Advertisement

Acute Respiratory Distress Syndrome

  • Thomas P. Shanley
  • Bruce Grossman
  • Hector R. Wong
Chapter
  • 85 Downloads

Abstract

In 1967, Ashbaugh and colleagues (1) described a cohort of 12 patients who had acute onset of tachypnea, hypoxemia, panlobular infiltrates on chest radiograph, and decreased lung compliance. It was noted that this syndrome was similar to the infant respiratory distress syndrome, and in 1971 these same investigators coined the term adult respiratory distress syndrome (ARDS) (2). Since that time, it has been noted that this same condition also occurs in children, and consequently it was renamed acute respiratory distress syndrome. In 1988, Murray and colleagues (3) defined ARDS via the lung injury score (LIS) based on the chest radiographic findings, the degree of hypoxemia (PaO2/FiO2 ratio), the level of positive end-expiratory pressure (PEEP), and the lung compliance (Table 1). The American-European Consensus Committee (A-ECC) was formed in 1994 to develop a universal definition of ARDS and acute lung injury (ALI). The definition, outlined in Table 2, included the acute nature of the disease process, oxygenation abnormalities, radiographic findings, and the exclusion of left atrial hypertension when measured, but did not include PEEP, as in the LIS (4). This definition recognizes ARDS as the most severe manifestation of ALI.

Keywords

Respiratory Distress Syndrome Acute Lung Injury Acute Respiratory Distress Syndrome Respir Crit Adult Respiratory Distress Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ashbaugh DG, Bigelow DB, Petty TL, Levine BE. Acute respiratory distress in adults. Lancet 1967;2:319–323.PubMedCrossRefGoogle Scholar
  2. 2.
    Petty TL, Ashbaugh DG. The adult respiratory distress syndrome: clinical features, factors influencing prognosis and principles of management. Chest 1971;60:273–279.CrossRefGoogle Scholar
  3. 3.
    Murray J, Matthay M, Luce J, Flick MR. An expanded definition of acute respiratory distress syndrome. Am Rev Respir Dis 1988;138:720–723.PubMedGoogle Scholar
  4. 4.
    The American-European Consensus Conference on ARDS. Am J Respir Care Med 1994;149:818–824.Google Scholar
  5. 5.
    National Heart Lung Institute Task Force on Problems, Research Approaches, Needs: The Lung Program. NIH Publication No. 73–432. Washington, DC: Department of Health, Education and Welfare, 1972, pp 165–180.Google Scholar
  6. 6.
    Yalta P, Usaro A, Nunes S, Ruokonen E, Takala J. Acute respiratory distress syndrome: frequency, clinical course, and costs of care. Crit Care Med 1999;27:2367–2374.CrossRefGoogle Scholar
  7. 7.
    Villar J, Perez-Mendez L, Kacmarek R. Current definitions of acute lung injury and the acute respiratory distress syndrome do not reflect their true severity and outcome. Intensive Care Med 1999;25:930–935.PubMedCrossRefGoogle Scholar
  8. 8.
    McIntyre R, Pulido E, Bensard D, Shames B, Abraham E. Thirty years of clinical trials in acute respiratory distress syndrome. Crit Care Med 2000;28:3314–3329.PubMedCrossRefGoogle Scholar
  9. 9.
    Lewandowski K. Epidemiological data challenge ARDS/ALI definition. Intensive Care Med 1999;25:884–886.PubMedCrossRefGoogle Scholar
  10. 10.
    Villar J, Slutsky A. The incidence of acute respiratory distress syndrome. Am Rev Respir Dis 1989;140:814–816.PubMedGoogle Scholar
  11. 11.
    Goh A, Chan P, Lum L, Roziah M. Incidence of acute respiratory distress syndrome: a comparison of two definitions. Arch Dis Child 1998;79:256–259.PubMedCrossRefGoogle Scholar
  12. 12.
    Hudson LD, Steinberg KP. Epidemiology of ARDS. Incidence and outcome: a changing picture. In: Marini JJ, Evans, TW, eds. Acute Lung Injury. Berlin: Springer-Verlag, 1998, p. 30.Google Scholar
  13. 13.
    Fine AM, Lippman M, Holtzman H, Eliraz A, Goldberg SK. The risk factors, incidence and prognosis of ARDS following septicemia. Chest 1983;83:40–47.CrossRefGoogle Scholar
  14. 14.
    Heffner J, Brown L, Barbieri C, Harpel K, DeLeo J. Prospective validation of an acute respiratory distress syndrome predictive score. Am J Respir Crit Care Med 1995;15:18–26.Google Scholar
  15. 15.
    Fowler AA, Hamman RF, Good, JT. Adult respiratory distress syndrome: risk with common predispositions. Ann Intern Med 1983;98:593–600.PubMedGoogle Scholar
  16. 16.
    DeBruin W, Notterman DA, Magid M, Godwin T, Johnston S. Acute hypoxemic respiratory failure in infants and children: clinical and pathological characteristics. Crit Care Med 1992;20:1223–1234.PubMedCrossRefGoogle Scholar
  17. 17.
    Timmons OD, Dean JM, Vernon DD. Mortality rates and prognostic variables in children with adult respiratory distress syndrome. J Pediatr 1991;119:896–899.PubMedCrossRefGoogle Scholar
  18. 18.
    Holbrook PR, Taylor G, Pollack MM, Fields AI. Adult respiratory distress syndrome in children. Pediatr Clin North Am 1980;27:677–685.PubMedGoogle Scholar
  19. 19.
    Rosenthal C, Caronia C, Quinn C, Lugo N, Sagy M. A comparison among animal models of acute lung injury. Crit Care Med 1998;26:912–916.PubMedCrossRefGoogle Scholar
  20. 20.
    Abbas AK, Lichtman AH, Pober JS. Cytokines. In: Cellular and Molecular Immunology. Philadelphia: WB Saunders, 1994, pp. 240–260.Google Scholar
  21. 21.
    Tracey KJ, Lowry SF, Cerami A. Cachectin/TNF-alpha in septic shock and septic adult respiratory distress syndrome. Am Rev Respir Dis 1988;138:1377–1379.PubMedGoogle Scholar
  22. 22.
    Okusawa S, Gelfand JA, Ikejima T, Connolly RJ, Dinarello CA. Interleukin-1 induces a shock-like state in rabbits. J Clin Invest 1988;81:1162–1172.PubMedCrossRefGoogle Scholar
  23. 23.
