Skip to main content

Abstract

The search for an ideal vascular conduit remains elusive, with the majority of synthetic and biological prostheses having only limited success in clinical practice, depending on the diameter of the arterial replacement. Although there is a reasonable success when used as a large-diameter peripheral vascular replacement (>5–6 mm), depending on the location of the replacement vessel and the status of the patient, there is no successful artificial small-diameter vascular prosthesis. The autogenous saphenous vein (SV) continues to be the most widely used vascular prosthesis for small-caliber vessel reconstruction. The autogenous SV is, however, not available to all patients, because it may be unsuitable or absent. The SV is also itself not the perfect arterial conduit. Evidence of significant deterioration of vein grafts has been reported, with over 30% of autogenous SVs developing serious defects that threaten the long-term function of the graft (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. LiCalzi LK and Stansel HC. Failure of autogenous reversed saphenous vein femoropopliteal grafting: pathophysiology and prevention. Surgery 1982; 91: 352–358.

    CAS  Google Scholar 

  2. Leather RP, Karmody AM, Corson JD, and Shah DM. Saphenous vein as a graft and as an in situ arterial bypass, in Modern Vascular Grafts 1987; (Sawyer PN, ed), McGraw-Hill, New York, pp 133–152.

    Google Scholar 

  3. Griesler HP. 1991. Medical Intelligence Unit. New biologic and synthetic vascular prostheses, RG Landes, pp 1–91.

    Google Scholar 

  4. Carrel A and Guthrie CC. Uniterminal and biterminal venous transplantations. Surg Gynecol Obstet 1906; 2: 266–286.

    Google Scholar 

  5. Kunlin J. Le traitement de D’arterite obliterante por la greffe veineuse. Arch Mal Coeur 1949; 42: 371–372.

    Google Scholar 

  6. Szilagyi DE, Rodriguez FJ, Smith RF, and Elliot JP. Late fate of arterial allografts. Arch Surg 1970; 101: 721–733.

    Article  CAS  Google Scholar 

  7. Perloff JL, Reckard CR, Rowlands DT Jr., and Barker CF. Venous homograft: an immunological question. Surgery 1972; 72: 961–970.

    CAS  Google Scholar 

  8. Axthelm SC, Porter JM, Strickland S, and Baur GM. Antigenicity of venous allografts. Ann Surg 1979; 189: 290–293.

    Article  CAS  Google Scholar 

  9. Tice DA, Zerbino VR, Isom OW, Cunningham JN, and Engelman RM. Coronary artery bypass with freeze-preserved saphenous vein allografts. J Thorac Cardiovasc Surg 1976; 71: 378–382.

    CAS  Google Scholar 

  10. Dardik H, Ibrahim IM, Srayregen S, and Dardik II. Clinical experience with modified human umbilical cord vein for arterial bypass. Surgery 1976; 79: 618–624.

    CAS  Google Scholar 

  11. Dardik H, Baier RE, Meenaghan M, Natiella J, Weinberg S, Turner R, et al. Morphologic and biophysical assessment of long term human umbilical cord vein implants used as vascular conduits. Surg Gynecol Obstet 1982; 154: 17–26.

    CAS  Google Scholar 

  12. Hasson JE, Newton D, Waltman AC, Fallon JT, Brewster DC, Darling C, and Abbott WM. Mural degeneration in glutaraldehyde-tanned umbilical vein graft: incidence and implications. J Vasc Surg 1986; 4: 243–250.

    CAS  Google Scholar 

  13. Dardik H, Miller N, Dardik A, Ibrahim IM, Sussman B, Berry SM, et al. Decade of experience with the glutaraldehyde-tanned human umbilical cord vein graft for revascularization of the lower limb. J Vasc Surg 1988; 7: 336–346.

    CAS  Google Scholar 

  14. Karkow WS, Cranley JJ, Cranley RD, Hafner CD, and Rouff BA. Extended study of aneurysm formation in HUV grafts. J Vasc Surg 1986; 4: 486492.

