Tumor Necrosis Factor

The Good, the Bad, and the Umbra
  • Steven W. Barger
Part of the Contemporary Neuroscience book series (CNEURO)


The pace at which connections are being drawn between the nervous system and the immune system does not appear to be slowing. Although the relationship between these two systems is more commonly discussed in terms of concrete interactions modulating physiology, it can be expanded to include more abstract considerations, such as analogies between molecules and between basic principles of operation. Thus, we have come to see beyond the responsiveness of leukocytes to neuropeptides and neuromodulators like CRH and morphine, to recognize relationships exemplified by the compatibility between the principles of antigen presentation and Hebbian arguments about associative synaptic plasticity. Similarly, one can argue that innoculation is a form of conditioning and that neurons may be conditioned not only to strengthen a circuit required for information storage, but that they may also be conditioned to withstand greater metabolic demands or injurious conditions. The central nervous system (CNS) certainly maintains a degree of immune privilege; therefore, one must consider the role of resident leukocytes (i.e., microglia). That they help to combat infections is obvious, but microglia also respond to noninfectious pathologies with reactions more complex than the staid phagocytosis of debris; it is difficult to imagine that retention of the latter responses by evolution is accidental. This chapter focuses on a specific component of gliotic mediators, tumor necrosis factor (TNF). Some of the data discussed distinguishes between TNFα (cachectin) and TNFβ (lymphotoxin-α). However, their mechanisms of action and the responses of relevant target cells are similar enough that the more inclusive TNFs or TNF- will be used often to describe these shared actions. Emphasis is given to the role of TNFs in brain injury responses and to data that force consideration of the possibility that TNF expression in the CNS may have beneficial influences, particularly with respect to conditioning that enhances neuronal resistance to insults.


Tumor Necrosis Factor Tumor Necrosis Factor Receptor Death Domain Kainic Acid SMase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adam, D., Kessler, U., and Kronke, M. (1995) Cross-linking of the p55 tumor necrosis factor receptor cytoplasmic domain by a dimeric ligand induces nuclear factor-xB and mediates cell death. J. Biol. Chem. 270, 17,482–17, 487.Google Scholar
  2. Aloisi, F., Care, A., Borsellino, G., Gallo, P., Rosa, S., Bassani, A., et al. (1992) Production of hemolymphopoietic cytokines (IL-6, IL-8, colony-stimulating factors) by normal human astrocytes in response to IL-13 and tumor necrosis factor-a. J. Immunol. 149, 2358–2366.PubMedGoogle Scholar
  3. Alvarez, X. A., Franco, A., Fernandez-Novoa, L., and Cacabelos, R. (1994) Effects of neurotoxic lesions in histaminergic neurons on brain tumor necrosis factor levels. Agents and Actions 41, C70–72.PubMedCrossRefGoogle Scholar
  4. Barger, S. W. and Mattson, M. P. (1996a) Induction of neuroprotective xB-dependent transcription by secreted form of the Alzheimer’s 13-amyloid precursor. Mol. Brain Res. 40, 116–126.PubMedCrossRefGoogle Scholar
  5. Barger, S. W. and Mattson, M. P. (1996b) Participation of gene expression in the protection against amyloid (3-peptide toxicity by the 13-amyloid precursor protein. Ann. N.Y. Acad. Sci. 777, 303–308.PubMedCrossRefGoogle Scholar
  6. Barger, S. W., Hörster, D., Furukawa, K., Goodman, Y., Kriegelstein, J., and Mattson, M. P. (1995) Tumor necrosis factors a and 13 protect neurons against amyloid [3-peptide toxicity: Evidence for involvement of a KB-binding factor and attenuation of peroxide and Cat+ accumulation. Proc. Natl. Acad. Sci. USA 92, 9328–9332.PubMedCrossRefGoogle Scholar
  7. Bazzoni, F., Alejos, E., and Beutler, B. (1995) Chimeric tumor necrosis factor receptors with constitutive signaling activity. Proc. Natl. Acad. Sci. USA 92, 5376–5380.PubMedCrossRefGoogle Scholar
  8. Behl, C., Davis, J. B., Lesley, R., and Schubert, D. (1994) Hydrogen peroxide mediates amyloid ß protein toxicity. Cell 77, 817–827.PubMedCrossRefGoogle Scholar
  9. Benveniste, E. N., Tang, L. P., and Law, R. M. (1995) Differential regulation of astrocyte TNF-a expression by the cytokines TGF-(3, IL-6 and IL-10. Int. J. Dev. Neurosci. 13, 341–349.PubMedCrossRefGoogle Scholar
  10. Betts, J. C., Agranoff, A. B., Nabel, G. J., and Shayman, J. A. (1994) Dissociation of endogenous cellular ceramide from NF-KB activation. J. Biol. Chem. 269, 8455–8458.PubMedGoogle Scholar