    Medzhitov R, Janeway C, Jr. Innate immune recognition: mechanisms and pathways. Immunol Rev 2000;173:89–97.PubMedCrossRefGoogle Scholar
  24. 24.
    Medzhitov R, Janeway C, Jr. Innate immunity. N Engl J Med 2000;343:338–25.PubMedCrossRefGoogle Scholar
  25. 25.
    Medzhitov R, Janeway CA Jr. How does the immune system distinguish self from nonself? Semin Immunol 2000;12:185–188.PubMedCrossRefGoogle Scholar
  26. 26.
    Brightbill HD, Libraty DH, Krutzik SR, et al. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 1999;285:732–736.PubMedCrossRefGoogle Scholar
  27. 27.
    Brightbill HD, Modlin RL. Toll-like receptors: molecular mechanisms of the mammalian immune response. Immunology 2000;101:1–10.PubMedCrossRefGoogle Scholar
  28. 28.
    Krieg AM, Love-Homan L, Yi AK, Harty JT. CpG DNA induces sustained IL-12 expression in vivo and resistance to Listeria monocytogenes challenge. J Immunol 1998;161:2428–2434.PubMedGoogle Scholar
  29. 29.
    Beutler B, Poltorak A. Positional cloning of LPS, and the general role of toll-like receptors in the innate immune response. Eur Cytokine Network 2000;11:143–152.Google Scholar
  30. 30.
    Gay NJ, Keith FJ. Drosophila Toll and IL-1 receptor [letter] . Nature 1991;351:355–356.PubMedCrossRefGoogle Scholar
  31. 31.
    Shimazu R, Akashi S, Ogata H, et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 1999;189:1777–1782.PubMedCrossRefGoogle Scholar
  32. 32.
    Fong Y, Lowry SF. Tumor necrosis factor in the pathophysiology of infection and sepsis. Clin Immun Immunopathol 1990;55:157–170.CrossRefGoogle Scholar
  33. 33.
    Tracy KJ, Beutler B, Lowry SF, et al. Shock and tissue injury induced by recombinant human cachectin. Science 1986;234:470–474.CrossRefGoogle Scholar
  34. 34.
    Beutler B, Cerami A. The common mediator in shock, cachexia and tumor necrosis. Adv Immunol 1988;42:213–321.PubMedCrossRefGoogle Scholar
  35. 35.
    Tracey KJ, Fong Y, Hesse DG, et al. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature 1987;330:662–664.PubMedCrossRefGoogle Scholar
  36. 36.
    Beutler B, Milsark IW, Cerami AC. Passive immunization against cachectin/ tumor necrosis factor protects mice from lethal effect of endotoxin. Science 1985;229:869–871.PubMedCrossRefGoogle Scholar
  37. 37.
    Miller AB, Foley NM, Singer M, Johnson McI, Meager A, Rook GAW. Tumor necrosis factor levels in bronchopulmonary secretions of patients with adult respiratory distress syndrome. Lancet 1989;2:712–724.CrossRefGoogle Scholar
  38. 38.
    Hyers TM, Tricomi SM, Dettenmeier PA, Fowler AA. Tumor necrosis factor levels in serum and bronchoalveolar lavage fluid of patients with the adult respiratory distress syndrome. Am Rev Respir Dis 1991;144:268–271.PubMedCrossRefGoogle Scholar
  39. 39.
    Kunkel SL, Strieter RM. Cytokine networking in lung inflammation. Hosp Pract 1990;25:63–66,69,73–76.Google Scholar
  40. 40.
    Dinarello CA, Savage N. Interleukin-1 and its receptor. Crit Rev Immunol 1989;9:1–20.PubMedGoogle Scholar
  41. 41.
    Pugin J, Ricou B, Steinberg KP, Suter PM, Martin TR. Proinflammatory activity in bronchoalveolar lavage fluid from ARDS patients. Am J Physiol 1992;262: L600-L605.Google Scholar
  42. 42.
    Kishimoto T. The biology of interleukin-6. Blood 1989;74:1–10.PubMedGoogle Scholar
  43. 43.
    Kunkel SL, Standiford, TJ, Metinko, AP, Streiter, RM. Endothelial cell derived novel chemotactic cytokines. In: Kelly J. ed. Cytokines of the Lung. New York: Marcel Dekker, 1992, pp. 281–305.Google Scholar
  44. 44.
    Kunkel SL, Standiford T, Kasahara K, Strieter RM. Interleukin-8 (IL-8)—the major neutrophil chemotactic factor in the lung. Exp Lung Res 1991;17:17–23.PubMedCrossRefGoogle Scholar
  45. 45.
    Oppenheim JJ, Zachariae COC, Mukaida N, Matsushima K. Properties of the novel proinflammatory supergene “intercrine” cytokine family. Annu Rev Immunol 1991;9:165–190.CrossRefGoogle Scholar
  46. 46.
    Zlotnik A, Yoshie 0. Chemokines: a new classification system and their role in immunity. Immunity 2000;12:121–127.PubMedCrossRefGoogle Scholar
  47. 47.
    Johnson MC 2nd, Kajikawa O, Goodman RB, et al. Molecular expression of the alpha-chemokine rabbit GRO in Escherichia coli and characterization of its production by lung cells in vitro and in vivo. J Biol Chem 1996;271:10853–10858.PubMedCrossRefGoogle Scholar
  48. 48.
    Greenberger MJ, Strieter RM, Kunkel SL, et al. Neutralization of macrophage inflammatory protein-2 attenuates neutrophil recruitment and bacterial clearance in murine Klebsiella pneumonia. J Infect Dis 1996;173:159–165.PubMedCrossRefGoogle Scholar
  49. 49.
    Standiford TJ, Kunkel SL, Greenberger MJ, Laichalk LL, Strieter RM. Expression and regulation of chemokines in bacterial pneumonia. J Leukoc Biol 1996;59:24–28.PubMedGoogle Scholar
  50. 50.
    Mehrad B, Standiford TJ. Role of cytokines in pulmonary antimicrobial host defense. Immunol Res 1999;20:15–27.PubMedCrossRefGoogle Scholar
  51. 51.
    Mehrad B, Strieter RM, Moore TA, Tsai WC, Lira SA, Standiford TJ. CXC chemokine receptor-2 ligands are necessary components of neutrophil-mediated host defense in invasive pulmonary aspergillosis. J Immunol 1999;163:6086–6094.PubMedGoogle Scholar
  52. 52.
