Future Directions for Research on Biotherapeutic Agents

Contribution of Genetic Approaches on Lactic Acid Bacteria
  • Gerard Corthier
  • Pierre Renault


Genetic tools have significantly contributed to increasing our knowledge in two fields related to biotherapeutic agents (BTA): bacterial physiology and the control of protein expression. The most striking example of an application in this new domain is the use of invasive, but nonpathogenic Salmonella with the ability to interact with lymphoid tissue in the Peyer’s patches (1). These mutants have been shown to be an effective means of stimulating mucosal secretory IgA directed against a variety of heterologous antigens. However, these attenuated pathogens may not be acceptable in the elderly and very young, since they may translocate from the digestive tract to invade the host. Nevertheless, this demonstrates the applicability and potential of genetic engineering in expanding the applications of BTA.


Lactic Acid Bacterium Digestive Tract Heterologous Protein Fermented Milk Lactococcus Lactis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cardenas, L. and Clements, J. D. (1992) Oral immunization using live attenuated Salmonella spp. as carriers of foreign antigens. Clin. Microbiol. Rev. 5, 328–342.Google Scholar
  2. 2.
    Elmer, G. W., Surawicz, C. M., and McFarland, L. V. (1996) Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. JAMA 275, 870–876.Google Scholar
  3. 3.
    Gorbach, S. L., and Goldin, B. R. (1990) The intestinal microflora and the colon cancer connection. Rev. Infect. Dis. 12, 5252–261.Google Scholar
  4. 4.
    Gorbach, S. L., and Goldin, B. R. (1992) Nutrition and the gastrointestinal microflora. Nutr. Rev. 50, 378–381.Google Scholar
  5. 5.
    Marteau, P., Pochart, P., Bouhnik, Y., and Rambaud, J. C. (1993) The fate and effects of transiting, nonpathogenic microorganisms in the human intestine. World. Rev. Nutr. Diet. 74, 1–21.Google Scholar
  6. 6.
    Marteau, P., Vesa, T., and Rambaud, J. C. (1997) Lactose digestion, in Probiotics 2: Applications and Practical Aspects ( Fuller, R., ed.), Chapman and Hall, New York, pp. 65–89.Google Scholar
  7. 7.
    Salminen, S., Isolauri, E., and Salminen, E. (1996) Clinical uses of probiotics for stabilizing the gut mucosal barrier:successful strains and future challenges. Antonie Van Leeuwenhoek 70, 347–358.PubMedCrossRefGoogle Scholar
  8. 8.
    Corthier, G. (1997) Antibiotic-associated diarrhoea: treatments by living organisms given by oral route (probiotics), in Probiotics 2: Applications and Practical Aspects ( Fuller, R., ed.), Chapman and Hall, New York, pp. 40–65.Google Scholar
  9. 9.
    Gibson, G. R., Saavedra, J. M., MacFarlane, S., and MacFarlane, G. T. (1997) Probiotics in intestinal infections, in Probiotics 2: Applications and Practical Aspects ( Fuller, R., ed.), Chapman and Hall, New York, pp. 10–40.Google Scholar
  10. 10.
    Hosono, A., Kitazawa, H., and Yamaguchi, T. (1997) Antimutagenic and antitumour activities of lactic acid bacteria, in Probiotics 2: Applications and Practical Aspects ( Fuller, R., ed.), Chapman and Hall, New York, pp. 89–133.Google Scholar
  11. 11.
    Famularo, G., Moretti, S., Marcellini, S., and De Simone, C. (1997) Stimulation of immunity by probiotics, in Probiotics 2: Applications and Practical Aspects ( Fuller, R., ed.), Chapman and Hall, New York, pp. 133–162.Google Scholar
  12. 12.
    Metchnikoff, E. (1908) The Prolongation of Life. C. P. Putman s Sons, New York, pp. 161–183.Google Scholar
  13. 13.
    Fuller, R. (1989) Probiotics in man and animals. J. Appl. Bacteriol. 66, 365–378.PubMedCrossRefGoogle Scholar
  14. 14.
    Fuller, R. (1991) Probiotics in human medicine. Gut 32, 439–442.PubMedCrossRefGoogle Scholar
  15. 15.
