Mating-Type Control of DNA Repair and Recombination in Saccharomyces cerevisiae

  • Jac A. Nickoloff
  • James E. Haber
Part of the Contemporary Cancer Research book series (CCR)


Mating type in the yeast Saccharomyces cerevisiae can be one of three types: a, α, and aα. These mating types reflect information present at MAT,which is normally MAT a or MATα in haploid cells, and MAT a /MATα in diploid cells. MATα and MAT a each have two open reading frames, but functions have only been identified for three gene products, Mata1p, Matα1p, and Matα2p. The MAT gene products are key regulators of the different stages of the yeast life cycle (reviewed in refs. 26,28,30). The Mata1p/Matα2p complex in diploid cells represses transcription of haploid-specific genes, including the repressor of meiosis, RME1,and HO. In MATα haploid cells, Matα1p complexes with Mcm1p to activate α-specific genes. Matα2p complexes with Mcm1p (as well as Tup1p and Ssn6p) to repress a-specific genes. MAT controls mating: a cells mate with α cells but not with a cells, and vice versa, and aα cells do not mate with any of the three cell types. The mating behavior of a and α cells reflects their expression of the haploid-specific mating pheromones, a -and α-factor and the cognate transmembrane receptors. MAT also controls meiosis and sporulation; MAT a /MATα diploids can carry out meiosis whereas diploids expressing only one of the two alleles do not. The ability of aα diploids to enter meiosis depends on repression of the regulatory gene RME11,which is turned off by the action of the Mata1p-Matα2p repressor complex. This leads to the expression of many meiosis-specific genes. Although natural aa or αα diploids are rare, they can be easily produced by using a regulated source of HO endonuclease (29) or by deleting one MAT allele (i.e. αΔ or aΔ) (44).


Homologous Recombination Ionize Radiation Haploid Cell Recombinational Repair Donor Preference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahne, F., B. Jha, and E Eckardt-Schupp. 1997. The RADS gene product involved in the avoidance of nonhomologous end-joining of DNA double-strand breaks in the yeast Saccharomyces cerevisiae. Nucleic Acids Res. 25: 743–749.PubMedCrossRefGoogle Scholar
  2. 2.
    Aladjem, M. I., N. Itoh, H. Utiyama, and G. M. Wahl. 1998. ES cells do not activate p53-dependent stress responses and undergo p53-independent apoptosis in response to DNA damage. Curr. Biol. 8: 145–155.PubMedCrossRefGoogle Scholar
  3. 3.
    Arbel, A., D. Zenvirth, and G. Simchen. 1999. Sister chromatid-based DNA repair is mediated by RAD54, not by DMC1 or TID1. EMBO J. 18: 2648–2658.PubMedCrossRefGoogle Scholar
  4. 4.
    Astrom, S. U., S. M. Okamura, and J. Rine. 1999. Yeast cell-type regulation of DNA repair. Nature 397: 310–310.PubMedCrossRefGoogle Scholar
  5. 5.
    Barnes, G., and J. Rine. 1985. Regulated expression of endonuclease EcoRI in Saccharomyces cerevisiae: Nuclear entry and biological consequences. Proc. Natl. Acad. Sci. USA 82: 1354–1358.PubMedCrossRefGoogle Scholar
  6. 6.
    Bertrand, P., D. Rouillard, A. Boulet, C. Levalois, T. Soussi, and B. S. Lopez. 1997. Increase of spontaneous intrachromosomal homologous recombination in mammalian cells expressing a mutant p53 protein. Oncogene 14: 1117–1122.PubMedCrossRefGoogle Scholar
  7. 7.
    Birdsell, J., and C. Wills. 1996. Significant competitive advantage conferred by meiosis and syngamy in the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93: 908–912.PubMedCrossRefGoogle Scholar
  8. 8.
    Boulton, S. J., and S. P. Jackson. 1998. Components of the Ku-dependent nonhomologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J. 17: 1819–1828.PubMedCrossRefGoogle Scholar
  9. 9.
    Boulton, S. J., and S. P. Jackson. 1996. Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance. Nucleic Acids Res. 24: 4639–4648.PubMedCrossRefGoogle Scholar
  10. 10.
    Boulton, S. J., and S. P. Jackson. 1996. Saccharomyces cerevisiae Ku70 potentiates illigitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J. 15: 5093–5103.PubMedGoogle Scholar
  11. 11.