  11. Beutler, B. (1995) TNF, immunity and inflammatory disease: lessons of the past decade. J. Invest. Med. 43, 227–235.Google Scholar
  12. Bigda, J., Beletsky, I., Brakebusch, C., Varfolomeev, Y., Engelmann, H., Bigda, J., Holtmann, H., and Wallach, D. (1994) Dual role of the p75 tumor necrosis factor (TNF) receptor in TNF cytotoxicity. J. Exp. Med. 180, 445–460.PubMedCrossRefGoogle Scholar
  13. Boado, R. J., Wang, L., and Pardridge, W. M. (1994) Enhanced expression of the blood-brain barrier GLUT1 glucose transporter gene by brain-derived factors. Mol. Brain Res. 22, 259–267.PubMedCrossRefGoogle Scholar
  14. Boldin, M. P., Goncharov, T. M., Goltsev, Y. V., and Wallach, D. (1996) Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85, 803–815.Google Scholar
  15. Bonfoco, E., Krainc, D., Ankarcrona, M., Nicotera, P., and Lipton, S. A. (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methylD-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc. Natl. Acad. Sci. USA 92, 7162–7166.PubMedCrossRefGoogle Scholar
  16. Bradley, J. R., Thiru, S., and Pober, J. S. (1995) Disparate localization of 55-kd and 75-kd tumor necrosis factor receptors in human endothelial cells. Am. J. Pathol. 146, 27–32.PubMedGoogle Scholar
  17. Browning, J. L., Ngam-ek, A., Lawton, P., DeMarinis, J., Tizard, R., Chow, E. P., et al. (1993) Lymphotoxin ß, a novel member of the TNF family that forms a heteromeric complex with lymphotoxin on the cell surface. Cell 72, 847–856.PubMedCrossRefGoogle Scholar
  18. Bruce, A. J., Boling, W., Kindy, M. S., Peschon, J., Kraemer, P. J., Carpenter, M. K., Holtsberg, F. W., and Mattson, M. P. (1996) Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nature Med. 2, 788–794.PubMedCrossRefGoogle Scholar
  19. Buttini M., Appel, K., Sauter, A., Gebicke-Haerter, P. J., and Boddeke, H. W. G. M. (1996) Expression of tumor necrosis factor a after focal cerebral ischaemia in the rat. Neuroscience 71, 1–16.PubMedCrossRefGoogle Scholar
  20. Cacabelos, R., Alvarez, X. A., Franco-Maside, A., Fernandez-Novoa, L., and Caamano, J. (1994) Serum tumor necrosis factor (TNF) in Alzheimer’s disease and multi-infarct dementia. Methods Find. Exp. Clin. Pharmacol. 16, 25–35.Google Scholar
  21. Chao, C. C. and Hu, S. (1994) Tumor necrosis factor-a potentiates glutamate neurotoxicity in human fetal brain cell cultures. Dev. Neurosci. 16, 172–179.PubMedCrossRefGoogle Scholar
  22. Chao, C. C., Molitor, T. W., and Hu, S. (1993) Neuroprotective role of IL-4 against activated microglia. J. Immunol. 151, 1473–1481.PubMedGoogle Scholar
  23. Chao, C. C., Hu, S., Sheng, W. S., Peterson, P. K. (1995a) Tumor necrosis factor-a production by human fetal microglial cells: Regulation by other cytokines. Devel. Neurosci. 17, 97–105.CrossRefGoogle Scholar
  24. Chao, C. C., Hu, S. X., Sheng, W. S., Tsang, M., and Peterson, P. K. (1995b) Tumor necrosis factor-a mediates the release of bioactive transforming growth factor-(3 in murine microglial cell cultures. Clin. Immunol. Immunopath. 77, 358–365.CrossRefGoogle Scholar
  25. Chard, P. S., Jordan, J., Marcuccilli, C. J., Miller, R. J., Leiden, J. M., Roos, R. P, Ghadge, G. D. (1995) Regulation of excitatory transmission at hippocampal synapses by calbindin D28k. Proc. Natl. Acad. Sci. USA 92, 5144–5148.PubMedCrossRefGoogle Scholar
  26. Cheng, B., Christakos, S., and Mattson, M. P. (1994) Tumor necrosis factors protect neurons against metabolic-excitotoxic insults and promote maintenance of calcium homeostasis. Neuron 12, 139–153.PubMedCrossRefGoogle Scholar
  27. Chiang, C. S. and McBride, W. H. (1991) Radiation enhances tumor necrosis factor a production by murine brain cells. Brain Res. 566, 265–269.PubMedCrossRefGoogle Scholar
  28. Chung, I. Y., Norris, J. G., and Benveniste, E. N. (1991) Differential tumor necrosis factor a expression by astrocytes from experimental allergic encephalomyelitis-susceptible and -resistant rat strains. J. Exp. Med. 173, 801–811.PubMedCrossRefGoogle Scholar
  29. Cifone, M. G., Roncaioli, P., De Maria, R., Camqrda, G., Santoni, A., Ruberti, G., and Testi, R. (1995) Multiple pathways originate at the Fas/APO-1 (CD95) receptor: Sequential involvement of phosphatidylcholine-specific phospholipase C and acidic sphingomyelinase in the propagation of the apoptotic signal. EMBO J. 14, 5859–5868.PubMedGoogle Scholar
  30. Crowe, P. D., VanArsdale, T. L., Walter, B. N., Ware, C. F., Hession, C., Ehrenfels, B., et al. (1994) A lymphotoxin-specific receptor. Science 264, 707–710.PubMedCrossRefGoogle Scholar
  31. Cuvillier, O., Pirianov, G., Kleuser, B., Vanek, P. G., Coso, O. A., Gutkind, J. S., and Spiegel, S. (1996) Suppression of ceramide-mediated programmed cell death by sphingosine-1phosphate. Nature 381, 800–803.PubMedCrossRefGoogle Scholar