    Google Scholar 

  15. Rosenberg N, Gaughran ERL, Henderson J, Lord GH, and Douglas JF. Use of segmental arterial implants prepared by enzymatic modification of heterologous blood vessels. Surg Forum 1956; 6: 242–246.

    Google Scholar 

  16. Rosenberg N, Martinez A, Sawyer PN, Wesolowski SA, Postlethwait RW, and Dillon ML. Tanned collagen arterial prosthesis of bovine carotid origin in man. Ann Surg 1966; 164: 247–256.

    Article  CAS  Google Scholar 

  17. Reddy K, Hague SN, Cohen L, Sophie Z, Feller J, Stillman RM, et al. Clinical experience with the NCGT graft. J Biomed Mater Res 1981; 15: 335–341.

    Article  CAS  Google Scholar 

  18. Schroder A, Imig H, Peiper U, Neidel J, and Petereit A. Results of a bovine collagen vascular graft (Solcograft-P) in infra-inguinal positions. Eur J Vasc Surg 1988; 2: 315–321.

    Article  CAS  Google Scholar 

  19. Sawyer PN, Fitzgerald J, Kaplitt MJ, Sanders RJ, Williams GM, Leather RP, et al. Ten-year experience with the negatively charged glutaraldehydetanned vascular graft in peripheral vascular surgery. Initial multicenter trial. Am J Surg 1987; 154: 533–537.

    Article  CAS  Google Scholar 

  20. Werkmeister JA and Ramshaw JAM. Immunology of collagen-based biomaterials in Handbook of Biomaterials Engineering 1999; ( Wise DL, ed), Marcel Dekker, New York, pp

    Google Scholar 

  21. Oliver RF, Hulme MJ, Mudie A, and Grant RA. Skin collagen allografts in rats. Nature (London) 1975; 258: 537–538.

    Article  CAS  Google Scholar 

  22. Wainwright DJ. Use of an acellular allograft dermal matrix (Alloderm) in the management of full-thickness burns. Burns 1995; 21: 243–248.

    Article  CAS  Google Scholar 

  23. Malone JM, Brendel K, Duhamel RC, and Reinert RL. Detergent-extracted small-diameter vascular prostheses. J Vasc Surg 1984; 1: 181–191.

    CAS  Google Scholar 

  24. Wilson GJ, Yeger H, Klement P, Lee JM, and Courtman DW. Acellular matrix allograft small caliber vascular prostheses. Trans ASAIO 1990; 36: M340 — M343.

    CAS  Google Scholar 

  25. Wilson GJ, Courtman DW, Klement P, Lee JM, and Yeger H. Acellular matrix: a biomaterials approach for coronary artery bypass and heart valve replacement. Ann Thorac Surg 1995; 60: S353 — S358.

    Article  CAS  Google Scholar 

  26. Klement P, Wilson GJ, and Yeger H. Process for preparing biological mammalian implants. US patent 1988; 4776853.

    Google Scholar 

  27. Bodnar E, Olsen EGJ, Florio R, and Dobrin J. Damage of porcine aortic valve tissue caused by the surfactant sodium dodecyl sulphate. Thorac Cardiovasc Surg 1986; 34: 82–85.

    Article  CAS  Google Scholar 

  28. Courtman DW, Pereira CA, Kashef V, McComb D, Lee JM, and Wilson GJ. Development of a pericardial acellular matrix biomaterial: biochemical and mechanical effects of cell extraction. J Biomed Mater Res 1994; 28: 655–666.

    Article  CAS  Google Scholar 

  29. Zlabinger GJ, Menzel EJ, and Steffen C. Induction of anti-pepsin antibodies after immunization with pepsin-extracted collagen. Matrix 1989; 9: 135139.

    Google Scholar 

  30. Robson SC, Candinas D, Hancock WW, Wrighton C, Winkler H, and Bach FH. Role of endothelial cells in transplantation. Int Arch Allergy Immunol 1995; 106: 305–322.