    Brunborg, G., M. A. Resnick, and D. H. and Williamson. 1980. Cell-cycle-specific repair of DNA double-strand breaks in Saccharomyces cerevisiae. Radiat. Res. 82: 547–558.PubMedCrossRefGoogle Scholar
  12. 12.
    Carpenter, A. T. C. 1994. Chiasma function. Cell 77: 959–962.CrossRefGoogle Scholar
  13. 13.
    Critchlow, S. E., and S. P. Jackson. 1998. DNA end-joining: from yeast to man. Trends. Biochem. Sci. 23: 394–398.PubMedCrossRefGoogle Scholar
  14. 14.
    Durand, J., J. Birdsell, and C. Wills. 1993. Pleiotropic effects of heterozygosity at the mating-type locus of the yeast Saccharomyces cerevisiae on repair, recombination and transformation. Mutat. Res. 290: 239–247.PubMedCrossRefGoogle Scholar
  15. 15.
    Esposito, M. S., and J. E. Wagstaff. 1981. Mechanisms of mitotic recombination, in (Strathern, J. N., E. W. Jones, and J. R. Broach, eds.), Life Cycle and Inheritance, vol. 1. The Molecular Biology of the Yeast Saccharomyces: Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 341–370.Google Scholar
  16. 16.
    Fasullo, M., and P. Dave. 1994. Mating type regulates the radiation-associated stimulation of reciprocal translocation events in Saccharomyces cerevisiae. Mol. Gen. Genet. 243: 63–70.PubMedCrossRefGoogle Scholar
  17. 17.
    Fasullo, M., R. Dave, and R. Rothstein. 1994. DNA-damaging agents stimulate the formation of directed reciprocal translocations in Saccharomyces cerevisiae. Mutat. Res. 314: 121–133.PubMedCrossRefGoogle Scholar
  18. 18.
    Friis, J., and H. Roman. 1968. The effect of the mating-type alleles on intragenic recombination in yeast. Genetics 59: 33–36.PubMedGoogle Scholar
  19. 19.
    Galitski, T., A. J. Saldanha, C. A. Styles, E. S. Lander, and G. R. Fink. 1997. Ploidy regulation of gene expression. Science 285: 251–254.CrossRefGoogle Scholar
  20. 20.
    Galli, A., and R. H. Schiestl. 1998. Effects of DNA double-strand and single-strand breaks on intrachromosomal recombination events in cell-cycle-arrested yeast cells. Genetics 149: 1235–1250.PubMedGoogle Scholar
  21. 21.
    Game, J. C. 1983. Radiation-sensitive mutants and repair in yeast, in Yeast Genetics, Fundamental and Applied Aspects. (Spencer, J. T. F. D. M. Spencer, and A. R. W. Smith, eds.), Springer-Verlag, New York, pp. 109–137.Google Scholar
  22. 22.
    Goedecke, W., M. Lijpe, H. H. Offenberg, M. van Aalderen, and C. Heyting. 1999. Mre1 1 and Ku70 interact in somatic cells, but are differentially expressed in early meiosis. Nature Genet. 23: 194–198.PubMedCrossRefGoogle Scholar
  23. 23.
    Guacci, V., E. Houton, and D. Koshland. 1994. Chromosome condensation and sister chromatid pairing in budding yeast. J. Cell. Biol. 125: 517–531.PubMedCrossRefGoogle Scholar
  24. 24.
    Haber, J. E. 1999. DNA recombination: the replication connection. Trends. Biochem. Sci. 24: 271–275.CrossRefGoogle Scholar
  25. 25.
    Haber, J. E. 1998. A locus-control region regulates yeast recombination. Trends Genet. 14: 317–321.PubMedCrossRefGoogle Scholar
  26. 26.
    Haber, J. E. 1998. Mating-type gene switching in Saccharomyces cerevisiae. Annu. Rev. Genet. 32: 561–599.PubMedCrossRefGoogle Scholar
  27. 27.
    Haber, J. E. 1999. Sir-Ku-itous routes to make ends meet. Cell 97: 829–832.PubMedCrossRefGoogle Scholar
  28. 28.
    Herskowitz, I. 1988. Life cycle of the budding yeast Saccharomyces cerevisiae. Microbiological Reviews 52: 536–553.PubMedGoogle Scholar
  29. 29.