  32. Davis, S., Aldrich, T. H., Ip, N. Y., Stahl, N., Scherer, S., Farruggella, T., et al. (1993) Released form of CNTF receptor a component as a soluble mediator of CNTF responses. Science 259, 1736–1739.PubMedCrossRefGoogle Scholar
  33. Dbaibo, G. S., Obeid, L. M., and Hannun, Y. A. (1993) Tumor necrosis factor-a (TNF-a) signal transduction through ceramide. Dissociation of growth inhibitory effects of TNF-a from activation of nuclear factor-KB. J. Biol. Chem. 268, 17,762–17, 766.Google Scholar
  34. De Togni, P., Goellner, J., Ruddle, N. H., Streeter, P. R., Fick, A., Mariathasan, S., et al. (1994) Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 264, 703–707.PubMedCrossRefGoogle Scholar
  35. Dickson, D. W., Lee, S. C., Mattiace, L. A., Yen, S. H., and Brosnan, C. (1993) Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer’ s disease. Glia 7, 75–83.PubMedCrossRefGoogle Scholar
  36. Diop, A. G., Lesort, M., Esclaire, F., Dumas, M., and Hugon, J. (1995) Calbindin D28Kcontaining neurons, and not HSP70-expressing neurons, are more resistant to HIV-1 envelope (gp120) toxicity in cortical cell cultures. J. Neurosci. Res. 42, 252–258.Google Scholar
  37. Enari, M., Hug, H., and Nagata, S. (1995) Involvement of an ICE-like protease in Fas-mediated apoptosis. Nature 375, 78–81.PubMedCrossRefGoogle Scholar
  38. English, B. K., Weaver, W. M., and Wilson, C. B. (1991) Differential regulation of lymphotoxin and tumor necrosis factor genes in human T lymphocytes. J. Biol. Chem. 266, 7108–7113.PubMedGoogle Scholar
  39. Evan, G. I., Wyllie, A. H., Gilbert, C. S., Littlewood, T. D., Land, H., Brooks, M., et al. (1992) Induction of apoptosis in fibroblasts by c-myc protein. Cell 69, 119–128.PubMedCrossRefGoogle Scholar
  40. Fady, C., Gardner, A., Jacoby, F., Briskin, K., Tu, Y., Schmid, I., and Lichtenstein, A. (1995) Atypical apoptotic cell death induced in L929 targets by exposure to tumor necrosis factor. J. Interferon Cytokine Res. 15, 71–80.PubMedCrossRefGoogle Scholar
  41. Fan, L., Young, P. R., Barone, F. C., Feuerstein, G. Z., Smith, D. H., and McIntosh, T. K. (1996) Experimental brain injury induces differential expression of tumor necrosis factor-a mRNA in the CNS. Mol. Brain Res. 36, 287–291.PubMedCrossRefGoogle Scholar
  42. Fassbender, K., Rossol, S., Kammer, T., Daffertshofer, M., Wirth, S., Doilman, M., and Hennerici, M. (1994) Proinflammatory cytokines in serum of patients with acute cerebral ischemia: kinetics of secretion and relation to the extent of brain damage and outcome of disease. J. Neurol. Sci. 122, 135–139.PubMedCrossRefGoogle Scholar
  43. Gearing, A. J., Beckett, P., Christodoulou, M., Churchill, M., Clements J., Davidson, A. H., J. L., et al. (1994) Processing of tumour necrosis factor-a precursor by metalloproteinases. Nature 370, 555–557.Google Scholar
  44. Gelbard, H. A., Dzenko, K. A., DiLoreto, D., del Cerro, C., del Cerro, M., and Epstein, L. G. (1993) Neurotoxic effects of tumor necrosis factor a in primary human neuronal cultures are mediated by activation of the glutamate AMPA receptor subtype: implications for AIDS neuropathogenesis. Del). Neurosci. 15, 417–422.CrossRefGoogle Scholar
  45. Gendron, R. L., Nestel, F. P., Lapp, W. S., and Baines, M. G. (1991) Expression of tumor necrosis factor a in the developing nervous system. Int. J. Neurosci. 60, 129–136.PubMedCrossRefGoogle Scholar
  46. Goodman, Y. and Mattson M. P. (1996) Ceramide protects hippocampal neurons against excito- toxic and oxidative insults, and amyloid (3-peptide toxicity. J. Neurochem. 66, 869–872.PubMedCrossRefGoogle Scholar
  47. Grell, M., Douni, E., Wajant, H., Lohden, M., Clauss, M., Maxeiner, B., et al. (1995) The trans-membrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 83, 793–802.Google Scholar
  48. Han, J., Brown, T., and Beutler, G. (1990) Endotoxin-responsive sequences control cachectin/TNF biosynthesis at the translational level. J. Exp. Med. 171, 465–475.PubMedCrossRefGoogle Scholar
  49. Hayes, R. L., Yang, K., Raghupathi, R., and McIntosh, T. K. (1995) Changes in gene expression following traumatic brain injury in the rat. J. Neurotrauma 12, 779–790.PubMedCrossRefGoogle Scholar
  50. Heller, R. A., Song, K., Fan, N., and Chang, D. J. (1992) The p70 tumor necrosis factor receptor mediates cytotoxicity. Cell 70, 47–56.PubMedCrossRefGoogle Scholar
  51. Hofmann, K. and Tschopp, J. (1995) The death domain motif found in Fas (Apo-1) and TNF receptor is present in proteins involved in apoptosis and axonal guidance. FEBS Lett. 371, 321–323.PubMedCrossRefGoogle Scholar