    Tsai WC, Strieter RM, Mehrad B, Newstead MW, Zeng X, Standiford TJ. CXC chemokine receptor CXCR2 is essential for protective innate host response in murine Pseudomonas aeruginosa pneumonia. Infect Immunol 2000;68: 4289–4296.CrossRefGoogle Scholar
  53. 53.
    Tsai WC, Strieter RM, Wilkowski JM, et al. Lung-specific transgenic expression of KC enhances resistance to Klebsiella pneumoniae in mice. J Immunol 1998;161:2435–2440.PubMedGoogle Scholar
  54. 54.
    Moore TA, Newstead MW, Strieter RM, Mehrad B, Beaman BL, Standiford TJ. Bacterial clearance and survival are dependent on CXC chemokine receptor-2 ligands in a murine model of pulmonary Nocardia asteroides infection. J Immunol 2000;164:908–915.PubMedGoogle Scholar
  55. 55.
    Miller EJ, Cohen AB, Nagao S, et al. Elevated levels of NAP-1/interleukin-8 are present in the airspaces of patients with ARDS and are associated with increased mortality. Am Rev Respir Dis 1992;146:427–432.PubMedGoogle Scholar
  56. 56.
    Arai K, Lee F, Miyajima A, Miyatake S, Arai N, Yokota T. Cytokines: coordinators of immune and inflammatory responses. Annu Rev Biochem 1990;59: 783–836.PubMedCrossRefGoogle Scholar
  57. 57.
    Le J, Vilcek J. Tumor necrosis factor and interleukin 1: cytokines with multiple overlapping biological activities. Lab Invest 1987;56:234–248.PubMedGoogle Scholar
  58. 58.
    Shanley TP, Schmal H, Friedl HP, Jones ML, Ward PA. Role of macrophage inflammatory protein-la (MIP-1 α) in acute lung injury in rats. J Immunol 1995;154:4793–4802.PubMedGoogle Scholar
  59. 59.
    Murch SH, Costeloe K, Klein NJ, MacDonald TT. Early production of macrophage inflammatory protein-1a occurs in respiratory distress syndrome and is associated with poor outcome. Pediatr Res 1996;40:490–497.PubMedCrossRefGoogle Scholar
  60. 60.
    Lukacs NW, Ward PA. Inflammatory mediators, cytokines, and adhesion molecules in pulmonary inflammation and injury. Adv Immunol 1996;62:257–304.PubMedCrossRefGoogle Scholar
  61. 61.
    Hogg JC, Doerschuk CM. Leukocyte traffic in the lung. Annu Rev Physiol 1995;57:97–114.PubMedCrossRefGoogle Scholar
  62. 62.
    Imhof BA, Dunon D. Leukocyte migration and adhesion. Adv Immunol 1995;58: 345–416.PubMedCrossRefGoogle Scholar
  63. 63.
    Donnelly SC, Haslett C, Dransfield I, et al. Role of selectins in development of adult respiratory distress syndrome. Lancet 1994;344:215–219.PubMedCrossRefGoogle Scholar
  64. 64.
    Zimmerman GA, Prescott SM, McIntyre TM. Endothelial cell interactions with granulocytes: tethering and signaling molecules. Immunol Today 1992;13:93–110.PubMedCrossRefGoogle Scholar
  65. 65.
    Albelda SM, Smith CW, Ward PA. Adhesion molecules and inflammatory injury. FASEB J 1994;8:504–512.PubMedGoogle Scholar
  66. 66.
    Lee, TC, Snyder F. Function, metabolism and regulation of platelet activating factor and related ether lipids. In: Kuo JF, ed. Phospholipids and Cellular Regulation. Boca Raton, FL: CRC Press, 1985.Google Scholar
  67. 67.
    Ford-Hutchinson AW, Bray MA, Doig MV, Shipley ME, Smith MJ. Leukotriene, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature 1980;286:264–265.PubMedCrossRefGoogle Scholar
  68. 68.
    Strieter RM, Kunkel SL. Chemokines in the lung. In: Crystal R, West J, Weibel E, Barnes P, eds. Lung: Scientific Foundations, 2nd ed. New York: Raven, 1997.Google Scholar
  69. 69.
    Shanley TP, Schmal H, Warner RL, Friedl HP, Ward PA. Requirement for C-X-C chemokines (macrophage inflammatory protein-2 and cytokine-induced neutrophil chemoattractant) in IgG immune complex-induced lung injury. J Immunol 1997;158:3439–3448.PubMedGoogle Scholar
  70. 70.
    Cook DN. The role of MIP-1a in inflammation and hematopoiesis. J Leukoc Biol 1996;59:61–66.PubMedGoogle Scholar
  71. 71.
    Rosseau S, Hammerl P, Maus U, et al. Phenotypic characterization of alveolar monocyte recruitment in acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol 2000;279:L25-L35.Google Scholar
  72. 72.
    DeWaal Malefyt R, Abrams J, Bennett B, Figdor CG, DeVries JE. Interleukin-10 (IL-10) inhibits cytokine synthesis by human monocytes: an auto regulatory role of IL-10 produced by monocytes. J Exp Med 1990;174:1209–1220.CrossRefGoogle Scholar
  73. 73.
    Shanley TP, Schmal H, Friedl HP, Jones ML, Ward PA. Regulatory effects of intrinsic IL-10 in IgG immune complex-induced lung injury. J. Immunol 1995;154:3454–3460.PubMedGoogle Scholar
  74. 74.
    Rennick DM, Fort MM, Davidson NJ. Studies with IL-10-- mice: an overview. J Leukoc Biol 1997;61:389–396.PubMedGoogle Scholar
  75. 75.
    Donnelly SC, Strieter RM, Reid PT, et al. The association between mortality rates and decreased concentrations of interleukin-10 and interleukin-1 receptor antagonist in the lung fluids of patients with the adult respiratory distress syndrome. Ann Intern Med 1996;125:191–196PubMedGoogle Scholar
  76. 76.
    Zeni F, Freeman B, Natanson C. Anti-inflammatory therapies to treat sepsis and septic shock: a reassessment. Crit Care Med 1997;25:1095–1100.PubMedCrossRefGoogle Scholar
  77. 77.