    Herskowitz, I., and R. E. Jensen. 1991. Putting the HO gene to work: practical uses for mating-type switching. Methods Enzymol. 194: 132–146.PubMedCrossRefGoogle Scholar
  30. 30.
    Herskowitz, I., J. Rine, and J. N. Strathern. 1992. Mating-type determination and mating-type interconversion in Saccharomyces cerevisiae, in The Molecular Cellular Biology of the Yeast Saccharomyces, vol. 2. (Jones, E. W., J. R. Pringle, and J. R. Broach, eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 583–656.Google Scholar
  31. 31.
    Heude, M., and F. Fabre. 1993. a/α-Control of DNA repair in the yeast Saccharomyces cerevisiae: genetic and physiological aspects. Genetics 133: 489–498.PubMedGoogle Scholar
  32. 32.
    Ho, K. S., and R. K. Mortimer. 1973. Induction of dominant lethality by x-rays in a radiosensitive strain of yeast. Mutat. Res. 20: 45–51.PubMedCrossRefGoogle Scholar
  33. 33.
    Holm, C., T. Goto, J. C. Wang, and D. Botstein. 1985. DNA topoisomerase II is required at the time of mitosis in yeast. Cell 41: 553–563.PubMedCrossRefGoogle Scholar
  34. 34.
    Hopper, A. K., J. Kirsch, and B. D. Hall. 1975. Mating type and sporulation in yeast. II. Meiosis, recombination, and radiation sensitivity in an as diploid with altered sporulation control. Genetics 80: 61–76.PubMedGoogle Scholar
  35. 35.
    Johnson, R. D., and L. S. Symington. 1995. Functional differences and interactions among the putative RecA homologues Rad51, Rad55, and Rad57. Mol. Cell. Biol. 15: 4843–4850.PubMedGoogle Scholar
  36. 36.
    Kadyk, L. C., and L. H. Hartwell. 1992. Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae. Genetics 132: 387–402.PubMedGoogle Scholar
  37. 37.
    Keeney, S., C. N. Giroux, and N. Kleckner. 1997. Meiosis-specific DNA double-strand breaks are catalyzed by Spoil, a member of a widely conserved protein family. Cell 88: 375–384.PubMedCrossRefGoogle Scholar
  38. 38.
    Clikeman, J. A., Khalsa, G. J., Barton, S. L., and Nickoloff, J. A. 2001. Homologous recombinational repair of double-strand breaks in yeast is enhanced by MAT heterozygosity through yKudependent and -independent mechanisms. Genetics (in press).Google Scholar
  39. 39.
    Klar, A. J., J. B. Hicks, and J. N. Strathern. 1982. Directionality of yeast mating-type interconversion. Cell 28: 551–561.PubMedCrossRefGoogle Scholar
  40. 40.
    Klein, H. L. 1997. RDH54, a RAD54 homolog in Saccharomyces cerevisiae, is required for mitotic diploid-specific recombination and repair and for meiosis. Genetics 147: 1533–1543.PubMedGoogle Scholar
  41. 41.
    Kramer, K. M., J. A. Brock, K. Bloom, J. K. Moore, and J. E. Haber. 1994. Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events. Mol. Cell. Biol. 14: 1293–1301.PubMedGoogle Scholar
  42. 42.
    Kupiec, M., and R. Steinlauf. 1997. Damage-induced ectopic recombination in the yeast Saccharomyces cerevisiae. Mutat. Res. 384: 33–44.PubMedCrossRefGoogle Scholar
  43. 43.
    Latarget, R., and B. Ephrussi. 1949. Courbes de survie de levures haploides et diploides soumises aux rayons X. C. R. Acad. Sci. 229: 306–308.Google Scholar
  44. 44.
    Lee, S. E., F. Pâques, J. Sylvan, and J. E. Haber. 1999. Role of yeast SIR genes and mating type in directing DNA double-strand breaks to homologous and non-homologous repair paths. Curr. Biol. 9: 767–770.PubMedCrossRefGoogle Scholar
  45. 45.
    Lewis, L. K., J. M. Kirchner, and M. A. Resnick. 1998. Requirement for end-joining and checkpoint functions, but not RAD52-mediated recombination, after EcoRI endonuclease cleavage of Saccharomyces cerevisiae DNA. Mol. Cell. Biol. 18: 1891–1902.PubMedGoogle Scholar
  46. 46.