  52. Howard, O. M., Clouse, K. A., Smith, C., Goodwin, R. G., and Farrar, W. L. (1993) Soluble tumor necrosis factor receptor: inhibition of human immunodeficiency virus activation. Proc. Natl. Acad. Sci. USA 90, 2335–2339.PubMedCrossRefGoogle Scholar
  53. Hsu, H., Xiong, J., and Goeddel, D. V. (1995) The TNF receptor 1-associated protein TRADD signals cell death and NF-KB activation. Cell 81, 495–504.Google Scholar
  54. Hsu, H. L., Shu, H. B., Pan, M. G., and Goeddel, D. V. (1996) TRADD-TRAF2 and TRADDFADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84, 299–308.PubMedCrossRefGoogle Scholar
  55. Huberman, M., Shalit, F., Roth-Deri, I., Gutman, B., Brodie, C., Kott, E., and Sredni, B. (1994) Correlation of cytokine secretion by mononuclear cells of Alzheimer patients and their disease stage. J. Neuroimmunol. 52, 147–152.PubMedCrossRefGoogle Scholar
  56. Hunt, J. S. (1993) Expression and regulation of the tumour necrosis factor-a gene in the female reproductive tract. Reprod. Fertil. Dey. 5, 141–153.CrossRefGoogle Scholar
  57. Jayadev, S., Linardic, C. M., and Hannun, Y. A. (1994) Identification of arachidonic acid as a mediator of sphingomyelin hydrolysis in response to tumor necrosis factor a. J. Biol. Chem. 269, 5757–5763.PubMedGoogle Scholar
  58. Johns, L. D., Sam T., and Ranges, G. E. (1994) Inhibition of ceramide pathway does not affect ability of TNF-a to activate nuclear factor-KB. J. Immunol. 152, 5877–5882.PubMedGoogle Scholar
  59. Kohchi, C., Noguchi, K., Tanabe, Y., Mizuno, D., and Soma, G. (1994) Constitutive expression of TNF-a and -13 genes in mouse embryo: roles of cytokines as regulator and effector on development. Int. J. Biochem. 26, 111–119.PubMedCrossRefGoogle Scholar
  60. Kolesnick, R. N. (1987) 1,2-Diacylglycerols but not phorbol esters stimulate sphingomyelin hydrolysis in GH3 pituitary cells. J. Biol. Chem. 262 16,759–16,762.Google Scholar
  61. Kolls, J., Peppel, K., Silva, M., and Beutler, B. (1994) Prolonged and effective blockade of tumor necrosis factor activity through adenovirus-mediated gene transfer. Proc. Natl. Acad. Sci. USA 91, 215–219.PubMedCrossRefGoogle Scholar
  62. Korner, M., Tarantino, N., Pleskoff, O., Lee, L. M., and Debre, P. (1994) Activation of nuclear factor KB in human neuroblastoma cell lines. J. Neurochem. 62, 1716–1726.PubMedCrossRefGoogle Scholar
  63. Liu, T., Clark, R. K., McDonnell, P. C., Young, P. R., White, R. F., Barone, F. C., and Feuerstein, G. Z. (1994) Tumor necrosis factor-a expression in ischemic neurons. Stroke 25, 1481–1488.PubMedCrossRefGoogle Scholar
  64. Macchia, D., Almerigogna, F., Parronchi, P., Ravina, A., Maggi, E., and Romagnani, S. (1993) Membrane tumour necrosis factor-a is involved in the polyclonal B-cell activation induced by HIV-infected human T cells. Nature 363, 464–466.PubMedCrossRefGoogle Scholar
  65. Maerz, P., Gadient, R. A., and Otten, U. (1996) Expression of interleukin-6 receptor (IL-6R) and gp130 mRNA in PC12 cells and sympathetic neurons: modulation by tumor necrosis factor a (TNF-a). Brain Res. 706, 71–79.CrossRefGoogle Scholar
  66. Mark, R. J., Hensley, K., Butterfield, D. A., and Mattson, M. P. (1995) Amyloid I3-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Cat+ homeostasis and cell death. J. Neurosci. 15, 6239–6249.Google Scholar
  67. Mattson, M. P., Rychlik, B., and Christakos, S. (1991) Evidence for calcium-reducing and excitoprotective roles for the calcium binding protein (calbindin-D28k) in cultured hippocampal neurons. Neuron 6, 41–51.PubMedCrossRefGoogle Scholar
  68. Mattson, M. P., Cheng, B., Davis, D., Bryant, K., Lieberburg, I., and Rydel, R. E. (1992) (3-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J. Neurosci. 12, 379–389.Google Scholar
  69. Mattson, M. P., Cheng, B., Baldwin, S. A., Smith-Swintosky, V. L., Keller, J., Geddes, J. W., Scheff, S. W., and Christakos, S. (1995) Brain injury and tumor necrosis factors induce calbindin D-28k in astrocytes: evidence for a cytoprotective response. J. Neurosci. Res. 42, 357–370.PubMedCrossRefGoogle Scholar
  70. Medvedev, A. E., Espevik, T., Ranges, G., and Sundan, A. (1996) Distinct roles of the two tumor necrosis factor (TNF) receptors in modulating TNF and lymphotoxin a effects. J. Biol. Chem. 271, 9778–9784.PubMedCrossRefGoogle Scholar
  71. Medvedev, A. E., Sundan, A., and Espevik, T. (1994) Involvement of the tumor necrosis factor receptor p75 in mediating cytotoxicity and gene regulating activities. Eur. J. Immunol. 24, 2842–2849.PubMedCrossRefGoogle Scholar
  72. McGeehan, G. M., Becherer, J. D., Bast Jr., R. C, Boyer, C. M., Champion, B., Connolly, K. M., et al. (1994) Regulation of tumour necrosis factor-a processing by a metalloproteinase inhibitor. Nature 370, 558–561.PubMedCrossRefGoogle Scholar
  73. Messer, G., Weiss, E. H., and Baeuerle, P. A. (1990) Tumor necrosis factor 13 (TNF-13) induces binding of the NF-KB transcription factor to a high-affinity cB element in the TNF-(3 promoter. Cytokine 2, 389–397.PubMedCrossRefGoogle Scholar
  74. Minami, M., Kuraishi, Y., and Satoh, M. (1991) Effects of kainic acid on messenger RNA levels of IL-1(3, IL-6, TNFa and LIF in the rat brain. Biochem. Biophys. Res. Commun. 176, 593–598.PubMedCrossRefGoogle Scholar
  75. Mogi, M., Harada, M., Riederer, P., Narabayashi, H., Fujita, K., and Nagatsu, T. (1994) Tumor necrosis factor-a (TNF-a) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci. Lett. 165, 208–210.PubMedCrossRefGoogle Scholar
  76. Muller, G., Ayoub, M., Storz, P., Rennecke, J., Fabbro, D., and Pfizenmaier, K. (1995) PKCÇ is a molecular switch in signal transduction of TNF-a, bifunctionally regulated by ceramide and arachidonic acid. EMBO J. 14, 1961–1969.PubMedGoogle Scholar
  77. Muzio, M., Chinnaiyan, A. M., Kischkel, F. C., O’Rourke, K., Shevchenko, A., Ni, J. (1996) FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85, 817–827.PubMedCrossRefGoogle Scholar
  78. Noskovic, P., Faberova, V., and Fabianova, M. (1995) Effect of a combination of pentoxifylline and nimodipine on lipid peroxidation in postischemic rat brain. Mol. Chem. Neuropathol. 25, 97–102.PubMedCrossRefGoogle Scholar
  79. Oyama, Y., Furukawa, K., Chikahisa, L., and Hatakeyama, Y. (1994) Effect of N,Ndiethyldithiocarbamate on ionomycin-induced increase in oxidation of cellular 2’,7’-dichlorofluorescin in dissociated cerebellar neurons. Brain Res. 660, 158–161.PubMedCrossRefGoogle Scholar
  80. Pang, X. P., Ross, N. S., Park, M., Juillard, G. J., Stanley, T. M., and Hershman, J. M. (1992) Tumor necrosis factor-a activates nuclear factor xB and induces manganous superoxide dismutase and phosphodiesterase mRNA in human papillary thyroid carcinoma cells. J. Biol. Chem. 267, 12, 826–12830.Google Scholar
  81. Park, A. and Baichwal, V. R. (1996) Systematic mutational analysis of the death domain of the tumor necrosis factor receptor 1-associated protein TRADD. J. Biol. Chem. 271, 9858–9862.PubMedCrossRefGoogle Scholar
  82. Paul, N. L., Lenardo, M. J., Novak, K. D., San, T., Tang, W. L., and Ruddle, N. H. (1990) Lymphotoxin activation by human T-cell leukemia virus type I-infected cell lines: role for NF-KB. J. Virol. 64, 5412–5419.PubMedGoogle Scholar
  83. Paya, C. V., Leibson, P. J., Patick, A. K., and Rodriguez, M. (1990) Inhibition of Theiler’s virus-induced demyelination in vivo by tumor necrosis factor a. Int. Immunol. 2, 909–913.PubMedCrossRefGoogle Scholar
  84. Peck, R., Brockhaus, M., and Frey, J. R. (1989) Cell surface tumor necrosis factor (TNF) accounts for monocyte-and lymphocyte-mediated killing of TNF-resistant target cells. Cell. Immunol. 122, 1–10.PubMedCrossRefGoogle Scholar
  85. Pekala, P., Marlow, M., Heuvelman, D., Connolly, D. (1990) Regulation of hexose transport in aortic endothelial cells by vascular permeability factor and tumor necrosis factor-a, but not by insulin. J. Biol. Chem. 265, 18,051–18, 054.Google Scholar
  86. Pennica, D., Nedwin, G. E., Hayflick, J. S., Seeburg, P. H., Derynck, R., Palladino, M. A., et al. (1984) Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature 312, 724–729.PubMedCrossRefGoogle Scholar
  87. Peterson, D. A., Lucidi-Phillipi, C. A., Murphy, D. P., Ray, J., and Gage, F. H. (1996) Fibroblast growth factor-2 protects entorhinal layer II glutamatergic neurons from axotomy-induced death. J. Neurosci. 16, 886–898.PubMedGoogle Scholar
  88. Peterson, P. K., Hu, S., Anderson, W. R., and Chao, C. C. (1994) Nitric oxide production and neurotoxicity mediated by activated microglia from human versus mouse brain. J. Infect. Dis. 170, 457–460.PubMedCrossRefGoogle Scholar
  89. Pfeffer, K., Matsuyama, T., Kundig, T. M., Wakeham, A., Kishihara, K., Shahinian, A., et al. (1993) Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell 73, 457–467.PubMedCrossRefGoogle Scholar
  90. Pokholok, D. K., Maroulakou, I. G., Kuprash, D. V., Alimzhanov, M. B., Kozlov, S. V., Novobrantseva, T. I., et al. (1995) Cloning and expression analysis of the murine lymphotoxin 13 gene. Proc. Natl. Acad. Sci. USA 92, 674–678.Google Scholar
  91. Probert, L., Akassoglou, K., Pasparakis, M., Kontogeorgos, G., and Kollias, G. (1995) Spontaneous inflammatory demyelinating disease in transgenic mice showing central nervous system-specific expression of tumor necrosis factor a. Proc. Natl. Acad. Sci. USA 92, 11294–11298.PubMedCrossRefGoogle Scholar