    Fuller, R. and Gibson, G. R. (1997) Modification of the intestinal microflora using probiotics and prebiotics. Scand. J. Gastroenterol. Suppl. 222, 28–31.PubMedGoogle Scholar
  16. 16.
    de Vos, W. M. and Vaughan, E. E. (1994) Genetics of lactose utilization in lactic acid bacteria. FEMS Microbiol. Rev. 15, 217–237.Google Scholar
  17. 17.
    Marteau, P. and Rambaud, J. C. (1993) Potential of using lactic acid bacteria for therapy and immunomodulation in man. FEMS Microbiol. Rev. 12, 207–220.Google Scholar
  18. 18.
    Majamaa, H., Isolauri, E., Saxelin, M., and Vesikari, T. (1995) Lactic acid bacteria in the treatment of acute rotavirus gastroenteritis. J. Pediatr. Gastroenterol. Nutr. 20, 333–338.PubMedCrossRefGoogle Scholar
  19. 19.
    De Simone, C., Vesely, R., Negri, R., Bianchi Salvadori, B., Zanzoglu, S., Cilli, A., et al. (1987) Enhancement of immune response of murine Peyer’s patches by a diet supplemented with yogurt. Immunopharmacol. Immunotoxicol. 9, 87–100.Google Scholar
  20. 20.
    De Simone, C., Tzantzoglou, S., Baldinelli, L., Di Fabio, S., Bianchi-Salvadori, B., Jirillo, E., et al. (1988) Enhancement of host resistance against Salmonella typhimurium infection by a diet supplemented with yogurt. Immunopharmacol. Immunotoxicol. 10, 399–415.PubMedCrossRefGoogle Scholar
  21. 21.
    Clements, M. L., Levine, M. M., Ristaino, P. A., Daya, V. E., and Hughes, T. P. (1983) Exogenous lactobacilli fed to man-their fate and ability to prevent diarrheal disease. Prog. Food Nutr. Sci. 7, 29–37.Google Scholar
  22. 22.
    Halpern, G. M., Prindiville, T., Blankenburg, M., Hsia, T., and Gershwin, M. E. (1996) Treatment of irritable bowel syndrome with Lacteol Fort: a randomized, double-blind, cross-over trial. Am. J. Gastroenterol. 91, 1579–1585.PubMedGoogle Scholar
  23. 23.
    Davidson, B. E., Kordias, N., Dobos, M., and Hillier, A. J. (1996) Genomic organization of lactic acid bacteria. Antonie Van Leeuwenhoek 70, 161–183.PubMedCrossRefGoogle Scholar
  24. 24.
    Marshall, E. M. V. and Tamine, A. Y. (1997) Physiology and Biochemistry of Fermented Milks (Law, B. A., ed.), Blackie Academic and Professional, London, pp. 153–192.CrossRefGoogle Scholar
  25. 25.
    Kok, J. (1996) Inducible gene expression and environmentally regulated genes in lactic acid bacteria. Antonie Van Leeuwenhoek 70, 129–145.PubMedCrossRefGoogle Scholar
  26. 26.
    Kuipers, O. P., deRuyter, P. G. G. A., Kleerebezem, M., and de Vos, W. M. (1997) Controlled overproduction of proteins by lactic acid bacteria. Trends Biotechnol. 15, 135–140.PubMedCrossRefGoogle Scholar
  27. 27.
    Biswas, I., Gruss, A., Ehrlich, S. D., and Maguin, E. (1993) High efficiency gene inactivation and replacement system for gram positive bacteria. J. Bacteriol. 175, 3628–3635.PubMedGoogle Scholar
  28. 28.
    de Vos, W. M. (1996) Metabolic engineering of sugar catabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 70, 223–242.PubMedCrossRefGoogle Scholar
  29. 29.
    Mercenier, A. (1990) Molecular genetics of Streptococcus thermophilus. FEMS Microbiol. Rev. 7, 61–77.Google Scholar
  30. 30.
    Mercenier, A., Pouwels, P. H., and Chassy, B. M. (1994) Genetic Engineering of Lactobacilli, Leuconostocs, and Streptococcus thermophilus (Gasson and W. M. de Vos.), Blackie Academic and Professional, London, pp. 252–294.Google Scholar
  31. 31.