    Article  CAS  Google Scholar 

  31. Allaire E, Bruneval P, Mandet CM, Becquemin JP, and Michel JB. Immunogenicity of the extra-cellular matrix in arterial xenografts. Surgery 1997; 122: 73–81.

    Article  CAS  Google Scholar 

  32. Tauro JC, Parsons JR, Ricci J, and Alexander H. Comparison of bovine collagen xenografts to autografts in the rabbit. Clin Orthoped Rel Res 1991; 266: 271–284.

    Google Scholar 

  33. Yates SG, Barros D’Sa AAB, Berger K, Fernandex LG, Wood SJ, Rittenhouse EA, et al. Preclotting of porous arterial prostheses. Ann Surg 1978; 188: 611–622.

    Article  CAS  Google Scholar 

  34. Wooster DL, Louch RE, and Krajden S. Intraoperative bacterial contamination of vascular grafts: a prospective study. Canadian J Surg 1985; 28: 407–410.

    CAS  Google Scholar 

  35. Lee ME, Chaux A, Kass RM, and Matloff JM. Elimination of graft haemorrhage in heparinized patients with a collagen-coated Dacron prosthesis. Mt Sinai J Med 1988; 55: 144–146.

    CAS  Google Scholar 

  36. Stephen M, Loewenthal J, Little JM, May J, and Sheil AGR. Autogenous veins and velour Dacron infemoropopliteal arterial bypass. Surgery 1977; 81: 314–318.

    CAS  Google Scholar 

  37. Freischlag JA and Moore WS. Clinical experience with a collagen impregnated knitted Dacron vascular graft. Ann Vasc Surg 1990; 4: 449–454.

    Article  CAS  Google Scholar 

  38. Quinones-Baldrich WJ, Moore WS, Ziomek S, and Chvapil M. Development of a “leak-proof” knitted Dacron vascular prosthesis. J Vasc Surg 1986; 3: 895–903.

    Article  CAS  Google Scholar 

  39. Scott SM, Gaddy LE, Sahmel R, and Hofmann H. 1987. Collagen-coated vascular prosthesis. J Cardiovasc Surg 1987; 28: 498–504.

    Google Scholar 

  40. Jonas RA, Schoen FJ, Levy RJ, and Castaneda AR. Biological sealants and knitted Dacron: porosity and histological comparisons of vascular graft materials with and without collagen and fibrin glue pretreatments. Ann Thorac Surg 1986; 657–663.

    Google Scholar 

  41. Jonas RA, Ziemer G, Schoen FJ, Britton L, and Castaneda AR. Biological sealants and knitted Dacron conduits: comparison of collagen and fibrin glue pretreatments in circulatory models. Ann Thorac Surg 1987; 44: 283–290.

    Article  CAS  Google Scholar 

  42. Reigel MM, Holler LH, Pairolero PC, and Hallett JW. Early experience with a new collagen-impregnated aortic graft. Am Surg 1988; 54: 134–136.

    CAS  Google Scholar 

  43. De Mol Van Otterloo JCA, Van Bockel JH, Ponfoort ED, Van Den Akker PJ, Hermans J, and Terpstra JL. Randomized study on the effect of collagen impregnation of knotted Dacron velour aortoiliac prostheses on blood loss during aortic reconstruction. Br J Surg 1991; 78: 288–292.

    Google Scholar 

  44. Ishikawa T, Adachi S, Ando M, Nakaya M, Takamoto S, and Kawashima Y. Clinical experience with collagen-pretreated Dacron vascular grafts. Artif Organs Today 1995; 4: 299–307.

    Google Scholar 

  45. Stegmann T, Haverich A, and Borst HG. Clinical experience with a new collagen-coated Dacron double-velour prosthesis. Thorac Cardiovasc Surg 1986; 34: 54–56.