  92. Rao, P., Hsu, K. C., and Chao, M. V. (1995) Upregulation of NF-KB-dependent gene expression mediated by the p75 tumor necrosis factor receptor. J. Interferon Cytokine Res. 15, 171–177.PubMedCrossRefGoogle Scholar
  93. Reddy, S. A., Chaturvedi, M. M., Darnay, B. G., Chan, H., Higuchi, M., and Aggarwal, B. B. (1994) Reconstitution of nuclear factor KB activation induced by tumor necrosis factor requires membrane-associated components. Comparison with pathway activated by ceramide. J. Biol. Chem. 269, 25,369–25, 372.Google Scholar
  94. Reed, W. R. and DeGowin, R. L. (1992) Suppressive effects of pentoxifylline on natural killer cell activity. J. Lab. Clin. Med. 119, 763–771.PubMedGoogle Scholar
  95. Reid, T. R., Torti, F. M., and Ringold, G. M. (1989) Evidence for two mechanisms by which tumor necrosis factor kills cells. J. Biol. Chem. 264, 4583–4589.PubMedGoogle Scholar
  96. Rimaniol, A. C., Lekieffre, D., Serrano, A., Masson, A., Benavides, J., and Zavala, F. (1995) Biphasic transforming growth factor-ß production flanking the pro-inflammatory cytokine response in cerebral trauma. Neuroreport 7, 133–136.PubMedGoogle Scholar
  97. Ross, S. A., Halliday, M. I., Campbell, G. C., Byrnes, D. P., and Rowlands, B. J. (1994) The presence of tumour necrosis factor in CSF and plasma after severe head injury. Br. J. Neurosurg. 8, 419–425.PubMedCrossRefGoogle Scholar
  98. Rothe, J., Lesslauer, W., Lotscher, H., Lang, Y., Koebel, P., Kontgen, F., (1993) Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature 364, 798–802.PubMedCrossRefGoogle Scholar
  99. Rothe, M., Wong, S. C., Henzel, W. J., and Goeddel, D. V. (1994) A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell 78, 681–692.PubMedCrossRefGoogle Scholar
  100. Rothe, M., Pan, M. G., Henzel, W. J., Ayres, T. M., and Goeddel, D. V. (1995a) The TNFR2TRAF signaling complex contains two novel proteins related to baculoviral-inhibitor of apoptosis proteins. Cell 83, 1243–1252.PubMedCrossRefGoogle Scholar
  101. Rothe, M., Sarma, V., Dixit, V. W., and Goeddel, D. V. (1995b) TRAF2-mediated activation of NF-KB by TNF receptor 2 and CD40. Science 269, 1424–1427.PubMedCrossRefGoogle Scholar
  102. Russell, J. H., and Wang, R. (1993) Autoimmune gld mutation uncouples suicide and cytokine/proliferation pathways in activated, mature T cells. Eur. J. Immunol. 23, 2379–2382.PubMedCrossRefGoogle Scholar
  103. Saito, K., Chen, C. Y., Masana, M., Crowley, J. S., Markey, S. P., and Heyes, M. P. (1993) 4-Chloro-3-hydroxyanthranilate, 6-chlorotryptophan and norharmane attenuate quinolinic acid formation by interferon-(3-stimulated monocytes (THP-1 cells). Biochem. J. 291, 11–14.Google Scholar
  104. Saito, K., Suyama, K., Nishida, K., Sei, Y., and Basile, A. S. (1996) Early increases in TNF-a, IL-6 and IL-1ß levels following transient cerebral ischemia in gerbil brain. Neurosci. Lett. 206, 149–152.PubMedCrossRefGoogle Scholar
  105. Sawada, M., Kondo, N., Suzumura, A., and Marunouchi, T. (1989) Production of tumor necrosis factor-a by microglia and astrocytes in culture. Brain Res. 491, 394–397.PubMedCrossRefGoogle Scholar
  106. Schneider-Schaulies, J., Kirchhoff, F., Archelos, J., and Schachner, M. (1991) Downregulation of myelin-associated glycoprotein on Schwann cells by interferon-y and tumor necrosis factor-a affects neurite outgrowth. Neuron 7, 995–1005.PubMedCrossRefGoogle Scholar
  107. Schreck, R., Rieber, P., and Baeuerle, P. A. (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-KB transcription factor and HIV-1. EMBO J. 10, 2247–2258.PubMedGoogle Scholar
  108. Schreck, R., Albermann, K., and Baeuerle, P. A. (1992) Nuclear factor KB: an oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Radic. Res. Commun. 17, 221–237.PubMedCrossRefGoogle Scholar
  109. Schutze, S., Potthoff, K., Machleidt, T., Berkovic, D., Wiegmann, K., and Kronke, M. (1992) TNF activates NF-KB by phosphatidylcholine-specific phospholipase C-induced “acidic” sphingomyelin breakdown. Cell 71, 765–776.PubMedCrossRefGoogle Scholar
  110. Schwartz, M., Sivron, T., Eitan, S., Hirschberg, D. L., Lotan, M., and Elman-Faber, A. (1994) Cytokines and cytokine-related substances regulating glial cell response to injury of the central nervous system. Prog. Brain Res. 103, 331–341.PubMedCrossRefGoogle Scholar
  111. Selmaj, K. W., and Raine, C. S. (1995) Experimental autoimmune encephalomyelitis: immunotherapy with anti-tumor necrosis factor antibodies and soluble tumor necrosis factor receptors. Neurology 45, S44–49.PubMedCrossRefGoogle Scholar
  112. Selmaj, K., Raine, C. S., Cannella, B., and Brosnan, C. F. (1991) Identification of lymphotoxin and tumor necrosis factor in multiple sclerosis lesions. J. Clin. Invest. 87, 949–954.PubMedCrossRefGoogle Scholar
  113. Shakhov, A. N., Collart, P. V., Vassalli, P., Nedospasov, S. A., and Jongeneel, C. V. (1990) x3-type enhancers are involved in lipopolysaccharide-mediated transcriptional activation of the tumor necrosis factor a gene in primary macrophages. J. Exp. Med. 171, 35–47.Google Scholar
  114. Shi, Y., Glynn, J. M., Guilbert, L. J., Cotter, T. G., Bissonnette, R. P., and Green, D. R. (1992) Role for c-myc in activation-induced apoptotic cell death in T cell hybridomas. Science 257, 212–214.PubMedCrossRefGoogle Scholar
  115. Shohami, E., Novikov, M., Bass, R., Yamin, A., and Gallily, R. (1994) Closed head injury triggers early production of TNFa and IL-6 by brain tissue. J. Cereb. Blood Flow Metab. 14, 615–619.PubMedCrossRefGoogle Scholar
  116. Shohami, E., Bass, R., Wallach, D., Yamin, A., and Gallily, R. (1996) Inhibition of tumor necrosis factor a (TNFa) activity in rat brain is associated with cerebroprotection after closed head injury. J. Cereb. Blood Flow Metab. 16, 378–384.PubMedCrossRefGoogle Scholar
  117. Siren, A. L., Liu, Y., Feuerstein, G., and Hallenbeck, J. M. (1993) Increased release of tumor necrosis factor-a into the cerebrospinal fluid and peripheral circulation of aged rats. Stroke 24, 880–886.PubMedCrossRefGoogle Scholar
  118. Song, H. Y. and Donner, D. B. (1995) Association of a RING finger protein with the cytoplasmic domain of the human type-2 tumour necrosis factor receptor. Biochem. J. 309, 825–829.PubMedGoogle Scholar
  119. Suga, S., Itoh, H., Komatsu, Y., Ogawa, Y., Hama, N., Yoshimasa, T., and Nakao, K. (1993) Cytokine-induced C-type natriuretic peptide (CNP) secretion from vascular endothelial cells—evidence for CNP as a novel autocrine/paracrine regulator from endothelial cells. Endocrinology 133, 3038–3041.PubMedCrossRefGoogle Scholar
  120. Sun, N., Grzybicki, D., Castro, R. F., Murphy, S., and Perlman, S. (1995) Activation of astrocytes in the spinal cord of mice chronically infected with a neurotropic coronavirus. Virology 213, 482–493.PubMedCrossRefGoogle Scholar
  121. Sung, S. S., Jung, L. K., Walters, J. A., Chen, W., Wang, C. Y., and Fu, S. M. (1988) Production of tumor necrosis factor/cachectin by human B cell lines and tonsillar B cells. J. Exp. Med. 168, 1539–1551.PubMedCrossRefGoogle Scholar
  122. Szaflarski, J., Burtrum, D., and Silverstein, F. S. (1995) Cerebral hypoxia-ischemia stimulates cytokine gene expression in perinatal rats. Stroke 26, 1093–1100.PubMedCrossRefGoogle Scholar
  123. Takasu, N., Yamada, T., Shimizu, Y., Nagasawa, Y., and Komiya, I. (1989) Generation of hydrogen peroxide in cultured porcine thyroid cells: synergistic regulation by cytoplasmic free calcium and protein kinase C. J. Endocrinol. 120, 503–508.PubMedCrossRefGoogle Scholar
  124. Tanahashi, N., Fukuuchi, Y., Tomita, M., Kobari, M., Takeda, H., and Yokoyama, M. (1995) Pentoxifylline ameliorates postischemic delayed hypoperfusion of the cerebral cortex following cardiac arrest in cats. J. Neurol. Sci. 132, 105–109.PubMedCrossRefGoogle Scholar
  125. Tancredi, V., D’Arcangelo, G., Grassi, F., Tarroni, P., Palmieri, G., Santoni, A., and Eusebi, F. (1992) Tumor necrosis factor alters synaptic transmission in rat hippocampal slices. Neurosci. Lett. 146, 176–178.PubMedCrossRefGoogle Scholar
  126. Tartaglia, L. A., Weber, R. F., Figari, I. S., Reynolds, C., Palladino, M. A, Jr., and Goeddel, D. V. (1991) The two different receptors for tumor necrosis factor mediate distinct cellular responses. Proc. Natl. Acad. Sci. USA 88, 9292–9296.PubMedCrossRefGoogle Scholar
  127. Tartaglia, L. A., Ayres, T. M., Wong, G. H., and Goeddel, D. V. (1993a) A novel domain within the 55 kd TNF receptor signals cell death. Cell 74, 845–853.PubMedCrossRefGoogle Scholar
  128. Tartaglia, L. A., Goeddel, D. V., Reynolds, C., Figari, I. S., Weber, R. F., Fendly, B. M., and Palladino, M. A, Jr. (1993b) Stimulation of human T-cell proliferation by specific activation of the 75-kDa tumor necrosis factor receptor. J. Immunol. 151, 4637PubMedGoogle Scholar
  129. Tartaglia, L. A., Pennica, D., and Goeddel, D. V. (1993c) Ligand passing: the 75-kDa tumor necrosis factor (TNF) receptor recruits TNF for signaling by the 55-kDa TNF receptor. J. Biol. Chem. 268, 18,542–18, 548.Google Scholar
  130. Tartakovsky, B. and Ben-Yair, E. (1991) Cytokines modulate preimplantation development and pregnancy. Dey. Biol. 146, 345–352.CrossRefGoogle Scholar
  131. Taupin, V., Toulmond, S., Serrano, A., Benavides, J., and Zavala, F. (1993) Increase in IL-6, IL-1 and TNF levels in rat brain following traumatic lesion. Influence of pre-and post-traumatic treatment with Ro5 4864, a peripheral-type (p site) benzodiazepine ligand. J. Neuroimmunol. 42, 177–185.PubMedCrossRefGoogle Scholar