    Fisher CJ Jr, Agosti JM, Opal SM, et al. Treatment of septic shock with the tumor necrosis factor receptor:Fc fusion protein. The Soluble TNF Receptor Sepsis Study Group. N Engl J Med 1996;334:1697–1702.PubMedCrossRefGoogle Scholar
  78. 78.
    Baeuerle PA, Henkel T. Function and activation of NF-kappa B in the immune system. Annu Rev Immunol 1994;12:141–179.PubMedCrossRefGoogle Scholar
  79. 79.
    Baeuerle PA, Baltimore D. I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science 1988;242:540–546.PubMedCrossRefGoogle Scholar
  80. 80.
    Palombella VJ, Rando OJ, Goldberg AL, Maniatis T. The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 1994;78:773–785.PubMedCrossRefGoogle Scholar
  81. 81.
    Moine P, McIntyre R, Schwartz MD, et al. NF-kappaB regulatory mechanisms in alveolar macrophages from patients with acute respiratory distress syndrome. Shock 2000;13:85–91.PubMedCrossRefGoogle Scholar
  82. 82.
    Schwartz MD, Moore EE, Moore FA, et al. Nuclear factor-KB is activated in alveolar macrophages from patients with acute respiratory distress syndrome. Crit Care Med 1996;24:1285–1292.PubMedCrossRefGoogle Scholar
  83. 83.
    Barnes PJ. Reactive oxygen species and airway inflammation. Free Radic Biol Med 1990; 9:235–243.PubMedCrossRefGoogle Scholar
  84. 84.
    O’Brien-Ladner AR, Nelson ME, Cowley BD, Bailey K, Wesselius LJ. Hyperoxia amplifies TNF-alpha production in LPS-stimulated human alveolar macrophages. Am J Respir Crit Care Med 1995;12:275–279.Google Scholar
  85. 85.
    Mentinko AP, Kunkel SL, Standiford TJ, Strieter RM. Anoxia-hyperoxia induces monocyte-derived interleukin-8. J Clin Invest 1992;90:791–798.CrossRefGoogle Scholar
  86. 86.
    Allen GL, Menendez IY, Ryan MA, et al. Hyperoxia synergistically increases TNFa-induced interleukin-8 gene expression in A549 cells. Am J Physiol 2000;278:L245-L252.Google Scholar
  87. 87.
    Sen CK, Packer L. Antioxidant and redox regulation of gene transcription. FASEB J 1996;10:709–720.PubMedGoogle Scholar
  88. 88.
    Wong, HR, Odoms KK, Denenberg AG, Allen GL, Shanley TP. Hyperoxia prolongs tumor necrosis factor-a-mediated activation of NF-KB: role of IKB kinase. Shock 2001;17:274–279.CrossRefGoogle Scholar
  89. 89.
    Karin M, Liu Z, Zandi E. AP-1 function and regulation. Curr Opin Cell Biol 1997;9:240–246.PubMedCrossRefGoogle Scholar
  90. 90.
    Karin M. The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 1995;270:16483–16486.PubMedGoogle Scholar
  91. 91.
    Davis R. Signal transduction by the JNK group of MAP kinases. Cell 2000;103:239–252.PubMedCrossRefGoogle Scholar
  92. 92.
    Herlaar E, Brown Z. p38 MAPK signaling cascades in inflammatory disease. Mol Med Today 1999;5:439–447.PubMedCrossRefGoogle Scholar
  93. 93.
    Caput D. Identification of a common nucleotide sequence in the 3′-untranslated region of mRNA molecules specifying inflammatory mediators. Proc Natl Acad Sci USA 1986;83:1670–1674.PubMedCrossRefGoogle Scholar
  94. 94.
    Zubiaga AM. The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation. Mol Cell Biol 1995;15:2219–2230.PubMedGoogle Scholar
  95. 95.
    Beutler B, Thompson P, Keyes J, Hagerty K, Crawford D. Assay of a ribonuclease that preferentially hydrolyses mRNAs containing cytokine-derived UA-rich instability sequences. Biochem Biophys Res Commun 1988;152:973–980.PubMedCrossRefGoogle Scholar
  96. 96.
    Beutler B, Han J, Kruys V, Giroir BP. Coordinate regulation of TNF biosynthesis at the levels of transcription and translation. Patterns of TNF expression in vivo. In: Beutler B, ed. Tumor Necrosis Factors: The Molecules and Their Emerging Roles in Medicine. New York: Raven, 1992, pp. 561–574Google Scholar
  97. 97.
    Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med 1985;342:1334–1349.CrossRefGoogle Scholar
  98. 98.
    Abou-Shala N, Meduri U. Noninvasive mechanical ventilation in patients with acute respiratory failure. Crit Care Med 1996;24:705–715.PubMedCrossRefGoogle Scholar
  99. 99.
    Ambrosino N. Noninvasive mechanical ventilation in acute respiratory failure. Eur Respir J 1996;9:795–807.PubMedCrossRefGoogle Scholar
  100. 100.
    Wysocki M, Tric L, Wolff MA. Noninvasive pressure support ventilation in patients with acute respiratory failure. A randomized comparison with conventional therapy. Chest 1995;107:761–768.PubMedCrossRefGoogle Scholar
  101. 101.
    Rocker GM, Mackenzie MG, Williams B. Noninvasive positive pressure ventilation: successful outcome in patients with acute lung injury/ARDS. Chest 1999;115:173–177.PubMedCrossRefGoogle Scholar
  102. 102.
    Patrick W, Webster K, Ludwig L. Noninvasive positive-pressure ventilation in acute respiratory distress without prior chronic respiratory failure. Am J Respir Crit Care Med 1996;153:1005–1011.PubMedGoogle Scholar
  103. 103.
    Amato MB, Barbas CS, Medeiros DM. Beneficial effects of the “open lung approach” with low distending pressures in acute respiratory distress syndrome. A prospective randomized study on mechanical ventilation. Am J Respir Crit Care Med 1995;152:1835–1846.PubMedGoogle Scholar
  104. 104.
    Marcy TW, Marini JJ. Inverse ratio ventilation in ARDS. Rationale and implementation. Chest 1991;100:494–504.PubMedCrossRefGoogle Scholar
  105. 105.
    Armstrong BW, MacIntyre NR. Pressure-controlled, inverse ratio ventilation that avoids air trapping in the adult respiratory distress syndrome. Crit Care Med 1995;23:279–285.PubMedCrossRefGoogle Scholar
  106. 106.