    Lewis, L. K., J. W. Westmoreland, and M. A. Resnick. 1999. Repair of endonuclease-induced double-strand breaks in Saccharomyces cerevisiae: essential role for genes associated with non-homologous end-joining. Genetics 152: 1513–1529.PubMedGoogle Scholar
  47. 47.
    Liang, F., M. G. Han, R. J. Romanienko, and M. Jasin. 1998. Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc. Natl. Acad. Sci. USA 95: 5172–5177.PubMedCrossRefGoogle Scholar
  48. 48.
    Lim, D.-S., and R. Hasty. 1996. A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Mol. Cell. Biol. 16: 7133–7143.PubMedGoogle Scholar
  49. 49.
    Lin, Y., T. Lukacsovich, and A. S. Waldman. 1999. Multiple pathways for repair of double-strand breaks in mammalian chromosomes. Mol. Cell. Biol. 19: 8353–8360.PubMedGoogle Scholar
  50. 50.
    Livi, G. P., and V. L. Mackay. 1980. Mating-type regulation of methyl methanesulfonate sensitivity in Saccharomyces cerevisiae. Genetics 95: 259–271.PubMedGoogle Scholar
  51. 51.
    Lovett, S. T., and R. K. Mortimer. 1987. Characterization of null mutants of the RAD55 gene of Saccharomyces cerevisiae: effects of temperature, osmotic strength and mating type. Genetics 116: 547–553.PubMedGoogle Scholar
  52. 52.
    Lustig, A. J. 1999. The Kudos of non-homologous end-joining. Nature Genet. 23: 130–131.PubMedCrossRefGoogle Scholar
  53. 53.
    Mages, G. J., H. M. Feldmann, and E. L. Winnacker. 1996. Involvement of the Saccharomyces cerevisiae HDFI gene in DNA double-strand break repair and recombination. J. Biol. Chem. 271: 7910–7915.PubMedCrossRefGoogle Scholar
  54. 54.
    Malkova, A., E. L. Ivanov, and J. E. Haber. 1996. Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced DNA replication. Proc Natl Acad Sci USA 93: 7131–7136.PubMedCrossRefGoogle Scholar
  55. 55.
    Manivasakam, P., and R. H. Schiestl. 1998. Nonhomologous end joining during restriction enzyme-mediated DNA integration in Saccharomyces cerevisiae. Mol. Cell. Biol. 18: 1736–1745.PubMedGoogle Scholar
  56. 56.
    Martin, S. G., T. Laroche, N. Suka, M. Grunstein, and S. M. Gasser. 1999. Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell 97: 621–633.PubMedCrossRefGoogle Scholar
  57. 57.
    McAinsh, A. D., S. Scott-Drew, J. A. H. Murray, and S. P. Jackson. 1999. DNA damage triggers disruption of telomeric silencing and Mec 1p-dependent relocation of Sir3p. Curr. Biol. 9: 963–966.PubMedCrossRefGoogle Scholar
  58. 58.
    Mekeel, K. L., W. Tang, L. A. Kachnic, C. M. Luo, J. S. Defrank, and S. N. Powell. 1997. Inactivation of p53 results in high-rates of homologous, recombination. Oncogene 14: 1847–1857.PubMedCrossRefGoogle Scholar
  59. 59.
    Mills, K. D., D. A. Sinclair, and L. Guarente. 1999. MEC1-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks. Cell 97: 609–620.PubMedCrossRefGoogle Scholar
  60. 60.
    Milne, G. T., S. Jin, K. B. Shannon, and D. T. Weaver. 1996. Mutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. 16: 4189–4198.PubMedGoogle Scholar
  61. 61.
    Moore, J. K., and J. E. Haber. 1996. Cell-cycle and genetic requirements of two pathways of non-homologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell. Biol. 16: 2164–2173.PubMedGoogle Scholar
  62. 62.
    Mortimer, R. K. 1958. Radiobiological and genetic studies on a polyploid series (haploid to hexaploid) of Saccharomyces cerevisiae. Radiat. Res. 9: 312–326.PubMedCrossRefGoogle Scholar
  63. 63.
    Nickoloff, J. A., and M. F. Hoekstra. 1998. Double-strand break and recombinational repair in Saccharomyces cerevisiae, in DNA Damage and Repair, vol. 1: DNA Repair in Prokaryotes and Lower Eukaryotes. ( Nickoloff, J. A. and M. F. Hoekstra, eds.), Humana Press, Totowa, NJ, pp. 335–362.Google Scholar
  64. 64.
    Pâques, F., and J. E. Haber. 1999. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63: 349–404.PubMedGoogle Scholar
  65. 65.
    Parket, A., O. Inbar, and M. Kupiec. 1995. Recombination of Ty elements in yeast can be induced by a double-strand break. Genetics 140: 67–77.PubMedGoogle Scholar
  66. 66.
    Porter, S. E., P. W. Greenwell, K. B. Ritchie, and T. D. Petes. 1996. The DNA-binding protein Hdflp (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae. Nucleic Acids Res. 24: 582–585.PubMedCrossRefGoogle Scholar
  67. 67.
    Ray, A., N. Machin, and F. W. Stahl. 1989. A DNA double chain break stimulates triparental recombination in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 86: 6225–6229.PubMedCrossRefGoogle Scholar
  68. 68.
    Resnick, M. A., and R. Martin. 1976. The repair of double-strand breaks in the nuclear DNA of Saccharomyces cerevisiae and its genetic control. Mol. Gen. Genet. 143: 119–129.PubMedCrossRefGoogle Scholar
  69. 69.
    Rothstein, R., B. Michel, and S. Gangloff. 2000. Replication fork pausing and recombination or “gimme a break”. Genes Dey. 14: 1–10.Google Scholar
  70. 70.
    Saeki, T., I. Machida, and S. Nakai. 1980. Genetic control of diploid recovery after y-irradiation in the yeast Saccharomyces cerevisiae. Mutat. Res. 73: 251–265.PubMedCrossRefGoogle Scholar
  71. 71.
    Schiestl, R. H., M. Dominska, and T. D. Petes. 1993. Transformation of Saccharomyces cerevisiae. with nonhomologous DNA: illegitimate integration of transforming DNA into yeast chromosomes and in vivo ligation of transforming DNA to mitochondrial DNA sequences. Mol. Cell. Biol. 13: 2697–2705.PubMedGoogle Scholar
  72. 72.
    Schiestl, R. H., and T. D. Petes. 1991. Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 88: 7585–7589.PubMedCrossRefGoogle Scholar
  73. 73.
    Schild, D. 1995. Suppression of a new allele of yeast RAD52 by overexpression of RAD51, mutations in srs2 and ccr4, or mating-type heterozygosity. Genetics 140: 115–127.PubMedGoogle Scholar
  74. 74.
    Shinohara, A., and T. Ogawa. 1999. Rad51/RecA protein families and the associated proteins in eukaryotes. Mutat. Res. 435: 13–21.PubMedCrossRefGoogle Scholar
  75. 75.
    Shinohara, M., E. Shitayamaguchi, J. M. Buerstedde, H. Shinagawa, H. Ogawa, and A. Shinohara. 1997. Characterization of the roles of the Saccharomyces cerevisiae RAD54 gene and a homolog of RAD54, RDH54/TILl, in mitosis and meiosis. Genetics 147: 1545–1556.PubMedGoogle Scholar
  76. 76.
    Siede, W., A. A. Friedl, I. Dianova, F. Eckhardt-Schupp, and E. C. Friedberg. 1996. The Saccharomyces cerevisiae Ku autoantigen homologue affects radiosensitivity only in the absence of homologous recombination. Genetics 142: 91–102.PubMedGoogle Scholar
  77. 77.
    Sonoda, E., M. S. Sasaki, J. M. Buerstedde, O. Bezzubova, A. Shinohara, H. Ogawa, et al. 1998. Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. EMBO J. 17: 598–608.PubMedCrossRefGoogle Scholar
  78. 78.
    Sturzbecher, H. -W., B. Donzelman, W. Henning, U. Knippschild, and S. Buchhop. 1996. p53 is linked directly to homologous recombination processes via RAD1/RecA protein interaction. EMBO J. 15: 1992–2002.PubMedGoogle Scholar
  79. 79.
    Sung, P. 1997. Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase. Genes Dev. 11: 1111–1121.PubMedCrossRefGoogle Scholar
  80. 80.
    Szeto, L., and J. R. Broach. 1997. Role of a2 protein in donor locus seletion during mating type interconversion. Mol. Cell. Biol. 17: 751–759.PubMedGoogle Scholar
  81. 81.
    Szeto, L., M. K. Fafalios, H. Zhong, A. K. Vershon, and J. R. Broach. 1997. a2p controls donor preference during mating-type interconversion in yeast by inactivating a recombinational enhancer of chromosome III. Genes Dev. 11: 1899–1911.PubMedCrossRefGoogle Scholar
  82. 82.
    Tsukamoto, Y., J. Kato, and H. Ikeda. 1997. Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature 388: 900–903.PubMedCrossRefGoogle Scholar
  83. 83.
    Tsukamoto, Y., J. -i. Kato, and H. Ikeda. 1996. Hdfl, a yeast Ku-protein homologue, is involved in illegitimate recombination but not in homologous recombination. Nucleic Acids Res. 24: 2067–2072.PubMedCrossRefGoogle Scholar
  84. 84.
    Ward, J. 1998. The nature of lesions formed by ionizing radiation, In DNA Damage and Repair: DNA Repair in Higher Eukaryotes, vol. 2. ( Nickoloff, J. A. and M. F. Hoekstra, eds.), Humana Press, Totowa, NJ, p. 65–84.Google Scholar
  85. 85.
    Weiler, K. S., L. Szeto, and J. R. Broach. 1995. Mutations affecting donor preference during mating-type interconversion in Saccharomyces cerevisiae. Genetics 139: 1495–1510.PubMedGoogle Scholar
  86. 86.
    Wiesmuller, L., J. Cammenga, and W. W. Deppert. 1996. In vivo assay of p53 function in homologous recombination between simian virus 40 chromosomes. J. Virol. 70: 737–744.PubMedGoogle Scholar
  87. 87.
    Wiley, E. A., and V. A. Zakian. 1995. Extra telomeres, but not internal tracts of telomeric DNA, reduce transcriptional repression at Saccharomyces telomeres. Genetics 139: 67–79.PubMedGoogle Scholar
  88. 88.
    Wilson, S., N. Warr, D. L. Taylor, and F. Z. Watts. 1999. The role of Schizosaccharomyces pombe Rad32, the Mre11 homologue, and other DNA damage response proteins in non-homologous end joining and telomere length maintenance. Nucleic Acids Res. 27: 2655–2661.PubMedCrossRefGoogle Scholar
  89. 89.
    Wu, C., K. Weiss, C. Yang, M. A. Harris, B. K. Tye, C. S. Newlon, R. T. Simpson, and J. E. Haber. 1998. Mcml regulates donor preference controlled by the recombination enhancer in Saccharomyces mating-type switching. Genes Dev. 12: 1726–1737.PubMedCrossRefGoogle Scholar
  90. 90.
    Wu, X., J. K. Moore, and J. E. Haber. 1996. Mechanism of MATa donor preference during mating-type switching of Saccharomyces cerevisiae. Mol. Cell. Biol. 16: 657–68.PubMedGoogle Scholar
  91. 91.
    Wu, X. H., and J. E. Haber. 1996. A 700 bp cis-acting region controls mating-type dependent recombination along the entire left arm of yeast chromosome III. Cell 87: 277–285.PubMedCrossRefGoogle Scholar
  92. 92.
    Wu, X. H., and J. E. Haber. 1995. MATa donor preference in yeast mating-type switching: activation of a large chromosomal region for recombination. Genes Dev. 9: 1922–1932.PubMedCrossRefGoogle Scholar
  93. 93.
    Wu, X. H., C. Wu, and J. E. Haber. 1997. Rules of donor preference in Saccharomyces mating-type gene switching revealed by a competition assay involving two types of recombination. Genetics 147: 399–407.PubMedGoogle Scholar
  94. 94.
    Wyrick, J. J., F. C. P. Holstege, E. G. Jennings, H. C. Causton, D. Shore, M. Grunstein, E. S. Lander, and R. A. Young. 1999. Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast. Nature 402: 418–421.PubMedCrossRefGoogle Scholar
  95. 95.
    Yamaguchi-Iwai, Y., E. Sonoda, M. S. Saski, C. Morrison, T. Haraguchi, Y. Hiraoka, et al. 1999. Mrel l is essential for the maintenance of chromosomal DNA in vertebrate cells. EMBO J. 18: 6619–6629.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2001

Authors and Affiliations

  • Jac A. Nickoloff
  • James E. Haber

There are no affiliations available

Personalised recommendations