  132. Tchelingerian, J. L., Quinonero, J., Booss, J., and Jacque, C. (1993) Localization of TNFa and IL-la immunoreactivities in striatal neurons after surgical injury to the hippocampus. Neuron 10, 213–224.Google Scholar
  133. Tchelingerian, J. L., Vignais, L., and Jacque, C. (1994) TNFa gene expression is induced in neurones after a hippocampal lesion. Neuroreport 5, 585–588.PubMedCrossRefGoogle Scholar
  134. Tchelingerian, J. L., Monge, M., Le Saux, F., Zalc, B., Jacque, C. (1995) Differential oligodendroglial expression of the tumor necrosis factor receptors in vivo and in vitro. J. Neurochem. 65, 2377–2380.PubMedCrossRefGoogle Scholar
  135. Van Zee, K. J., Kohno, T., Fischer, E., Rock, C. S., Moldawer, L. L., and Lowry, S. F. (1992) Tumor necrosis factor soluble receptors circulate during experimental and clinical inflammation and can protect against excessive tumor necrosis factor a in vitro and in vivo. Proc. Natl. Acad. Sci. USA 89, 4845–4849.PubMedCrossRefGoogle Scholar
  136. Walker, D. G., Kim, S. U., and McGeer, P. L. (1995) Complement and cytokine gene expression in cultured microglial derived from postmortem human brains. J. Neurosci. Res. 40, 478–493.PubMedCrossRefGoogle Scholar
  137. Wang, B., Kondo, S., Shivji, G. M., Fujisawa, H., Mak, T. W., and Sauder, D. N. (1996) Tumour necrosis factor receptor II (p75) signalling is required for the migration of Langerhans’ cells. Immunology 88, 284–288.PubMedCrossRefGoogle Scholar
  138. Wang, X., Yue, T. L., Barone, F. C., White, R. F., Gagnon, R. C., and Feuerstein, G. Z. (1994) Concomitant cortical expression of TNF-a and IL-1(3 mRNAs follows early response gene expression in transient focal ischemia. Mol. Chem. Neuropathol. 23, 103–114.Google Scholar
  139. Wang, X., Yue, T. L., White, R. F., Barone, F. C., and Feuerstein, G. Z. (1995) Transforming growth factor-f3 1 exhibits delayed gene expression following focal cerebral ischemia. Brain Res. Bull. 36, 607–609.PubMedCrossRefGoogle Scholar
  140. Weinberg, J. B., Mason, S. N., and Wortham, T. S. (1992) Inhibition of tumor necrosis factor-a (TNF-a) and interleukin-1 (3 (IL-1[3) messenger RNA (mRNA) expression in HL-60 leukemia cells by pentoxifylline and dexamethasone: dissociation of acivicin-induced TNF-a and IL-1[3 mRNA expression from acivicin-induced monocytoid differentiation. Blood 79, 3337–3343.PubMedGoogle Scholar
  141. Westwick, J. K., Bielawska, A. E., Dbaibo, G., Hannun, Y. A., and Brenner, D. A. (1995) Ceramide activates the stress-activated protein kinases. J. Biol. Chem. 270, 22,689–22, 692.Google Scholar
  142. Wiegmann, K., Schutze, S., Machleidt, T., Witte, D., and Kronke, M. (1994) Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling. Cell 78, 1005–1015.PubMedCrossRefGoogle Scholar
  143. Wright, J. L. and Merchant, R. E. (1992) Histopathological effects of intracerebral injections of human recombinant tumor necrosis factor-a in the rat. Acta Neuropathol. 85, 93–100.PubMedCrossRefGoogle Scholar
  144. Yamasaki, T., Kikuchi, H., Moritake, K., Nagao, S., Iwasaki, K., Paine, J. T., Kagawa, T., and Namba Y. (1992) A morphological and ultrastructural investigation of normal mouse brain tissue after intracerebral injection of tumor necrosis factor. J. Neurosurg. 77, 279–287.PubMedCrossRefGoogle Scholar
  145. Yamasu, K., Onoe, H., Soma, G., Oshima, H., and Mizuno, D. (1989) Secretion of tumor necrosis factor during fetal and neonatal development of the mouse: ontogenic inflammation. J. Biol. Response Modif. 8, 644–655.Google Scholar
  146. Yang, Z., Costanzo, M., Golde, D. W., and Kolesnick, R. N. (1993) Tumor necrosis factor activation of the sphingomyelin pathway signals nuclear factor xB translocation in intact HL-60 cells. J. Biol. Chem. 268, 20,520–20, 523.Google Scholar
  147. Zhang, Y., Harada, A., Bluethmann, H., Wang, J. B., Nakao, S., Mukaida, N., and Matsushima, K. (1995) Tumor necrosis factor (TNF) is a physiologic regulator of hematopoietic progenitor cells: increase of early hematopoietic progenitor cells in TNF receptor p55-deficient mice in vivo and potent inhibition of progenitor cell proliferation by TNFa in vitro. Blood 86, 2930–2937.PubMedGoogle Scholar
  148. Zornow, M. H., Matsumoti, M., Wiley, C. A., and Strnat, M. A. (1993) Intracerebral injection of tumor necrosis factor-a does not increase brain concentrations of glutamate. AIDS 7, 1689–1690.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Steven W. Barger

There are no affiliations available

Personalised recommendations