    Lessard MR, Guerot E, Lorino H. Effects of pressure-controlled with different I:E ratios versus volume-controlled ventilation on respiratory mechanics, gas exchange, and hemodynamics in patients with adult respiratory distress syndrome. Anesthesiology 1994;80:983–991.PubMedCrossRefGoogle Scholar
  107. 107.
    Mercat A, Graini L, Teboul JL. Cardiorespiratory effects of pressure-controlled ventilation with and without inverse ratio in the adult respiratory distress syndrome. Chest 1993;104:871–875.PubMedCrossRefGoogle Scholar
  108. 108.
    Mercat A, Titiriga M, Anguel N. Inverse ratio ventilation (I/E = 2/1) in acute respiratory distress syndrome: a six-hour controlled study. Am J Respir Crit Care Med 1997;155:1637–1642.PubMedGoogle Scholar
  109. 109.
    Valta P, Takala J. Volume-controlled inverse ratio ventilation: effect on dynamic hyper-inflation and auto-PEEP. Acta Anaesthesiol Scand 1993;37: 323–328.PubMedCrossRefGoogle Scholar
  110. 110.
    Zavala E, Ferrer M, Polese G. Effect of inverse I:E ratio ventilation on pulmonary gas exchange in acute respiratory distress syndrome. Anesthesiology 1998;88: 35–42.PubMedCrossRefGoogle Scholar
  111. 111.
    Krishman JA, Brower RG. High-frequency ventilation for acute lung injury and ARDS. Chest 2000;118:795–807.CrossRefGoogle Scholar
  112. 112.
    Arnold JH, Hanson JH, Toro-Figuero LO, Gutierrez J, Berens RJ, Anglin DL. Prospective, randomized comparison of high-frequency oscillatory ventilation and conventional mechanical ventilation in pediatric respiratory failure. Crit Care Med 1994;22:1530–1539.PubMedGoogle Scholar
  113. 113.
    Arnold JH, Anas NG, Luckett P, et al. High frequency oscillatory ventilation in pediatric respiratory failure: a multicenter experience. Crit Care Med 2000;28:3913–3919.PubMedCrossRefGoogle Scholar
  114. 114.
    Wispé JR, Roberts RJ. Molecular basis of pulmonary oxygen toxicity. Clin Perinatol 1987;14:651–666.PubMedGoogle Scholar
  115. 115.
    Fridovich I. The biology of oxygen radicals. Science 1978;201:875–880.PubMedCrossRefGoogle Scholar
  116. 116.
    Chiumello D, Pristine G, Slutsky AS. Mechanical ventilation affects local and systemic cytokines in an animal model of acute respiratory distress syndrome. Am J Respir Crit Care Med 1999;160:109–116.PubMedGoogle Scholar
  117. 117.
    Dreyfuss D, Basset G, Soler P. Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis 1985;135:312–315.Google Scholar
  118. 118.
    Dreyfuss D, Soler P, Basset G. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive endexpiratory pressure. Am Rev Respir Dis 1998;137:1159–1164.Google Scholar
  119. 119.
    Kolobow T, Moretti MP, Fumagalli R. Severe impairment in lung function induced by high peak airway pressure during mechanical ventilation. An experimental study. Am Rev Respir Dis 1987;135:312–315.PubMedGoogle Scholar
  120. 120.
    Ranieri VM, Suter PM, Tortorella C. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 1999;282:54–61.PubMedCrossRefGoogle Scholar
  121. 121.
    Slutsky AS, Tremblay LN. Multiple system organ failure. Is mechanical ventilation a contributing factor? Am J Respir Crit Care Med 1998;157:1721–1725.PubMedGoogle Scholar
  122. 122.
    Tremblay L, Valenza F, Ribeiro SP. Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 1997;99:944–952.PubMedCrossRefGoogle Scholar
  123. 123.
    Tsuno T, Prato P, Kolobow T. Acute lung injury from mechanical ventilation at moderately high airway pressures. J Appl Physiol 1990;69:956–961.PubMedGoogle Scholar
  124. 124.
    Tusono K, Miura K, Takeya M. Histopathologic pulmonary changes from mechanical ventilation at high peak airway pressures. Am Rev Respir Dis 1991;143:1115–1120.Google Scholar
  125. 125.
    Verbrugge SJ, Bohm SH, Gommers D. Surfactant impairment after mechanical ventilation with large alveolar surface area changes and effects of positive endexpiratory pressure. Br J Anaesth 1998;80:360–364.PubMedCrossRefGoogle Scholar
  126. 126.
    Brochard L, Roudot-Thoraval F, Roupie E. Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The multi-center Trail Group on Total Volume reduction in ARDS. Am J Respir Crit Care Med 1998;158:1831–1838.PubMedGoogle Scholar
  127. 127.
    Brower RG, Shanholtz CB, Fessler HE. Prospective, randomized, controlled clinical trial comparing traditional versus reduced tidal volume ventilation in acute respiratory distress syndrome patients. Crit Care Med 1999;27:1492–1498.PubMedCrossRefGoogle Scholar
  128. 128.
    Hickling KG, Henderson SJ, Jackson R. Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe adult respiratory distress syndrome. Intensive Care Med 1990;16:372–377.PubMedCrossRefGoogle Scholar
  129. 129.
    Hickling KG, Walsh J, Henderson S. Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: a prospective study. Crit Care Med 1994;22:1568–1578.PubMedCrossRefGoogle Scholar
  130. 130.
    The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000;342:1301–1308.CrossRefGoogle Scholar
  131. 131.
    Albert RK. The prone position in acute respiratory distress syndrome: where we are, and where do we go from here. Crit Care Med 1997;25:1453–1454.PubMedCrossRefGoogle Scholar
  132. 132.
    Blanch L, Mancebo J, Perez M. Short-term effects of prone position in critically ill patients with acute respiratory distress syndrome. Intensive Care Med 1997;23: 1033–1039.PubMedCrossRefGoogle Scholar
  133. 133.
    Chatte G, Sab JM, Dubois JM. Prone position in mechanically ventilated patients with severe acute respiratory failure. Am J Respir Crit Care Med 1997;155: 473–478.PubMedGoogle Scholar
  134. 134.
    Douglas WW, Rehder K, Beynen FM. Improved oxygenation in patients with acute respiratory failure: the prone position. Am Rev Respir Dis 1977;115:559–566.PubMedGoogle Scholar
  135. 135.