    Article  CAS  Google Scholar 

  46. Hirt SW, Aoki M, Demertzis S, Siclari F, Haverich A, and Borst HG. Comparative in vivo study on the healing qualities of four different presealed-vascular prostheses. J Vasc Surg 1993; 17: 538–545.

    Article  CAS  Google Scholar 

  47. Marois Y, Guidoin R, Deng X, King MW, Martin L, and Roy R. Dilaine II graft: a new collagen-impregnated warp-knitted polyester arterial prosthesis. Ann Vasc Surg 1997; 11: 133–140.

    Article  CAS  Google Scholar 

  48. Norgren L, Holtâs S, Persson G, Ribbe E, Saxne T, and Thörne J. Immune response to collagen-impregnated Dacron double-velour grafts for aortic and aorto-femoral reconstructions. Eur J Vasc Surg 1990; 4: 379–384.

    Article  CAS  Google Scholar 

  49. Canadian Multicenter Hemashield Study Group. Immunologic response to collagen-impregnated vascular grafts: a randomized prospective study. J Vasc Surg 1990; 12: 741–746.

    Article  Google Scholar 

  50. Schmiedt W, Neufang A, Scholl E, Schmid FX, and Oelert H. Immune response to gelatin-and collagen-impregnated aortic Dacron grafts. A randomized study. Vasc Surg 1996; 30: 513–518.

    Article  Google Scholar 

  51. Konrad P, Dougan P, and Bergqvist D. Acute thrombogenicity of collagen coating of Dacron grafts: an experimental study in sheep. Eur J Surg 1992; 6: 67–72.

    CAS  Google Scholar 

  52. Guidoin R, Marceau D, Couture J, Rao TJ, Merhi Y, Roy P-E, and De la Faye D. Collagen coatings as biological sealants for textile arterial prostheses. Biomaterials 1989; 10: 156–165.

    Article  CAS  Google Scholar 

  53. Shindo S, Takagi A, and Whittemore AD. Improved patency of collagen-impregnated grafts after in vitro autogenous endothelial cell seeding. J Vasc Surg 1987; 6: 325–332.

    CAS  Google Scholar 

  54. Sirois E and Doillon CJ. Morphology of cells cultivated on a collagen-coated vascular prosthesis submitted in vitro to a flow under pressure. Cells Materials 1991; 1: 291–299.

    Google Scholar 

  55. De Mol Van Otterloo JCA, Van Bockel JH, Ponfoort ED, Brommer EJP, Hermans J, and Daha MR. Effects of aortic reconstruction and collagen impregnation of Dacron prostheses on the complement system. J Vasc Surg 1992; 16: 774–783.

    Google Scholar 

  56. Ketharanathan V. Vascular prostheses. US patent, 1984; 4446139.

    Google Scholar 

  57. Roberts G, McCormack H, Ketharanathan V, Macleish DG, Field PL, and Milne PY. Role of physical and chemical characteristics in assessing the performance of a new biological vascular graft. J Biomed Mat Res 1989; 23: 443–450.

    Article  CAS  Google Scholar 

  58. O’Donnell TF, Mackey W, McCullough JL, Maxwell SL, Farber SP, Deterling RA, and Callas AD. Correlation of operative findings with angiographic and noninvasive hemodynamic factors associated with failure of polytetrafluoroethylene grafts. J Vasc Surg 1984; 1: 136–148.

    Google Scholar 

  59. Ketharanathan V and Christie BA. Bovine ureter as a vascular prosthesis: a preliminary report on an experimental study in dogs. Aust NZ J Surg 1982; 52: 590–593.

    Article  CAS  Google Scholar 

  60. Burns P, Edwards GA, Roberts GR, Ketharanathan V, and Hatami-Monazah H. Performance of a new vascular xeno prosthesis. ASAIO J 1989; 35: 214–218.