    Raibaud, P., Ducluzeau, R., Dubos, F., Hudault, S., Bewa, H., and Muller, M. C. (1980) Implantation of bacteria from the digestive tract of man and various animals into gnotobiotic mice. Am. J. Clin. Nutr. 33, 2440–2447.Google Scholar
  32. 32.
    Andremont, A., Raibaud, P., Tancrede, C., Duval-Iflah, Y, and Ducluzeau, R. (1985) The use of germ-free mice associated with human fecal flora as an animal model to study enteritic bacterial interactions, in Bacterial Diarrheal Diseases ( Takeda, Y. and Miwatani, Y., eds.), M. Nighoff, Boston, pp. 219–228.CrossRefGoogle Scholar
  33. 33.
    Castex, F., Corthier, G., Jouvert, S., Elmer, G. W., Lucas, F., and Bastide, M. (1990) Prevention of Clostridium difficile-induced experimental pseudomembranous colitis by Saccharomyces boulardii: a scanning electron microscopic and microbiological study. J. Gen. Microbiol. 136, 1085–1089.PubMedGoogle Scholar
  34. 34.
    Elmer, G. W. and Corthier, G. (1991) Modulation of Clostridium difficile induced mortality as a function of the dose and the viability of the Saccharomyces boulardii used as a preventative agent in gnotobiotic mice. Can. J. Microbiol. 37, 315–317.PubMedCrossRefGoogle Scholar
  35. 35.
    Mallett, A. K., Bearne, C. A., Rowland, I. R., Farthing, M. J., Cole, C. B., and Fuller, R. (1987) The use of rats associated with a human faecal flora as a model for studying the effects of diet on the human gut microflora. J. Appl. Bacterial. 63, 39–45.CrossRefGoogle Scholar
  36. 36.
    Wells, J. M., Robinson, K., Chamberlain, L. M., Schofield, K. M., and Le Page, R. W. (1996) Lactic acid bacteria as vaccine delivery vehicles. Antonie Van Leeuwenhoek 70, 317–330.PubMedCrossRefGoogle Scholar
  37. 37.
    Bouhnik, Y., Pochart, P., Marteau, P., Arlet, G., Goderel, I., and Rambaud, J. C. (1992) Fecal recovery in humans of viable Bifidobacterium sp ingested in fermented milk. Gastroenterology 102, 875–878.PubMedGoogle Scholar
  38. 38.
    Marteau, P., Pochart, P., Bouhnik, Y., Zidi, S., Goderel, I., and Rambaud, J. C. (1992) Survival of Lactobacillus acidophilus and Bifidobacterium sp in the small intestine following ingestion in fermented milk. A rational basis for the use of probiotics in man. Gastroenterol. Clin. Biol. 16, 25–28.PubMedGoogle Scholar
  39. 39.
    Pochart, P., Marteau, P., Bouhnik, Y., Goderel, I., Bourlioux, P., and Rambaud, J. C. (1992) Survival of bifidobacteria ingested via fermented milk during their passage through the human small intestine: an in vivo study using intestinal perfusion. Am. J. Clin. Nutr. 55, 78–80.PubMedGoogle Scholar
  40. 40.
    Martin, C., Girardeau, J. P., Der Vartanian, M., Mechin, M. C., Bousquet, E, Bertin, Y., et al. (1995) Surface bacterial antigen CS31A as a tool to design new recombinant vaccines displaying heterologous antigenic determinants. Vet. Res. 26, 209, 210.Google Scholar
  41. 41.
    Norton, P. M., Wells, J. M., Brown, H. W., Macpherson, A. M., and Le Page, R. W. (1997) Protection against tetanus toxin in mice nasally immunized with recombinant Lactococcus lactis expressing tetanus toxin fragment C. Vaccine 15, 616–619.PubMedCrossRefGoogle Scholar
  42. 42.
    Robinson, K., Chamberlain, L. M., Schofield, K. M., Wells, J. M., and LePage, R. W. E. (1997) Oral vaccination of mice against tetanus with recombinant Lactococcus lactis. Nat. Biotechnol. 15, 653–657.PubMedCrossRefGoogle Scholar
  43. 43.
    McGhee, J. R., Michalek, S. M., Kiyono, H., Eldridge, J. H., Colwell, D. E., Williamson, S. I., et al. (1984) Mucosal immunoregulation: environmental lipopolysaccharide and GALT T lymphocytes regulate the IgA response. Microbiol. Immunol. 28, 261–280.PubMedGoogle Scholar
  44. 44.
    McGhee, J. R. and Kiyono, H. (1993) New perspectives in vaccine development: mucosal immunity to infections. Infect. Agents Dis. 2, 55–73.PubMedGoogle Scholar
  45. 45.
    Brandtzaeg, P., Valnes, K., Scott, H., Rognum, T. O., Bjerke, K., and Baklien, K. (1985) The human gastrointestinal secretory immune system in health and disease. Scand. J. Gastroenterol. Suppl. 114, 17–38.Google Scholar
  46. 46.
    Moreau, M. C. and Coste, M. (1993) Immune responses to dietary protein antigens. World Rev. Nutr. Diet. 74, 22–57.Google Scholar
  47. 47.
    Der Vartanian, M., Girardeau, J. P., Martin, C., Rousset, E., Chavarot, M., Laude, H., et al. (1997) An Escherichia coli CS31A fibrillum chimera capable of inducing memory antibodies in outbred mice following booster immunization with the entero-pathogenic coronavirus transmissible gastroenteritis virus. Vaccine 15, 111–120.CrossRefGoogle Scholar
  48. 48.
    Moreau, M. C. and Corthier, G. (1988) Effect of the gastrointestinal microflora on induction and maintenance of oral tolerance to ovalbumin in C3H/HeJ mice. Infect. Immun. 56, 2766–2768.PubMedGoogle Scholar
  49. 49.
    Suarez, F. L., Savaiano, D. A., and Levitt, M. D. (1995) Review article: the treatment of lactose intolerance. Aliment. Pharmacol. Ther. 9, 589–597.PubMedCrossRefGoogle Scholar
  50. 50.
    Raimondo, M. and DiMagno, E. P. (1994) Lipolytic activity of bacterial lipase survives better than that of porcine lipase in human gastric and duodenal content. Gastroenterology 107, 231–235.PubMedGoogle Scholar
  51. 51.
    Suzuki, A., Mizumoto, A., Sarr, M. G., and DiMagno, E. P. (1997) Bacterial lipase and high-fat diets in canine exocrine pancreatic insufficiency: a new therapy of steatorrhea? Gastroenterology 112, 2048–2055.PubMedCrossRefGoogle Scholar
  52. 52.
    de Vos, W. M. (1987) Gene cloning and expression in lactic streptococci. FEMS Microbiol. Rev. 46, 281–295.Google Scholar
  53. 53.
    van de Guchte, M., Kok, J., and Venema, G. (1992) Gene expression in Lactococcus lactis. FEMS Microbiol. Rev. 8, 73–92.Google Scholar
  54. 54.
    Wells, J. M., Wilson, P. W., Norton, P. M., Gasson, M. J., and Le Page, R. W. (1993) Lactococcus lactis: high-level expression of tetanus toxin fragment C and protection against lethal challenge. Mol. Microbiol. 8, 1155–1162.PubMedCrossRefGoogle Scholar
  55. 55.
    Pozzi, G., Oggioni, M. R., Manganelli, R., Medaglini, D., Fischetti, V. A., Fenoglio, D., et al. (1994) Human T-helper cell recognition of an immunodominant epitope of HIV-1 gp120 expressed on the surface of Streptococcus gordonii. Vaccine 12, 1071–1077.Google Scholar
  56. 56.
    Pouwels, P. H., Leer, R. J., and Boersma, W. J. (1996) The potential of Lactobacillus as a carrier for oral immunization: development and preliminary characterization of vector systems for targeted delivery of antigens. J. Biotechnol. 44, 183–192.PubMedCrossRefGoogle Scholar
  57. 57.
    Steidler, L., Wells, J. M., Raeymaekers, A., Vandekerckhove, J., Fiers, W., and Remaut, E. (1995) Secretion of biologically active murine interleukin-2 by Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 61, 1627–1629.Google Scholar
  58. 58.
    Kuipers, O. P., Beerthuyzen, M. M., De Ruyter, P. G., Luesink, E. J., and de Vos, W. M. (1995) Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J. Biol. Chem. 270, 27, 299–27, 304.Google Scholar
  59. 59.
    Kuipers, O. P., Rollema, H. S., Siezen, R. J., and de Vos, W. M. (1995) Lactococcal expression systems for protein engineering of nisin. Dev. Biol. Stand. 85, 605–613.PubMedGoogle Scholar
  60. 60.
    Renault, P., Gaillardin, C., and Heslot, H. (1988) Role of malolactic fermentation in lactic acid bacteria. Biochimie 70, 375–379.PubMedCrossRefGoogle Scholar
  61. 60a.
    Corthier, G., Delorme, C., Ehrlich, S. D., and Renault, P. (1998) Use of luciferase genes as biosensors to study bacterial physiology in the digestive tract. Appl. Environ. Microbiol. 64, 2721, 2722.Google Scholar
  62. 61.
    Lokman, B. C., Leer, R. J., Vansorge, R., and Pouwels, P. H. (1994) Promoter analysis and transcriptional regulation of Lactobacillus pentosus genes involved in xylose catabolism. Mol. Gen. Genet. 245, 117–125.PubMedCrossRefGoogle Scholar
  63. 62.
    Maccormick, C. A., Griffin, H. G., and Gasson, M. J. (1995) Construction of a food-grade host/vector system for Lactococcus lactis based on the lactose operon. FEMS Microbiol. Lett. 127, 105–109.Google Scholar
  64. 63.
    Waterfield, N. R., Le Page, R. W., Wilson, P. W., and Wells, J. M. (1995) The isolation of lactococcal promoters and their use in investigating bacterial luciferase synthesis in Lactococcus lactis. Gene 165, 9–15.PubMedCrossRefGoogle Scholar
  65. 64.
    Pozzi, G., Contorni, M., Oggioni, M. R., Manganelli, R., Tommasino, M., Cavalieri, F., et al. (1992) Delivery and expression of a heterologous antigen on the surface of streptococci. Infect. Immun. 60, 1902–1907.Google Scholar
  66. 65.
    Wells, J. M., Wilson, P. W., Norton, P. M., and Le Page, R. W. (1993) A model system for the investigation of heterologous protein secretion pathways in Lactococcus lactis. Appl. Environ. Microbiol. 59, 3954–3959.Google Scholar
  67. 66.
    Savijoki, K., Kahala M., and Palva, A. (1997) High level heterologous protein production in Lactococcus and Lactobacillus using a new secretion system based on the Lactobacillus brevis S-layer signals. Gene 186, 255–262.PubMedCrossRefGoogle Scholar
  68. 67.
    Stahl, S. and Uhlen, M. (1997) Bacterial surface display: trends and progress. Trends Biotechnol. 15, 185–192.PubMedCrossRefGoogle Scholar
  69. 68.
    Piard, J. C., Hautefort, I., Fischetti, V. A., Ehrlich, S. D., Fons, M., and Gruss, A. (1997) Cell wall anchoring of the Streptococcus pyogenes M6 protein in various lactic acid bacteria. J. Bacteriol. 179, 3068–3072.PubMedGoogle Scholar
  70. 69.
    Norton, P. M., Brown, H. W., Wells, J. M., Macpherson, A. M., Wilson, P. W., and Le Page, R. W. (1996) Factors affecting the immunogenicity of tetanus toxin fragment C expressed in Lactococcus lactis. FEMS Immunol. Med. Microbiol. 14, 167–177.Google Scholar
  71. 70.
    Steidler, L., Fiers, W., and Remaut, E. (1996) Expression of human and murin interleukins in Lactococcus lactis, in Lactic Acid Bacteria: Current Advances in Genetics, Metabolism and Application of Lactic Acid Bacteria, vol. 98 ( Bozoglu, T. F. and Ray, B., eds.), NATO ASI Series H, Springer Verlag, New York, 63–81.Google Scholar
  72. 71.
    Diaz, E., Munthali, M., de Lorenzo, V., and Timmis, K. N. (1994) Universal barrier to lateral spread of specific genes among microorganisms. Mol. Microbiol. 13, 855–861.Google Scholar
  73. 72.
    Knudsen, S., Saadbye, P., Hansen, L. H., Collier, A., Jacobsen, B. L., Schlundt, J., et al. (1995) Development and testing of improved suicide functions for biological containment of bacteria. Appl. Environ. Microbiol. 61, 985–991.Google Scholar
  74. 73.
    Molin, S., Boe, L., Jensen, L. B., Kristensen, C. S., Givskov, M., Ramos, J. L., et al. (1993) Suicidal genetic elements and their use in biological containment of bacteria. Annu. Rev. Microbiol. 47, 139–166.Google Scholar
  75. 74.
    Oggioni, M. R., Manganelli, R., Contorni, M., Tommasino, M., and Pozzi, G. (1995) Immunization of mice by oral colonization with live recombinant commensal streptococci. Vaccine 13, 775–779.PubMedCrossRefGoogle Scholar
  76. 75.
    Hols, P., Slos, P., Dutot, P., Reymund, J., Chabot, P., Delplace, B., et al. (1997) Efficient secretion of the model antigen M6-gp41E in Lactobacillus plantarum NCIMB 8826. Microbiology 143, 2733–2741.PubMedCrossRefGoogle Scholar
  77. 76.
    Le Loir, Y., Gruss, A., Ehrlich. S. D., and Langella, P. (1994) Direct screening of recombinants in gram-positive bacteria using the secreted staphylococcal nuclease as a reporter. J. Bacteriol. 176, 5135–5139.PubMedGoogle Scholar
  78. 77.
    Fischetti, V. A., Medaglini, D., Oggioni, M., and Pozzi, G. (1993) Expression of foreign proteins on gram-positive commensal bacteria for mucosal vaccine delivery. Curr. Opinion Biotechnol. 4, 603–610.CrossRefGoogle Scholar
  79. 78.
    Fischetti, V. A., Medaglini, D., and Pozzi, G. (1996) Gram-positive commensal bacteria for mucosal vaccine delivery. Curr. Opinion Biotechnol. 7, 659–666.CrossRefGoogle Scholar
  80. 79.
    Norton, R M., Le Page, R. W. F., and Wells, J. M. (1995) Progress in the development of Lactococcus lactis as a recombinant mucosal vaccine delivery system. Folio. Microbiol. 40, 225–230.CrossRefGoogle Scholar
  81. 80.
    Medaglini, D., Pozzi, G., King, T. P., and Fischetti, V. A. (1995) Mucosal and systemic immune responses to a recombinant protein expressed on the surface of the oral commensal bacterium Streptococcus gordonii after oral colonization. Proc. Natl. Acad. Sci. USA 92, 6868–6872.PubMedCrossRefGoogle Scholar
  82. 81.
    Poulsen, L. K., Licht, T. R., Rang, C., Krogfelt, K. A., and Molin, S. (1995) Physiological state of Escherichia coli BJ4 growing in the large intestines of streptomycin-treated mice. J. Bacteriol. 177, 5840–5845.PubMedGoogle Scholar
  83. 82.
    Amann, R. I., Ludwig, W., and Schleifer, K.-H. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169.PubMedGoogle Scholar
  84. 83.
    Contag, C. H., Contag, P. R., Mullins, J. I., Spilman, S. D., Stevenson, D. K., and Benaron, D. A. (1995) Photonic detection of bacterial pathogens in living hosts. Mol. Microbiol. 18, 593–603.PubMedCrossRefGoogle Scholar
  85. 84.
    Eaton, T. J., Shearman, C. A., and Gasson, M. J. (1993) The use of bacterial luciferase genes as reporter genes in Lactococcus: regulation of the Lactococcus lactis subsp. lactis lactose genes. J. Gen. Microbiol. 139, 1495–1501.Google Scholar
  86. 85.
    Renault, R, Corthier, G., Goupil, N., Delorme, C., and Ehrlich, S. D. (1996) Plasmid vectors for Gram-positive bacteria switching from high to low copy number. Gene 183, 175–182.PubMedCrossRefGoogle Scholar
  87. 86.
    Davey, H. M. and Kell, D. B. (1996) Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol. Rev. 60, 641–696.PubMedGoogle Scholar
  88. 87.
    Jones, D. E. and Bevins, C. L. (1992) Paneth cells of the human small intestine express an antimicrobial peptide gene. J. Biol. Chem. 267, 23,216–23, 225.Google Scholar
  89. 88.
    Mallow, E. B., Harris, A., Salzman, N., Russell, J. R, DeBerardinis, R. J., Ruchelli, E., et al. (1996) Human enteric defensins. Gene structure and developmental expression. J. Biol. Chem. 271, 4038–4045.Google Scholar
  90. 89.
    Zhao, C., Wang, I., and Lehrer, R. I. (1996) Widespread expression of beta-defensin hBD-1 in human secretory glands and epithelial cells. FEBS Lett. 396, 319–322.Google Scholar
  91. 90.
    Gruzza, M., Duval-Iflah, Y., and Ducluzeau, R. (1992) Colonization of the digestive tract of germ free mice by genetically engineered strains of Lactococcus lactis: study of recombinant DNA stability. Microb. Releases 1, 162–171.Google Scholar
  92. 91.
    Goupil-Feuillerat, N., Godon, J.-J., Cocaign-Bousquet, M., Ehrlich, S. D., and Renault, P. (1997) Dual role of alpha-acetolactate decarboxylase in Lactococcus lactis subsp. lactis. J. Bacteriol. 179, 6285–6293.PubMedGoogle Scholar
  93. 92.
    Cashel, M., Gentry, D. R., Hernandez, J., and Vinella, D. (1996) The stringent response, in Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. (Neidhardt, F. C., ed.), American Society for Microbiology, Washington, DC, pp. 1458–1496.Google Scholar
  94. 93.
    Mechold, U. and Malke, H. (1997) Characterization of the stringent and relaxed responses of Streptococcus equisimilis. J. Bacterial. 179, 2658–2667.Google Scholar
  95. 94.
    Rallu, F., Gruss, A., and Maguin, E. (1996) Lactococcus lactis and stress. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 70, 243–251.Google Scholar
  96. 95.
    Ray, B. (1996) Probiotics of lactic acid bacteria: science or myth? in Lactic Acid Bacteria: Current Advances in Genetics, Metabolism and Application of Lactic Acid Bacteria (Bozoglu, T. F. and Ray, B., eds.), NATO ASI Series H, Springer Verlag, New York, 98, 101–137.Google Scholar
  97. 96.
    Conway, P. L., Gorbach, S. L., and Goldin, B. R. (1987) Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. J. Dairy Sci. 70, 1–12.PubMedCrossRefGoogle Scholar
  98. 97.
    Greene, J. D., and Klaenhammer, T. R. (1994) Factors involved in adherence of lactobacilli to human Caco-2 cells. Appl. Environ. Microbiol. 60, 4487–4494.Google Scholar
  99. 98.
    Castagliuolo, I., Papadimitriu, G., Jaffer, A., Kelly, C. P., LaMont, J. T., and Pothoulakis, C. (1993) Saccharomyces boulardii secretes a protease which inhibits Clostridium difficile toxin A receptor binding and enterotoxicity. Gastroenterology S104, 678.Google Scholar
  100. 99.
    Pothoulakis, C., Kelly, C. P., Joshi, M. A., Gao, N., O’Keane, C. J., Castagliuolo, I., et al. (1993) Saccharomyces boulardii inhibits Clostridium difficile toxin A binding and enterotoxicity in rat ileum. Gastroenterology 104, 1108–1115.PubMedGoogle Scholar
  101. 100.
    van de Guchte, M., van der Vossen, J. M., Kok, J. and Venema, G. (1989) Construction of a lactococcal expression vector: expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 55, 224–228.Google Scholar
  102. 101.
    van Asseldonk, M., de Vos, W. M., and Simons, G. (1993) Functional analysis of the Lactococcus lactis usp45 secretion signal in the secretion of a homologous proteinase and a heterologous alpha-amylase. Mol. Gen. Genet. 240, 428–434.Google Scholar
  103. 102.
    Vogel, R. F., Gaier, W., and Hammes, W. P. (1990) Expression of the lipase gene from Staphylococcus hyicus in Lactobacillus curvatus Let-c. FEMS Microbiol. Lett. 57, 289–292.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Gerard Corthier
  • Pierre Renault

There are no affiliations available

Personalised recommendations