    Fridrich P, Krafft P, Hochleuthner H. The effects of long-term prone positioning in patients with trauma-induced adult respiratory distress syndrome. Anesth Analg 1996;83:1206–1211.PubMedGoogle Scholar
  136. 136.
    Hormann C, Benzer H, Baum M. The prone position in ARDS. A successful therapeutic strategy. Anaesthesist 1994;43:454–462.PubMedCrossRefGoogle Scholar
  137. 137.
    Lam WJ, Graham MM, Albert RK. Mechanism by which the prone position improves oxygenation in acute lung injury. Am J Respir Crit Care Med 1994; 150:184–193.Google Scholar
  138. 138.
    Langer M, Mascheroni D, Marcolin R. The prone position in ARDS patients. A clinical study. Chest 1988;94:103–107.PubMedCrossRefGoogle Scholar
  139. 139.
    Martinez M, Diaz E, Joseph D. Improvement in oxygenation by prone position and nitric oxide in patients with acute respiratory distress syndrome. Intensive Care Med 1999;25:29–36.PubMedCrossRefGoogle Scholar
  140. 140.
    Mure M, Martling CR, Lindahl SG. Dramatic effect on oxygenation in patients with severe acute lung insufficiency treated in the prone position. Crit Care Med 1997;25:1539–1544.PubMedCrossRefGoogle Scholar
  141. 141.
    Stocker R, Neff T, Stein S. Prone positioning and low-volume pressure-limited ventilation improve survival in patients with severe ARDS. Chest 1997;111: 1008–1017.PubMedCrossRefGoogle Scholar
  142. 142.
    Sznajder JI. Alveolar edema must be cleared for the acute respiratory distress syndrome patient to survive. Am J Respir Crit Care Med 2001;163:1293–1294.PubMedGoogle Scholar
  143. 143.
    Ware LB, Matthay MA. Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome. Am J Respir Crit Care Med 2001;163:1376–1383.PubMedGoogle Scholar
  144. 144.
    Weigelt JA, Norcross JF, Borman KR, Snyder WH. Early steroid therapy for respiratory failure. Arch Surg 1985;120:536–540.PubMedCrossRefGoogle Scholar
  145. 145.
    Bone RC, Fisher CJ Jr, Clemmer TP, Slotman GJ, Metz CA. Early methylprednisolone treatment for septic syndrome and the adult respiratory distress syndrome. Chest 1987;92:1032–1036PubMedCrossRefGoogle Scholar
  146. 146.
    Bernard GR, Luce JM, Sprung CL, et al. High-dose corticosteroids in patients with the adult respiratory distress syndrome. N Engl J Med 1987;317:1565–1570.PubMedCrossRefGoogle Scholar
  147. 147.
    Meduri GU, Tolley EA, Chinn A, Stentz F, Postlethwaite A. Procollagen types I and III aminoterminal propeptide levels during acute respiratory distress syndrome and in response to methylprednisolone treatment. Am J Respir Crit Care Med 1998;158:1432–1441.PubMedGoogle Scholar
  148. 148.
    Meduri GU, Chinn AJ, Leeper KV, et al. Corticosteroid rescue treatment of progressive fibroproliferation in late ARDS. Patterns of response and predictors of outcome. Chest 1994;105:1516–1527.PubMedCrossRefGoogle Scholar
  149. 149.
    Meduri GU, Headley S, Carson S, Umberger R, Kelso T, Tolley E. Prolonged methylprednisolone treatment improves lung function and outcome of unresolving ARDS. A randomized, double-blind, placebo-controlled trial. JAMA 1998;280:159–165.PubMedCrossRefGoogle Scholar
  150. 150.
    Bogdan C, Vodovotz Y, Nathan C. Macrophage deactivation by interleukin-10. J Exp Med 1991;174:1549–1555.PubMedCrossRefGoogle Scholar
  151. 151.
    Bogdan C, Paik J, Vodovotz Y, Nathan C. Contrasting mechanisms for suppression of macrophage cytokine release by transforming growth factor-;ds and interleukin-10. J Biol Chem 1992;267:23301–23308.PubMedGoogle Scholar
  152. 152.
    Krakauer T. IL-10 inhibits the adhesion of leukocytic cells to IL-1-activated human endothelial cells. Immunol Lett 1995;45:61–65.PubMedCrossRefGoogle Scholar
  153. 153.
    Wang P, Wu P, Siegle MI, Egan RW, Billah MM. Interleukin (IL)-10 inhibits nuclear factor KB (NFKB) activation in human monocytes. J Biol Chem 1995;270:9558–9563.PubMedCrossRefGoogle Scholar
  154. 154.
    Lentsch AB, Shanley TP, Sarma V, Ward PA. In vivo suppression of NF-KB and preservation of IKBa by interleukin-10 and interleukin-13. J Clin Invest 1997;100:2443–2448.PubMedCrossRefGoogle Scholar
  155. 155.
    Cassatella MA, Meda L, Gasperini S, Calzetti F, Bonora S. Interleukin 10 (IL-10) upregulates IL-1 receptor antagonist production from lipopolysaccharidestimulated human polymorphonuclear leukocytes by delaying mRNA degradation. J Exp Med 1994;179:1695–1699.PubMedCrossRefGoogle Scholar
  156. 156.
    Brown CY, Lagnado CA, Vadas MA, Goodall GJ. Differential regulation of the stability of cytokine mRNAs in lipopolysaccharide-activated blood monocytes in response to interleukin 10. J Biol Chem 1996;271:20108–20112.PubMedCrossRefGoogle Scholar
  157. 157.
    Goldman M, Marchant A, Schandene. Endogenous interleukin-10 in inflammatory disorders: regulatory roles and pharmacologic modulation. Ann NY Acad Sci 1996;796:282–293.PubMedCrossRefGoogle Scholar
  158. 158.
    Bone RC. Why sepsis trials failed. JAMA 1996;276:565–566.PubMedCrossRefGoogle Scholar
  159. 159.
    Lemeshow S, Teres D, Moseley S. Statistical issues in clinical sepsis trials. In: Sepsis and Multiple Organ Failure. Baltimore: Williams & Wilkins, 1996, pp 614–626.Google Scholar
  160. 160.
    Goldie AS, Fearon KCH, Ross JA. Natural cytokine antagonists and endogenous antiendotoxin core antibodies in sepsis syndrome. JAMA 1995;274:172–177.PubMedCrossRefGoogle Scholar
  161. 161.
    Chen CG, Malliaros J, Katerelos M, d’Apice AJ, Pease MJ. Inhibition of NFkappaB activation by a dominant-negative mutant of Ikappa Bαα. Mol Immunol 1996;33:57–61.PubMedCrossRefGoogle Scholar
  162. 162.
    Pierce JW, Schloenleber R, Jesmok G, et al. Novel inhibitors of cytokine-induced IkBα phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo. J Biol Chem 1997;272:21096–21103.PubMedCrossRefGoogle Scholar
  163. 163.
    Lee R, Beauparlant P, Elford H, Ponka P, Hiscott J. Selective inhibition of I kappaB alpha phosphorylation and HIV LTR-directed gene expression by novel antioxidant compounds. Virology 1997;234:277–290.PubMedCrossRefGoogle Scholar
  164. 164.
    Read MA, Neish AS, Luscinskas FW, Palombella VJ, Maniatis T, Collins T. The proteasome pathway is required for cytokine-induced endothelial-leukocyte adhesion molecule expression. Immunity 1995;2:493–506.PubMedCrossRefGoogle Scholar
  165. 165.
    Haas M, Page S, Page M, et al. Effect of proteasome inhibitors on monocytic IkappaB-alpha and-beta depletion, NF-kappa B activation and cytokine production. J Leukoc Biol 1998;63:395–404.PubMedGoogle Scholar
  166. 166.
    Wrighton CJ, Hofer-Warbinek R, Moll T, Eytner R, Bach FH, de Martin R. Inhibition of endothelial cell activation by adenovirus-mediated expression of I kappa B alpha, an inhibitor of the transcription factor NF-kappa B. J Exp Med 1996;183:1013–1022.PubMedCrossRefGoogle Scholar
  167. 167.
    Carter AB, Monick MM, Hunninghake GW. Lipopolysaccharide-induced NF-KB activation and cytokine release in human alveolar macrophages is PKC-independent and TK- and PC-PLC-dependent. Am J Respir Cell Mol Biol 1998;18:384–391.PubMedGoogle Scholar
  168. 168.
    Schreck R, Alberman K, Bauerle PA. Nuclear factor KB: an oxidative stressresponsive transcription factor of eukaryotic cells (a review). Free Rad Commun 1992;17:221–237.CrossRefGoogle Scholar
  169. 169.
    Harant H, Andrew PJ, Reddy GS, Foglar E, Lindley IJ. 1 Alpha, 25dihydroxyvitamin D3 and a variety of its natural metabolites transcriptionally repress NF-kappaB-mediated interleukin-8 gene expression. Eur J Biochem 1997;250:63–71.PubMedCrossRefGoogle Scholar
  170. 170.
    Lyss G, Schmidt TJ, Mefort I, Pahl HL. Helenalin, an anti-inflammatory sesquiterpene lactone from Arnica, selectively inhibits transcriptional factor NFkappaB. Biol Chem 1997;378:951–961.PubMedCrossRefGoogle Scholar
  171. 171.
    Wong HR, Wispé JR. The stress response and the lung. Am J Physiol 1997;273:L1-L9.Google Scholar
  172. 172.
    Wong HR, Ryan M, Wispé JR. Stress response decreases NF-KB nuclear translocation and increases I-KBa expression in A549 cells. J Clin Invest 1997;99: 2423–2428.PubMedCrossRefGoogle Scholar
  173. 173.
    Wong HR, Ryan M, Wippé JR. The heat shock response inhibits activation of inducible nitric oxide synthase gene expression by blocking I-KB degradation and NF-KB translocation. Biochem Biophys Res Commun 1997;231:257–263.PubMedCrossRefGoogle Scholar
  174. 174.
    Thomas SC, Ryan MA, Shanley TP, Wong HR. Induction of the stress response with prostaglandin-A1 increases I-KBa gene expression. FASEB J 1998;12:1371–1378.PubMedGoogle Scholar
  175. 175.
    Klosterhalfen B, Hauptmann S, Offner F-A, et al. Induction of heat shock protein 70 by zinc-bis-(DL-hydrogenaspartate) reduces cytokine liberation, apoptosis, and mortality rate in a rat model of LD100 endotoxemia. Shock 1997;7: 254–262.PubMedCrossRefGoogle Scholar
  176. 176.
    Han J, Beutler B. The essential role of the UA-rich sequence in endotoxininduced cachectin/TNF synthesis. Eur Cytokine Netw 1990;1:71–75.PubMedGoogle Scholar
  177. 177.
    Moriera AL, Sampaio EP, Zmuidzinas A. Thalidomide exerts its inhibitory action on tumor necrosis factor alpha by enhancing mRNA degradation. J Exp Med 1993;177:1675–1680.CrossRefGoogle Scholar
  178. 178.
    Wilson GM, Deeley RG. An episomal expression vector system for monitoring sequence-specific effects on mRNA stability in human cell lines. Plasmid 1995;33:198–207.PubMedCrossRefGoogle Scholar
  179. 179.
    Hesketh JE. mRNA targeting: signals in the 3′-untranslated sequences for sorting of some mRNA’s. Biochem Soc Trans 1996;24:521–527.PubMedGoogle Scholar
  180. 180.
    Beutler B, Brown T. Polymorphism of the mouse TNF-a locus: sequence studies of the 3′-untranslated region and first intron. Gene 1993;129:279–283.PubMedCrossRefGoogle Scholar
  181. 181.
    Becker L, Brown T, Fink C. Sequence analysis of the tumor necrosis factor gene in pediatric patients with autoimmunity. Pediatr Res 1995;37:165–168.PubMedCrossRefGoogle Scholar
  182. 182.
    Murphy K, Haudek SB, Thompson M, Giroir BP. Molecular biology of septic shock. New Horiz 1998;6:181–193.PubMedGoogle Scholar
  183. 183.
    Westendorp RG, Langermans JA, Huizinga TW, Verweij CL, Sturk A. Genetic influence on cytokine production and fatal meningococcal disease. Lancet 1997;349:1912–1913.PubMedCrossRefGoogle Scholar
  184. 184.
    Turner D, Grant SCD, Yonan N, Sheldon S, Dyer PA, Sinnott PJ, Hutchinson IV. Cytokine gene polymorphism and heart transplant rejection. Transplantation 1997;64:776–779.PubMedCrossRefGoogle Scholar
  185. 185.