    Article  CAS  Google Scholar 

  61. Guerreiro D, Ketharanathan V, Nunn G, and Lennox SC. Evaluation of synthetic and biosynthetic conduits used as aorto-pulmonary shunts in growing pigs. J Cardiovasc Surg 1984; 25: 313–320.

    CAS  Google Scholar 

  62. Matsumoto T, Holmes RH, Burdick CO, Heisterkamp CA, and O’Connell TJ. Fate of the inverted segment of small bowel used for the replacement of major veins. Surgery 1966; 60: 739–743.

    CAS  Google Scholar 

  63. Lawler MR, Foster JH, and Scott HW Jr. Evaluation of canine intestinal submucosa as a vascular substitute. Am J Surg 1971; 122: 517–519.

    Article  Google Scholar 

  64. Lantz GC, Badylak SF, Hiles MC, Coffey AC, Geddes LA, Kokini K, Sandusky GE, and Morff RJ. Small intestinal submucosa as a vascular graft: a review. J Invest Surg 1993; 6: 297–310.

    Article  CAS  Google Scholar 

  65. Broll R, Wenzel W, Bruch HP, Franke S, Lang J, and Schroter G. Replacement of dog’s aorta by autologous intestinal muscle in the infected retroperitoneum. Eur Surg Res 1986; 18: 390396.

    Google Scholar 

  66. Lantz GC, Badylak SF, Coffey AC, Geddes LA, and Blevins WE. Small intestinal submucosa as a small diameter arterial graft in the dog. J Invest Surg 1990; 3: 217–227.

    Article  CAS  Google Scholar 

  67. Lantz GC, Badylak SF, Coffey AC, Geddes LA, and Sandusky GE. Small intestinal submucosa as a superior vena cava graft in the dog. J Surg Res 1992; 53: 175–181.

    Article  CAS  Google Scholar 

  68. Hiles MC, Badylak SF, Geddes LA, Kokini K, and Morff RJ. Porosity of porcine small intestinal submucosa for use as a vascular graft. J Biomed Mater Res 1993; 27: 139–144.

    Article  CAS  Google Scholar 

  69. Badylak SF, Lantz GC, Coffey AC, and Geddes LA. Small intestinal submucosa as a large diameter vascular graft in the dog. J Surg Res 1989; 47: 74–80.

    Article  CAS  Google Scholar 

  70. Sandusky GE Jr, Badylak SF, Morff RJ, Johnson WD, and Lantz G. Histologic findings after in vivo placement of small intestinal submucosa grafts and saphenous vein grafts in the carotid artery in dogs. Am J Pathol 1992; 140: 317–324.

    Google Scholar 

  71. Prevel CD, Eppley BL, McCarty M, Jackson JR, Voytik SL, Hiles MC, and Badylak SF. Experimental evaluation of small intestinal submucosa as a microvascular graft material. Microsurgery 1994; 15: 586–591.

    Article  CAS  Google Scholar 

  72. Clarke KM, Lantz GC, Salisbury SK, Badylak SF, Hiles MC, and Voytik SL. Intestinal submucosa and polypropylene mesh for abdominal wall repair in dogs. J Surg Res 1996; 60: 107–114.

    Article  CAS  Google Scholar 

  73. Lenz SD, Montgomery RD, Terry GC, and May TC. Small intestine submucosa for ACL replacement: biomechanical and histopathological evaluation in dogs. Proceedings of the 24th Annual Meeting of the Society for Biomaterials, San Diego, CA, 1998; p. 467.

    Google Scholar 

  74. Karmas E. Sausage Casing Technology, 1974; Noyes Data, Park Ridge, NJ.

    Google Scholar 

  75. Menasche P, Flaud P, Huc A, and Piwnica A. Collagen vascular grafts: a step towards improved compliance in small-calibre bypass surgery; preliminary report. Life Support Systems 1984; 2: 233–237.

