiency is associated with impaired survival in HIV disease. Proc. Natl. Acad. Sci. USA 94, 1967–1972.Google Scholar
  61. 61.
    Marmor, M., Alcabes, P., Titus, S., et al. (1997) Low serum thiol levels predict shorter times-to-death among HIV-infected injecting drug users. AIDS 11, 1389–1393.Google Scholar
  62. 62.
    Aukrust, P., Svardal, A.M., Muller, F., Lunden, B., Nordoy, I., and Froland, S.S. (1996) Markedly disturbed glutathione redox status in CD45RA+CD4+ lymphocytes in human immunodeficiency virus type 1 infection is associated with selective depletion of this lymphocyte subset. Blood 88, 2626–2633.Google Scholar
  63. 63.
    Klein, A., Bruser, B., Bast, M., and Rachlis, A. Progress of HIV infection and changes in the lipid membrane structure of CD4+ cells. AIDS 6, 332–333.Google Scholar
  64. 64.
    Breitkreutz, R., Holm, S., Pittack, N., et al. (2000) Massive loss of sulfur in HIV infection. AIDS Res. Hum. Retroviruses 16, 203–209.Google Scholar
  65. 65.
    Jahoor, F., Jackson, A., Gazzard, B., et al. (1999) Erythrocyte glutathione deficiency in symptom-free HIV infection is associated with decreased synthesis rate. Am. J. Physiol. 276, E205—E211.Google Scholar
  66. 66.
    Breitkreutz, R., Pittack, N., Nebe, C.T., et al. (2000) Improvement of immune functions in HIV infection by sulfur supplementation: two randomized trials. J. Mol. Med. 78, 55–62.Google Scholar
  67. 67.
    De Rosa, S.C., Zaretsky, M.D., Dubs, J.G., et al. (2000) N-acetylcysteine replenishes glutathione in HIV infection. Eur. J. Clin. Invest. 30, 841–842.Google Scholar
  68. 68.
    Muller, F., Svardal, A.M., Nordoy, I., Berge, R.K., Aukrust, P., and Froland, S.S. (2000) Virological and immunological effects of antioxidant treatment in patients with HIV infection. Eur. J. Clin. Invest. 30, 905–914.Google Scholar
  69. 69.
    Bounous, G., Baruchel, S., Falutz, J., and Gold, P. (1993) Whey proteins as a food supplement in HIV-seropositive individuals. Clin. Invest. Med. 16, 204–209.Google Scholar
  70. 70.
    Micke, P., Beeh, KM., Schlaak, J.F., and Buhl, R. (2001) Oral supplementation with whey proteins increases plasma glutathione levels of HIV-infected patients. Eur. J. Clin. Invest. 31, 171–178.Google Scholar
  71. 71.
    Micke, P., Beeh, K.M., and Buhl, R. (2002) Effects of long-term supplementation with whey proteins on plasma glutathione levels of HIV-infected patients. Eur. J. Nutr. 41, 12–18.Google Scholar
  72. 72.
    Young, J.Z. (1971) An introduction to the study of man. Oxford, Oxford University Press, 1971; pp. 219–225.Google Scholar
  73. 73.
    Garcia, A.L., Ruhl, R., Herz, U., Koebnick, C., Schweigert, F.J., and Worm, M. (2003) Retinoid and carotenoid enriched diets influence the ontogenesis of the immune system in mice. Immunology 110, 180–187.Google Scholar
  74. 74.
    Ghebremeskel, K., Burns, L., Costeloe, K., et al. (1999) Plasma vitamin A and E in preterm babies fed on breast milk or formula milk with or without long-chain polyunsaturated fatty acids. Int. J. Vitam. Nutr. Res. 69, 83–91.Google Scholar
  75. 75.
    Fawzi, W.W., Msamanga, G.I., Spiegelman, D., et al. (1998) Randomised trial of effects of vitamin supplements on pregnancy outcomes and T cell counts in HIV1-infected women in Tanzania. Lancet 351, 1477–1482.Google Scholar
  76. 76.
    Watts, T. (1969) Thymus weights in malnourished children. J. Trop. Pediatr. 15, 155–158.Google Scholar
  77. 77.
    Naeye, R.L., Diener, M.M., Harcke, H.T., and Blanc, W.A. (1971) Relation of poverty and race to birth weight and organ and cell structure in the newborn. Pediat. Res. 5, 17–22.Google Scholar
  78. 78.
    Chandra, R.K. (1976) Nutrition as a critical determinant in susceptibility to infection. World Rev. Nutr. Diet 25, 166–188.Google Scholar
  79. 79.
    Moscatelli, P., Bricarelli, F.D., Piccinini, A., Tomatis, C., and Dufour, M.A. (1976) Defective immunocompetence in foetal undernutrition. Helv. Paediatr. Acta 31, 241–247.Google Scholar
  80. 82.
    Payne, N.R., Frestedt, J., Hunkeler, N., and Gehrz, R. (1993) Cell-surface expression of immunoglobulin G receptors on the polymorphonuclear leukocytes and monocytes of extremely premature infants. Pediatr. Res. 33, 452–457.Google Scholar
  81. 81.
    Fawzi, W.W., Msamanga, G.I., Wei, R., et al. (2003) Effect of providing vitamin supplements to human immunodeficiency virus-infected, lactating mothers on the child’s morbidity and CD4+ cell counts. Clin. Infect. Dis. 36, 1053–1062.Google Scholar
  82. 82.
    Moore, S.E., Cole, T.J., Poskitt, E M., et al. (1997) Season of birth predicts mortality in rural Gambia. Nature 388, 434.Google Scholar
  83. 83.
    Beach, R.S., Gershwin, M.E., and Hurley, L.S. (1982) Gestational zinc depriva-tion in mice: persistence of immunodeficiency for three generations. Science 218, 469–471.Google Scholar
  84. 84.
    Baum, H., Davies, H., and Peakman, M. (1996) Molecular mimicry in the MHC: hidden clues to autoimmunity? Immunol. Today 17, 64–70.Google Scholar
  85. 85.
    Venkatraman, J.T. and Chu, W.C. (1999) Effects of dietary omega-3 and omega6 lipids and vitamin E on serum cytokines, lipid mediators and anti-DNA antibodies in a mouse model for rheumatoid arthritis. J. Am. Coll. Nutr. 18, 602–613.Google Scholar
  86. 86.
    Honkanen, V., Konttinen, Y.T., and Mussalo-Rauhamaa, H. (1989) Vitamins A and E, retinol binding protein and zinc in rheumatoid arthritis. Clin. Exp. Rheumatol. 7, 465–469.Google Scholar
  87. 87.
    Ghebremeskel, K., Williams, G., Harbige, L.S., and Forti, A.D. (1986) Plasma retinol and alpha-tocopherol concentrations in supplemented and unsupplemented multiple sclerosis. Clin. Biochem. Nutr. 5, 81–85.Google Scholar
  88. 88.
    Jensen, G.E., Gissel-Nielsen, G., and Clausen, J. (1980) Leucocyte glutathione peroxidase activity and selenium level in multiple sclerosis. J. Neurol. Sci. 48, 61–67.Google Scholar
  89. 89.
    Shukla, V.K., Jensen, G.E., and Clausen, J. (1997) Erythrocyte glutathione perioxidase deficiency in multiple sclerosis. Acta Neurol. Scand. 56, 542–550.Google Scholar
  90. 90.
    Jensen, G.E. and Clausen, J. (1986) Glutathione peroxidase activity, associated enzymes and substrates in blood cells from patients with multiple sclerosiseffects of antioxidant supplementation. Acta Pharmacol. Toxicol. (Copenh.) 59 (Suppl 7), 450–453.Google Scholar
  91. 91.
    Zachara, B., Gromadzinska, J., Czernicki, J., Maciejek, Z., and Chmielewski, H. (1984) Red blood cell glutathione peroxidase activity in multiple sclerosis. Klin. Wochenschr. 62, 179–182.Google Scholar
  92. 92.
    Simonarson, B., Eiriksdottir, G., Benedikz, J.E., Gudmundsson, G., and Thorsteinsson, T. (1987) Glutathione peroxidase and selenium in multiple sclerosis, in (Rice-Evans C, ed.) Free Radicals, Oxidant Stress and Drug Action. Richelieu, London, pp. 399–418.Google Scholar
  93. 93.
    Adam, O. (1995) Anti-inflammatory diet in rheumatic diseases. Eur. J. Clin. Nutr. 49, 703–17.Google Scholar
  94. 94.
    Heliovaara, M., Knekt, P., Aho, K., Aaran, R.K., Alfthan, G., and Aromaa, A. (1994) Serum antioxidants and risk of rheumatoid arthritis. Ann. Rheum. Dis. 53, 51–53.Google Scholar
  95. 95.
    Block, G., Patterson, B., and Subar, A. (1992) Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence. Nutr. Cancer 18, 1–29.Google Scholar
  96. 96.
    Peto, R., Doll, R., Buckley, J.D., and Sporn, M.B. (1981) Can dietary beta-carotene materially reduce human cancer rates? Nature 290, 201–208.Google Scholar
  97. 97.
    Omenn, G.S., Goodman, G.E., Thornquist, M.D., et al. (1996) Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N. Engl. J. Med. 334, 1150–1155.Google Scholar
  98. 98.
    Gey, K.F. (1995) Ten year retrospective on the antioxidant hypothesis of arteriosclerosis: threshold plasma levels of antioxidant micronutrients related to minimum cardiovascular risk. J. Nutr. Biochem. 6, 206–236.Google Scholar
  99. 99.
    Ross, R. (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362, 801–809.Google Scholar
  100. 100.
    Ames, B.N., Shigenaga, M.K., and Hagen, T.M. (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA 90, 7915–7922.Google Scholar
  101. 101.
    Ross, R. Atherosclerosis—an inflammatory disease. N. Engl. J. Med. 340, 115–126.Google Scholar
  102. 102.
    Greaves, D.R. and Channon, K.M. (2002) Inflammation and immune reponses in atherosclerosis. Trends Immunol. 23, 535–541.Google Scholar
  103. 103.
    Stephensen, C.B., Franchi, L.M., Hernandez, H., Campos, M., Gilman, R.H., and Alvarez, J.O. (1998) Adverse effects of high-dose vitamin A supplements in children hospitalized with pneumonia. Pediatrics 101, E3.Google Scholar
  104. 104.
    WHO/UNICEF. (1987) Statement on vitamin A for measles. Weekly Epiddm. Rec. 62, 133–134.Google Scholar
  105. 105.
    Semba, R.D., Munasir, Z., Beeler, J., et al. (1995) Reduced seroconversion to measles in infants given vitamin A with measles vaccination. Lancet 345, 1330–1332.Google Scholar
  106. 106.
    Han, S.N. and Meydani, S.N. (1999) Vitamin E and infectious diseases in the aged. Proc. Nutri. Soc. 58, 697–705.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Laurence S. Harbige
  • M. Eric Gershwin

There are no affiliations available

Personalised recommendations