    Chiang M-Y, Chan H, Zounes MA, Freier SM, Lima WF, Bennett CF. Antisense oligonucleotides inhibit intercellular adhesion molecule 1 expression by two distinct mechanisms. J Biol Chem 1991;266:18162–18171.PubMedGoogle Scholar
  186. 186.
    Stepkowski SM, Tu Y, Condon TP, Bennett CF. Blocking of heart allograft rejection by intercellular adhesion molecule 1 antisense oligonucleotides alone or in combination with other immunosuppressive modalities. J Immunol 1995;153: 5336–5346.Google Scholar
  187. 187.
    Kumasake T, Quinlan WM, Doyle NA, et al. Role of intercellular adhesion molecule 1 (ICAM-1) in endotoxin-induced pneumonia evaluated using ICAM-1 antisense oligonucleotides, ICAM-1 monoclonal antibodies, and ICAM-1 mutant mice. J Clin Invest 1996;97:2362–2369.CrossRefGoogle Scholar
  188. 188.
    Lefebvre d’Hellencourt C, Diaw L, Guenounou M. Immunomodulation by cytokine antisense oligonucleotides. Eur Cytokine Netw 1995;6:7–19.PubMedGoogle Scholar
  189. 189.
    Askari FK, McDonnell WM. Molecular medicine: antisense-oligonucleotide therapy. N Engl J Med 1996;334:316–318.PubMedCrossRefGoogle Scholar
  190. 190.
    Stein CA, Cheng YC. Antisense oligonucleotides as therapeutic agents-is the bullet really magic? Science 1993;261:1004–1012.PubMedCrossRefGoogle Scholar
  191. 191.
    Mulligan MS, Wilson GP, Todd RF, et al. Role of β31, β32 integrins and ICAM-1 in lung injury after deposition of IgG and IgA immune complexes. J Immunol 1993;150:2407–2417.PubMedGoogle Scholar
  192. 192.
    Ridings PC, Windsor ACJ, Jutila MA, et al. A dual-binding monoclonal antibody to E- and L-selectin attenuates sepsis-induced lung injury. Am J Respir Crit Care Med 1995;151:1995–2004.Google Scholar
  193. 193.
    Mulligan MS, Miyasaka M, Tamatani T, Jones ML, Ward PA. Requirements for L-selectin in neutrophil-mediated lung injury in rats. J Immunol 1994;152: 832–840.PubMedGoogle Scholar
  194. 194.
    Mulligan MS, Polley MJ, Bayer RJ, Nunn MF, Paulson JC, Ward PA. Neutrophildependent acute lung injury. Requirement for P-selectin (GMP-140). J Clin Invest 1992;90:1600–1607.PubMedCrossRefGoogle Scholar
  195. 195.
    Abbas AK, Lichtman AH, Pober JS. Cytokines. In: Cellular and Molecular Immunology. Philadelphia: WB Saunders, 1994, pp 417–418.Google Scholar
  196. 196.
    Matsumoto T, Yokoi K, Mukaida N, et al. Pivotal role of interleukin-8 in the acute respiratory distress syndrome and cerebral reperfusion injury. J Leukoc Biol 1997;62:581–587.PubMedGoogle Scholar
  197. 197.
    Folkesson HG, Matthay MA, Hebert CA, Broaddus VC. Acid aspiration-induced lung injury in rabbits is mediated by interleukin-8-dependent mechanisms. J Clin Invest 1995;96:107–116.PubMedCrossRefGoogle Scholar
  198. 198.
    Mulligan MS, Jones ML, Bolanowski MA, et al. Inhibition of lung inflammatory reactions in rats by an anti-human IL-8 antibody. J Immunol 1993;150: 5585–5595.PubMedGoogle Scholar
  199. 199.
    Ponath P. Chemokine receptor antagonists: novel therapeutics for inflammation and AIDS. Exp Opin Invest Drugs 1998;7:1–18.CrossRefGoogle Scholar
  200. 200.
    Albelda SM, Sheppard D. Functional genomics and expression profiling. Be there or be square. Am J Respir Cell Mol Biol 2000;23:265–269.PubMedGoogle Scholar
  201. 201.
    DeRisi JL, Iyer VR. Genomics and array technology. Curr Opin Oncol 1999;11: 76–79.PubMedCrossRefGoogle Scholar
  202. 202.
    Lockhart DJ, Winzeler EA. Genomics, gene expression and DNA arrays. Nature 2000;405:827–836.PubMedCrossRefGoogle Scholar
  203. 203.
    Haataja R, Ramet M, Marttila R, Hallman M. Surfactant proteins A and B as interactive genetic determinants of neonatal respiratory distress syndrome. Hum Mol Genet 2000;9:2751–2760.PubMedCrossRefGoogle Scholar
  204. 204.
    Lin Z, Pearson C, Chinchilli V, et al. Polymorphisms of human SP-A, SP-B, and SP-D genes: association of SP-B Thr131Ile with ARDS. Clin Genet 2000;58: 181–191.PubMedCrossRefGoogle Scholar
  205. 205.
    Nogee LM, Dunbar AE, Wert SE, Askin F, Hamvas A, Whitsett JA. A mutation in the surfactant protein C gene associated with familial interstitial lung disease. N Engl J Med 2001;344:573–579.PubMedCrossRefGoogle Scholar
  206. 206.
    Majetschak M, Flohe S, Obertacke U, et al. Relation of TNF gene polymorphism to severe sepsis in trauma patients. Ann Surg 1999;230:207–214.PubMedCrossRefGoogle Scholar
  207. 207.
    Mira JP, Cariou A, Grail F, et al. Association of TNF2, a TNF-alpha promoter polymorphism, with septic shock susceptibility and mortality: a multicenter study. JAMA 1999; 282:561–568.PubMedCrossRefGoogle Scholar
  208. 208.
    Stuber F, Petersen M, Bokelmann F, Schade U. A genomic polymorphism within the tumor necrosis factor locus influences plasma tumor necrosis factor-alpha concentrations and outcome of patients with severe sepsis. Crit Care Med 1996;24:381–384.PubMedCrossRefGoogle Scholar
  209. 209.
    Kaminski N. Bioinformatics. Am J Respir Cell Mol Biol 2000;23:705–711.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Thomas P. Shanley
  • Bruce Grossman
  • Hector R. Wong

There are no affiliations available

Personalised recommendations