    CAS  Google Scholar 

  76. Salles CA, Puig LB, Casagrande IS, Vieira GL, Kalil RA, Souza LSS, and Andrade MAM Jr. Early experience with crimped bovine pericardial conduit for arterial reconstruction. Eur J Cardiothorac Surg 1991; 5: 273–279.

    Article  CAS  Google Scholar 

  77. Salles CA, Moreira MCV, Borem PM, Gusmao JB, Teixeira VC, Silva RRP, et al. Aortic reconstruction with crimped bovine pericardial conduits. J Heart Valve Dis 1998; 7: 305–312.

    CAS  Google Scholar 

  78. Wyler A, and Markus RT. Tensile testing of tubular vascular grafts produced by thermal compression fusion of flat collagenous materials. JBiomed Mater Res 1992; 26: 1141–1146.

    Article  CAS  Google Scholar 

  79. Yeager GH and Cowley RA. Studies on the use of polyethylene as a fibrous tissue stimulant. Ann Surg 1948; 12: 509–520.

    Google Scholar 

  80. Pierce EC and Baltimore MD. Autologous tissue tubes for aortic grafts in dogs. Surgery 1953; 33: 648–657.

    Google Scholar 

  81. Eiken O and Norden G. Bridging small artery defects in the dog with in situ preformed autologous connective tissue tubes. Acta Chir Scand 1961; 121: 90–102.

    CAS  Google Scholar 

  82. Schilling JA, Shurley HM, Joel W, Richter KM, and White BN. Fibrocollagenous tubes structured in vivo. Arch Pathol 1961; 71: 94–99.

    Google Scholar 

  83. Schilling JA, Shurley HM, Joel W, White BN, and Bradford RH. Abdominal aortic grafts: use of in vivo structured autologous and homologous fibrocollagenous tubes. Ann Surg 1964; 159: 819–828.

    Article  CAS  Google Scholar 

  84. Hufnagel CA. Discussion, Ann Surg 1964; 159: 828.

    Google Scholar 

  85. Assefi I and Parsonnet V. Arterial prosthesis composed of an autogenous fibrocollagenous tube with incorporated polypropylene mesh. J Newark Beth Isreal Hosp 1964; 15: 161–170.

    Google Scholar 

  86. Sparks CH. Autogenous grafts made to order. Ann Thor Surg 1969; 8: 104–113.

    Article  CAS  Google Scholar 

  87. Sparks CH. Die-grown reinforced arterial grafts: observations on long-term animal grafts and clinical experience. Ann Surg 1970; 172: 787–794.

    Article  CAS  Google Scholar 

  88. Parsonnet V, Alpert J, and Brief DK. Autogenous polypropylene-supported collagen tubes for longterm arterial replacement. Surgery 1971; 70: 935939.

    Google Scholar 

  89. Sparks CH. Silicone mandril method for growing reinforced autogenous femoropopliteal artery grafts in situ. Ann Surg 1973; 177: 293–300.

    Article  CAS  Google Scholar 

  90. Sparks CH. 1973; US patent 3707958.

    Google Scholar 

  91. Hallin RW and Sweetman WR. Sparks’ mandril graft. A seven year follow-up of mandril grafts placed by Charles H. Sparks and his associates. Am J Surg 1976; 132: 221–223.

    Article  CAS  Google Scholar 

  92. Parsonnet V, Tiro AC, Brief DK, Alpert J, and Brener BJ. Fibrocollagenous tube as a small arterial prosthesis in Graft Materials in Vascular Surgery 1978; (Dardik H, ed), Symposia Specialists, Miami, pp 249–262.

    Google Scholar 

  93. Christenson JT and Eklof B. Sparks mandril, velour Dacron and autogenous saphenous vein grafts in femoropopliteal bypass. Br J Surg 1979; 66: 514–517.

    Article  CAS  Google Scholar 

  94. Guidoin R, Noël HP, Marois M, Martin L, Laroche F, Béland L, Côté R, and Gosselin C. Another look at the Sparks-mandril arterial graft precursor for vascular repair-pathology by scanning electron microscopy. Biomater Med Dev Artif Organ 1980; 8: 145–167.

    CAS  Google Scholar 

  95. Guidoin RA, Thevenet HP, Noel H, Marois M, Gosselin C, and King M. Le Sparks-mandril comme prothese arterielle. J Maladies Vasculaires 1984; 9: 277–283.

    CAS  Google Scholar 

  96. Ketharanathan V. Vascular Prostheses 1982; US patent 4319363.

    Google Scholar 

  97. Christie B, Ketharanathan V, and Perloff U. Patency rates of minute vascular replacements. The glutaraldehyde modified mandrel grown conduits. J Surg Res 1980; 28: 519–532.

    Article  CAS  Google Scholar 

  98. Ketharanathan V and Christie BA. Glutaraldehydetanned ovine collagen conduits as vascular xeno-grafts in dogs. Arch Surg 1980; 115: 967–969.

    Article  Google Scholar 

  99. Edwards GA and Roberts G. Development of an ovine collagen-based composite vascular prosthesis. Clin Mater 1992; 9: 211–223.

    Article  CAS  Google Scholar 

  100. Werkmeister JA, White JF, and Ramshaw JAM. Evaluation of the Omniflow collagen-polymer vascular prosthesis. Med Prog Technol 1994; 20: 231–242.

    CAS  Google Scholar 

  101. Werkmeister JA, Glattauer V, Tebb TA, Ramshaw JAM, Edwards GA, and Roberts G. Structural stability of long-term implants of a collagen-based vascular prosthesis J Long-term Effects Med Implants 1991; 1: 107–119.

    CAS  Google Scholar 

  102. Werkmeister JA, Tebb TA, White JF, and Ramshaw JAM. Monoclonal antibodies to type VI demonstrate new tissue augmentation of a collagen-based biomaterial implant. J Histochem Cytochem 1993; 41: 1701–1706.

    Article  CAS  Google Scholar 

  103. Werkmeister JA, White JF, Edwards GA, and Ramshaw JAM. Early performance appraisal of the Omniflow II vascular prosthesis as an indicator of long-term function. J Long-term Effects Med Implants 1995; 5: 1–10.

    CAS  Google Scholar 

  104. Ramshaw JAM, Peters DE, Werkmeister JA, and Ketharanathan V. Collagen organization in mandrel-grown vascular grafts. J Biomed Materials Res 1989; 23: 649–660.

    Article  CAS  Google Scholar 

  105. White JF, Werkmeister JA, Edwards GA, and Ramshaw JAM. Ultrastructural examination of a collagen-polyester composite vascular prosthesis. Clin Mater 1993; 14: 271–276.

    Article  CAS  Google Scholar 

  106. Ramshaw JAM, Edwards GA, and Werkmeister JA. Tissue-polymer composite vascular prostheses, in Encyclopedia Handbook of Biomaterials and Bioengineering 1995; (Wise DL, Trantolo DJ, Altobelli DE, Yaszemski MJ, Gresser JD, and Schwartz ER, eds), vol. 2, Part B, M. Dekker, New York, pp 953–978.

    Google Scholar 

  107. Yoshida H, Sasjima T, Goh K, Inaba M, Otani N, and Kubo Y. Early results of a reinforced biosynthetic ovine collagen vascular prosthesis for small arterial reconstruction. Surg Today 1996; 26: 262–266.

    Article  CAS  Google Scholar 

  108. Koch G, Gutschi S, Pasher O, Fruhwirth J, and Hauser H. Zur problematik des femoropoplitealen Gefa(3ersatzes: Vene, ePTFE oder ovines Kollagen ? Zentralbi Chir 1996; 121: 761–767.

    CAS  Google Scholar 

  109. Koch G, Gutschi S, Pasher O, Fruhwirth J, and Glanzer H. Analysis of 274 Omniflow vascular prostheses implanted over an eight year period. Aust NZ J Surg 1997; 67: 637–639.

    Article  CAS  Google Scholar 

  110. Ramshaw JAM, Casagranda F, White JF, Edwards GA, Hunt JA, Williams DF, and Werkmeister JA. Effects of mesh modification on the structure of a mandrel grown biosynthetic vascular prosthesis. J Biomed Materials Res 1999; 47: 309–315.

    Article  CAS  Google Scholar 

  111. Werkmeister JA, Edwards GA, White JF, Casagranda F, Hunt JA, Williams DF, and Ramshaw JAM. In vivo evaluation of modified mandrel grown vascular prostheses. J Biomed Materials Res 1999; 47: 316–323.

    Article  CAS  Google Scholar 

  112. Bell E, Ivarsson B, and Merrill C. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad Sci USA, 1979; 76: 1274–1278.

    Article  CAS  Google Scholar 

  113. Weinberg CB and Bell E. Blood vessel model constructed from collagen and cultured vascular cells. Science 1986; 231: 397–400.

    Article  CAS  Google Scholar 

  114. L’Heureux N, Germain L, Labbe R, and Auger FA. In vitro construction of a human blood vessel from cultured vascular cells: a morphologic study. J Vasc Surg 1993; 17: 499–509.

    Article  Google Scholar 

  115. L’Heureux N, Paquet S, Labbe R, Germain L, and Auger FA. Completely biological tissue-engineered human blood vessel. FASEB J 1998; 12: 47–56.

    Google Scholar 

  116. Hirai J and Matsuda T. Self-organized, tubular hybrid vascular tissue composed of vascular cells and collagen for low-pressure-loaded venous system. Cell Transplant 1995; 4: 597–608.

    Article  CAS  Google Scholar 

  117. Hirai J and Matsuda T. Venous reconstruction using hybrid vascular tissue composed of vascular cells and collagen: tissue regeneration process. Cell Transplant 1996; 5: 93–105.

    Article  CAS  Google Scholar 

  118. Shinoka T, Shumtim D, Ma PX, Tanel RE, Isogai N, Langer R, Vacanti JP, and Mayer JE. Creation of viable pulmonary artery autografts through tissue engineering. J Thoracic Cardiovasc Surg 1998; 115: 536–545.

    Article  CAS  Google Scholar 

  119. Stadler E, Campbell JH, and Campbell GR. Do cultured vascular smooth muscle cells resemble those of the artery wall? If not, why not? J Cardiovasc Pharmacol 1989; 14: S1 — S8.

    CAS  Google Scholar 

  120. Kanda K, Miwa H, and Matsuda T. Phenotypic reversion of smooth muscle cells in hybrid vascular prostheses. Cell Transplant 1995; 4: 587–595.

    Article  CAS  Google Scholar 

  121. Miwa H, Matsuda T, and Kanda K. Development of a hierarchically structured hybrid vascular graft. Jpn J Artif Organs 1993; 22: 468–472.

    Google Scholar 

  122. Kanda K, Matsuda T, and Oka T. In vitro reconstruction of hybrid vascular tissue. Hierarchic and oriented cell layers. ASAIO J 1993; 39: M561 — M566.

    Article  CAS  Google Scholar 

  123. Tranquillo RT, Girton TS, Bromberek BA, Triebes TG, and Mooradian DL. Magnetically oriented tissue-equivalent tubes: application to a circumferentially orientated media-equivalent. Biomaterials 1996; 17: 349–357.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Werkmeister, J.A., Edwards, G.A., Ramshaw, J.A.M. (2000). Collagen-Based Vascular Prostheses. In: Wise, D.L., Gresser, J.D., Trantolo, D.J., Cattaneo, M.V., Lewandrowski, KU., Yaszemski, M.J. (eds) Biomaterials Engineering and Devices: Human Applications . Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-196-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-196-1_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-226-1

  • Online ISBN: 978-1-59259-196-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics