Skip to main content

Post-Replication Repair

A New Perspective Focusing on the Coordination Between Recombination and DNA Replication

  • Chapter
DNA Damage and Repair

Part of the book series: Contemporary Cancer Research ((CCR))

  • 245 Accesses

Abstract

The repair of DNA is crucial to the survival of every organism. Organisms have evolved many biochemical pathways for detecting and repairing DNA damage with high fidelity. Failure to repair DNA with high fidelity leads to a high mutation frequency. This in turn is correlated with a high risk of cancer in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abarzua, P., W. Soeller, and K. J. Marians. 1984. Mutational analysis of primosome assembly sites. I. Distinct classes of mutants in the pBR322 Escherichia coli factor Y DNA effector sequences. J. Biol. Chem. 259: 14286–14292.

    PubMed  CAS  Google Scholar 

  2. Alonso, J. C., G. Luder, and R. H. Tailor. 1991. Characterization of Bacillus subtilis recombinational pathways. J. Bacteriol. 173: 3977–3980.

    PubMed  CAS  Google Scholar 

  3. Alonso, J. C., A. C. Stiege, B. Bobrinski, and R. Lurz. 1993. Purification and properties of the RecR protein from Bacillus subtillis 168. J. Biol. Chem. 268: 1424–1429.

    PubMed  CAS  Google Scholar 

  4. Alonso, J. C., R. H. Tailor, and G. Luder. 1988. Characterization of recombination-deficient mutants of Bacillus subtilis. J. Bacteriol. 170: 3001–3007.

    PubMed  CAS  Google Scholar 

  5. Armengod, M.-E., M. Garcia-Sogo, and E. Lambies. 1988. Transcriptional organization of the dnaN and recF genes of Escherichia coli K-12. J. Biol. Chem. 263: 12109–12114.

    PubMed  CAS  Google Scholar 

  6. Armengod, M.-E., and E. Lambies. 1986. Overlapping arrangement of the recF and dnaN operons of Escherichia coli; positive and negative control sequences. Gene 43: 183–196.

    Article  PubMed  CAS  Google Scholar 

  7. Ayora, S., A. C. Stiege, R. Lurz, and J. C. Alonso. 1997. Bacillus subtilis 168 RecR protein-DNA complexes visualized as looped structures. Mol. Gen. Genet. 254: 54–62.

    CAS  Google Scholar 

  8. Bazemore, L. R., M. Takahashi, and C. M. Radding. 1997. Kinetic analysis of pairing and strand exchange catalyzed by RecA. Detection by fluorescence energy transfer. J. Biol. Chem. 272: 14672–14682.

    Article  PubMed  CAS  Google Scholar 

  9. Blanar, M. A., S. J. Sandler, M.-E. Armengod, L. W. Ream, and A. J. Clark. 1984. Molecular analysis of the recF gene of Escherichia coli. Proc. Natl. Acad. Sci. USA. 81: 4622–4626.

    Article  PubMed  CAS  Google Scholar 

  10. Cao, Y., and T. Kogoma. 1995. The mechanism of recA polA lethality: suppression by RecAindependent recombination repair activated by the lexA(def) mutation in Escherichia coli. Genetics 139: 1483–1494.

    PubMed  CAS  Google Scholar 

  11. Chiaramello, A. E., and J. W. Zyskind. 1990. Coupling of DNA replication to growth rate in Escherichia coli: a possible role for guanosine tetraphosphate. J. Bacteriol. 172: 2013–2019.

    PubMed  CAS  Google Scholar 

  12. Ciesla, Z., P. O’Brian, and A. J. Clark. 1987. Genetic analysis of UV mutagenesis of the Escherichia coli glyU gene. Mol. Gen. Genet. 207: 1–8.

    Article  PubMed  CAS  Google Scholar 

  13. Clark, A. J. 1991. rec genes and homologous recombination on Escherichia coli. Biochimie 73: 523–632.

    Article  PubMed  CAS  Google Scholar 

  14. Clark, A. J., and S. J. Sandler. 1994. Homologous genetic recombination. Crit. Rev. Microbiol. 20: 125–142.

    Article  PubMed  CAS  Google Scholar 

  15. Cohen, A., and A. Laban. 1983. Plasmidic recombination in Escherichia coli K-12: the role of recF gene function. Mol. Gen. Genet. 189: 471–474.

    Article  PubMed  CAS  Google Scholar 

  16. Courcelle, J., C. Carswell-Crumpton, and P. C. Hanawalt. 1997. Recf and recR are required for resumption of replication at DNA replication forks in Escherchia coli. Proc. Natl. Acad. Sci. USA. 94: 3714–3719.

    Article  PubMed  CAS  Google Scholar 

  17. Cox, M. M. 1998. A broadening view of recombinational DNA repair in bacteria. Genes Cells 3: 65–78.

    Article  PubMed  CAS  Google Scholar 

  18. Cox, M. M. 1991. The RecA protein as a recombinational repair system. Mol. Microbiol. 5: 1295–1299.

    Article  PubMed  CAS  Google Scholar 

  19. Cox, M. M. 1999. Recombinational DNA repair in bacteria and the RecA protein. Prog. Nucleic Acids Res. Mol. Biol. 63: 311–366.

    Article  CAS  Google Scholar 

  20. Cox, M. M., M. F. Goodman, K. N. Kreuzer, D. J. Sherratt, S. J. Sandler, and K. J. Marians. 1999. Importance of repairing stalled replication forks. Nature 404: 37–41.

    Google Scholar 

  21. Fishel, R. A., A. A. James, and R. Kolodner. 1981. recA-independent general genetic recombination of plasmids. Nature 294: 184.

    Article  PubMed  CAS  Google Scholar 

  22. Fraser, C. M., S. Casjens, W. M. Huang, and et al. 1997. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390: 580–586.

    Article  PubMed  CAS  Google Scholar 

  23. Fraser, C. M., S. J. Norris, G. M. Weinstock, O. White, and G. G. Sutton. 1998. Complete genome sequence of Treponema pallidum, the Syphilis spirochete. Science 281: 375–388.

    Article  PubMed  CAS  Google Scholar 

  24. Galitski, T., and J. R. Roth. 1997. Pathways for homologous recombination between chromosomal direct repeats in Salmonella typhimurium. Genetics 146: 751–767.

    PubMed  CAS  Google Scholar 

  25. Griffin, T. J., and R. D. Kolodner. 1990. Purification and preliminary characterization of the Escherichia coli K-12 RecF protein. J. Bacteriol. 172: 6291–6299.

    PubMed  CAS  Google Scholar 

  26. Hedge, S., S. J. Sandler, A. J. Clark, and M. V. V. S. Mardiraju. 1995. recO and recR mutations delay induction of SOS response in Escherichia coli. Mol. Gen. Genet. 246: 254–258.

    Article  Google Scholar 

  27. Hegde, S. P., M. H. Qin, X. H. Li, M. A. Atkinson, A. J. Clark, M. Rajagopalan, and M. V. Madiraju. 1996. Interactions of RecF protein with RecO, RecR, and single-stranded DNA binding proteins reveal roles for the RecF-RecO-RecR complex in DNA repair and recombination. Proc. Natl. Acad. Sci. USA. 93: 14468–14473.

    Article  PubMed  CAS  Google Scholar 

  28. Horii, Z.-I., and A. J. Clark. 1973. Genetic analysis of the RecF Pathway to genetic recombination in Escherichia coli K-12: isolation and characterization of mutants. J. Mol. Biol. 80: 327–344.

    Article  PubMed  CAS  Google Scholar 

  29. Katayama, T., T. Kubota, K. Kurokawa, E. Crooke, and K. Sekimizu. 1998. The initiator function of DnaA protein is negatively regulated by the sliding clamp of the E. coli chromosomal replicase. Cell 94: 61–71.

    Article  PubMed  CAS  Google Scholar 

  30. Kogoma, T. 1996. Recombination by replication. Cell 85: 625–627.

    Article  PubMed  CAS  Google Scholar 

  31. Kogoma, T. 1997. Stable DNA replication: interplay between DNA replication, homologous recombination and transcription. Micro. Mol. Biol. Rev. 61: 212–238.

    CAS  Google Scholar 

  32. Kogoma, T., G. W. Cadwell, K. G. Barnard, and T. Asai. 1996. The DNA replication priming protein, PriA, is required for homologous recombination and double-strand break repair. J. Bacteriol. 178: 1258–1264.

    PubMed  CAS  Google Scholar 

  33. Kolodner, R., R. A. Fishel, and M. Howard. 1985. Genetic recombination of bacterial plasmid DNA: effect of RecF pathway mutations on plasmid recombination in Escherichia coli. J. Bacteriol. 163: 1060–1066.

    PubMed  CAS  Google Scholar 

  34. Kornberg, A., and T. Baker. 1992. DNA Replication, 2nd. W. H. Freeman and Company, New York.

    Google Scholar 

  35. Kowalczykowski, S. C., D. A. Dixon, A. K. Eggleston, S. D. Lauder, and W. M. Rehrauer. 1994. Biochemistry of homologous recombination in Escherichia coli. Microbiol. Rev. 58: 401–465.

    PubMed  CAS  Google Scholar 

  36. Kuzminov, A. 1995. Collapse and repair of replication forks in Escherichia coli. Mol. Microbiol. 16: 373–384.

    Article  PubMed  CAS  Google Scholar 

  37. Kuzminov, A. 1996. Recombinational Repair of DNA Damage. R. G. Landes Company, Austin, TX.

    Google Scholar 

  38. Kuzminov, A. 1999. Recombinational repair of DNA damage in Escherichia coli and bacteriophage X. MMBR 63: 751–813.

    PubMed  CAS  Google Scholar 

  39. Lee, E. H., and A. Kornberg. 1991. Replication deficiencies in priA mutants of Escherichia coli lacking the primosomal replication n’ protein. Proc. Natl. Acad. Sci. USA 88: 3029–3032.

    Article  PubMed  CAS  Google Scholar 

  40. Liu, J., and K. J. Marians. 1999. PriA-directed assembly of a primosome on D loop DNA. J. Biol. Chem. 274: 25033–25041.

    Article  PubMed  CAS  Google Scholar 

  41. Liu, J., P. Nurse, and K. J. Marians. 1996. The ordered Assembly of the X174-type primo-some III. PriB facilitates complex formation between PriA and DnaT. J. Biol. Chem. 271: 15656–15661.

    Article  PubMed  CAS  Google Scholar 

  42. Liu, J., L. Xu, S. J. Sandler, and K. J. Marians. 1999. Replication fork assembly at recombination intermediates is required for bacterial growth. Proc. Natl. Acad. Sci. USA 96: 3552–3555.

    Article  PubMed  CAS  Google Scholar 

  43. Liu, Y. H., A. J. Cheng, and T. C. Wang. 1998. Involvement of recF, recO, and recR genes in UV-radiation mutagenesis of Escherichia coli. J. Bacteriol. 180: 1766–1770.

    PubMed  CAS  Google Scholar 

  44. Lloyd, R. G., and C. Buckman. 1991. Overlapping functions of recD, recJ, and recN provide evidence of three epistatic groups of genes in Escherichia coli recombination and DNA repair. Biochimie 73: 313–320.

    Article  PubMed  CAS  Google Scholar 

  45. Lloyd, R. G., N. P. Evans, and C. Buckman. 1987. Formation of recombinant lacZ+ DNA in conjugational crosses with a recB mutant of Escherichia coli K12 depends on recF, recJ, and recO. Mol. Gen. Genet. 209: 135–141.

    Article  PubMed  CAS  Google Scholar 

  46. Lloyd, R. G., and K. B. Low. 1996. Homologous recombination, in Escherichia coli and Salmonella, vol. 2 ( Neidhardt F. C., ed.), ASM Press, Washington, DC, pp. 2236–2255.

    Google Scholar 

  47. Lloyd, R. G., M. C. Porton, and C. Buckman. 1988. Effect of recF, recJ, recN, recO and ruv mutations on ultraviolet survival and genetic recombination in a recD strain of Escherichia coli K-12. Mol. Gen. Genet. 212: 317–324.

    Article  PubMed  CAS  Google Scholar 

  48. Lloyd, R. G., and G. J. Sharples. 1992. Genetic analysis of recombination in prokaryotes. Curr. Opin. Genet. Dev. 2: 683–690.

    Article  PubMed  CAS  Google Scholar 

  49. Luisi-DeLuca, C. 1995. Homologous pairing of single-stranded DNA and superhelical double-stranded DNA catalyzed by RecO protein from Escherichia coli. J. Bacteriol. 177: 566–572.

    PubMed  CAS  Google Scholar 

  50. Luisi-DeLuca, C., and R. Kolodner. 1994. Purification and characterization of the Escherichia coli RecO protein. J. Mol. Biol. 236: 124–138.

    Article  PubMed  CAS  Google Scholar 

  51. MacFarland, K. J., Q. Shan, R. B. Inman, and M. M. Cox. 1997. RecA as a motor protein. Testing models for the role of ATP hydrolysis in DNA strand exchange. J. Biol. Chem. 272: 17675–17685.

    Article  PubMed  CAS  Google Scholar 

  52. Madiraju, M. V. V. S., and A. J. Clark. 1991. Effect of RecF protein on reactions catalyzed by RecA protein. Nucleic Acids Res. 19: 6295–6300.

    Article  PubMed  CAS  Google Scholar 

  53. Madiraju, M. V. V. S., and A. J. Clark. 1992. Evidence for ATP binding and double-stranded DNA binding by Escherichia coli RecF protein. J. Bacteriol. 174: 7705–7710.

    PubMed  CAS  Google Scholar 

  54. Madiraju, M. V. V. S., A. Templin, and A. J. Clark. 1988. Properties of a mutant recA-encoded protein which reveal a possible role for Escherichia coli recF-encoded protein in genetic recombination. Proc. Natl. Acad. Sci. USA 85: 6592–6569.

    Article  PubMed  CAS  Google Scholar 

  55. Mandi, A. A., and R. G. Lloyd. 1989. Identification of the recR locus of Escherichia coli K-12 and analysis of its role in recombination and DNA repair. Mol. Gen. Genet. 216: 503–510.

    Article  Google Scholar 

  56. Mandi, A. A., and R. G. Lloyd. 1989. The recR locus of Escherichia coli K-12: Molecular cloning, DNA sequencing and identification of the gene product. Nucleic Acids Res. 17: 6781–6794.

    Article  Google Scholar 

  57. Marians, K. J. 1999. PriA: at the crossroads of DNA replication and recombination. Prog. Nucleic Acids Res. Mol. Biol. 63: 39–67.

    Article  CAS  Google Scholar 

  58. Marians, K. J. 1992. Prokaryotic DNA replication. Ann. Rev. Biochem. 61: 673–719.

    Article  PubMed  CAS  Google Scholar 

  59. McGlynn, P., A. Al-Deib, J. Liu, K. Marians, and R. Lloyd. 1997. The DNA replication protein PriA and the recombination protein RecG bind D-loops. J. Mol. Biol. 270: 212–221.

    Article  PubMed  CAS  Google Scholar 

  60. Miesel, L., and J. R. Roth. 1996. Evidence that SbcB and RecF pathway functions contribute to RecBCD-dependent transductional recombination. J. Bacteriol. 178: 3146–3155.

    PubMed  CAS  Google Scholar 

  61. Moreau, P. L. 1988. Overproduction of single-stranded-DNA-binding protein specifically inhibits recombination of UV-irradiated bacteriophage DNA in Escherichia coli. J. Bacteriol. 170: 2493–2500.

    PubMed  CAS  Google Scholar 

  62. Ng, J. Y., and K. J. Marians. 1996. The ordered assembly of the X174-type primosome I. Isolation and identification of intermediate protein-DNA complexes. J. Biol. Chem. 271: 15642–15648.

    Article  PubMed  CAS  Google Scholar 

  63. Ng, J. Y., and K. J. Marians. 1996. The ordered assembly of the X174-type primosome II. Preservation of primosome composition from assembly through replication. J. Biol. Chem. 271: 15649–15655.

    Article  PubMed  CAS  Google Scholar 

  64. Nurse, P., J. Liu, and K. J. Marians. 1999. Two modes of PriA binding to DNA. J. Biol. Chem. 274: 25026–25032.

    Article  PubMed  CAS  Google Scholar 

  65. Nurse, P., K. H. Zavitz, and K. J. Marians. 1991. Inactivation of the Escherichia coli PriA DNA replication protein induces the SOS response. J. Bacteriol. 173: 6686–6693.

    PubMed  CAS  Google Scholar 

  66. Ogawa, T., A. Shinohara, A. Nabetani, T. Ikeya, X. Yu, E. H. Egelman, and H. Ogawa. 1993. RecA-like recombination proteins in eukaryotes: functions and structures of RAD51 genes. Cold Spring Harbor Sym. Quant. Biol. 58: 567–576.

    Article  CAS  Google Scholar 

  67. Oppenheim, D. S., and C. Yanofsky. 1980. Translational coupling during expression of the tryptophan operon of Escherichia coli. Genetics 95: 785–795.

    PubMed  CAS  Google Scholar 

  68. Perez-Roger, I., M. Garcia-Sogo, J. P. Navarro-Avino, C. Lopez-Acedo, F. Macian, and M. E. Armengod. 1991. Positive and negative regulatory elements in the dnaA-dnaN-recF operon of Escherichia coli. Biochimie 73: 329–334.

    Article  PubMed  CAS  Google Scholar 

  69. Register, J. C. d., and J. Griffith. 1985. The direction of RecA protein assembly onto single strand DNA is the same as the direction of strand assimilation during strand exchange. J. Biol. Chem. 260: 12308–12312.

    PubMed  CAS  Google Scholar 

  70. Rothman, R. H., and A. J. Clark. 1977. The dependence of postreplication repair on uvrB in a recF mutant of Escherichia coli K-12. Mol. Gen. Genet. 155: 279–286.

    Article  PubMed  CAS  Google Scholar 

  71. Sandler, S. J. Multiple genetic pathways of restarting replication forks in Escherichia coli. K-12 Genetics 155: 487–497.

    Google Scholar 

  72. Sandler, S. J. 1999. On the Role of the RecF, RecO and RecR Proteins in Escherichia coli, Encyclopedia of Life. Macmillian Reference Limited.

    Google Scholar 

  73. Sandler, S. J. 1996. Overlapping functions for recF and priA in cell viability and UV-inducible SOS expression are distinguished by dnaC809 in E. coli K-12. Mol. Microbiol. 19: 871–880.

    Article  PubMed  CAS  Google Scholar 

  74. Sandler, S. J. 1994. Studies on the mechanism of reduction of UV-inducible sulAp expression by recF overexpression in E. coli K-12. Mol. Gen. Genet. 245: 741–749.

    Article  PubMed  CAS  Google Scholar 

  75. Sandler, S. J., B. Chackerian, J. T. Li, and A. J. Clark. 1992. Sequence and complementation analysis of recF genes from Escherichia coli, Salmonella typhimurium, Pseudomonas putida and Bacillus subtilis: evidence for an essential nucleotide binding fold. Nucleic Acids Res. 20: 839–845.

    Article  PubMed  CAS  Google Scholar 

  76. Sandler, S. J., and A. J. Clark. 1990. Factors affecting expression of the recF gene of E. coli K12. Gene 86: 35–43.

    Article  PubMed  CAS  Google Scholar 

  77. Sandler, S. J., and A. J. Clark. 1994. Mutational analysis of sequences in the recF gene of Escherichia coli K-12 that affect expression. J. Bacteriol. 176: 4011–4016.

    PubMed  CAS  Google Scholar 

  78. Sandler, S. J., and A. J. Clark. 1994. RecOR suppression of recF mutant phenotypes in E. coli K-12. J. Bacteriol. 176: 3661–3672.

    PubMed  CAS  Google Scholar 

  79. Sandler, S. J., and A. J. Clark. 1993. Use of high and low level overexpression plasmids to test mutant alleles of the recF gene of E. coli K-12 for partial activity. Genetics 135: 643–654.

    PubMed  CAS  Google Scholar 

  80. Sandler, S. J., and K. J. Marians. 2000. Role of PriA replication fork reactivation in Escherichia coli. J. Bacteriol. 182: 9–13.

    Article  PubMed  CAS  Google Scholar 

  81. Sandler, S. J., K. J. Marians, K. H. Zavitz, J. Coutu, M. A. Parent, and A. J. Clark. 1999. DnaC mutations suppress defects in DNA replication and recombination associated functions in priB and priC double mutants in E. coli K-12. Mol. Microbiol. In press.

    Google Scholar 

  82. Sandler, S. J., H. S. Samra, and A. J. Clark. 1996. Differential suppression of priA2:: kan phenotypes in Escherichia coli K-12 by mutations in priA, lexA, and dnaC. Genetics 143: 5–13.

    PubMed  CAS  Google Scholar 

  83. Sassanfar, M., and J. Roberts. 1991. Constitutive and UV-mediated activation of RecA protein: combined effects of recA441 and recF143 mutations and of addition of nucleotides and adenine. J. Bacteriol. 173: 5869–5875.

    PubMed  CAS  Google Scholar 

  84. Sassanfar, M., and J. W. Roberts. 1990. Nature of the SOS-inducing signal in Escherichia coli: the involvement of DNA replication. J Mol. Biol. 212: 79–96.

    Article  PubMed  CAS  Google Scholar 

  85. Shan, Q., J. M. Bork, B. L. Webb, R. B. Inman, and M. M. Cox. 1997. RecA protein filaments: end-dependent dissociation from ssDNA and stabilization by RecO and RecR proteins. J. Mol. Biol. 265: 519–540.

    Article  PubMed  CAS  Google Scholar 

  86. Shan, Q., and M. M. Cox. 1997. RecA filament dynamics during DNA strand exchange reactions. J. Biol. Chem. 272: 11063–11073.

    Article  PubMed  CAS  Google Scholar 

  87. Sharples, G. J., S. M. Ingleston, and R. G. Lloyd. 1999. Holliday junction processing in bacteria: insights from the evolutionary conservation of RuvABC, RecG, and RusA. J. Bacteriol. 181: 5543–5550.

    PubMed  CAS  Google Scholar 

  88. Smith, G. R. 1989. Homologous recombination in E. coli: multiple pathways for multiple reasons. Cell 58: 807–809.

    Article  PubMed  CAS  Google Scholar 

  89. Soeller, W., P. Abarzua, and K. J. Marians. 1984. Mutational analysis of primosome assembly sites. II. Role of secondary structure in the formation of active sites. J. Biol. Chem. 259: 14293–14300.

    PubMed  CAS  Google Scholar 

  90. Stahl, E W. 1994. The Holliday junction on its thirtieth anniversary. Genetics 138: 241–246.

    PubMed  CAS  Google Scholar 

  91. Steiner, W., G. Liu, W. D. Donachie, and P. Kuempel. 1999. The cytoplasmic domain of FtsK protein is required for resolution of chromosome dimers. Mol. Microbiol. 31: 579–83.

    Article  PubMed  CAS  Google Scholar 

  92. Sung, P. 1997. Function of the yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase. J. Biol. Chem. 272: 28194–28197.

    Article  PubMed  CAS  Google Scholar 

  93. Sung, P. 1997. Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombination. Genes Dev. 11: 1111–1121.

    Article  PubMed  CAS  Google Scholar 

  94. Thorns, B., and W. Wackernagel. 1988. Suppression of the UV-sensitive phenotype of Escherichia coli recF mutants by recA(Srf) and recA(Tif) mutations requires recJ+. J Bacteriol. 170: 3675–3681.

    Google Scholar 

  95. Torrey, T. A., and T. Kogoma. 1987. Genetic analysis of constitutive stable DNA replication in rnh mutants of Escherichia coli K12. Mol. Gen. Genet. 208: 42027.

    Article  Google Scholar 

  96. Tseng, Y. C., J. L. Hung, and T. C. Wang. 1995. Involvement of RecF pathway recombination genes in postreplication repair in UV-irradiated Escherichia coli cells. Mutation Res. 315: 1–9.

    Google Scholar 

  97. Umezu, K., N.-W. Chi, and R. D. Kolodner. 1993. Biochemical interaction of the Escherichia coli RecF, RecO and RecR proteins with RecA and single-stranded DNA binding protein. Proc. Natl. Acad. Sci. USA 90: 3875–3879.

    Article  PubMed  CAS  Google Scholar 

  98. Umezu, K., and R. D. Kolodner. 1994. Protein interactions in genetic recombination in Escherichia coli: Interactions involving RecO and RecR overcome the inhibition of RecA by Single-stranded DNA-binding protein. J. Biol. Chem. 269: 30005–30013.

    PubMed  CAS  Google Scholar 

  99. Uzest, M., S. D. Ehrlich, and B. Michel. 1995. Lethality of rep recB and rep recC double mutants of Escherichia coli. Mol. Microbiol. 17: 1177–1188.

    Article  PubMed  CAS  Google Scholar 

  100. Villarroya, M., I. Perez-Roger, F. Macian, and M. E. Armengod. 1998. Stationary phase induction of dnaN and recF, two genes of Escherichia coli involved in DNA replication and repair. EMBO J. 17: 1829–1837.

    Article  PubMed  CAS  Google Scholar 

  101. Volkert, M. R. 1989. Altered induction of the adaptive response to alkylation damage in Escherichia coli recF mutants. J. Bacteriol. 171: 99–103.

    PubMed  CAS  Google Scholar 

  102. Volkert, M. R., and M. A. Hartke. 1984. Suppression of Escherichia coli recF mutations by recA-linked srfA mutations. J. Bacteriol. 169: 498–506.

    Google Scholar 

  103. Wang, T.-C. V., H.-Y. Chang, and J.-L. Hung. 1993. Co-suppression of recF, recR and recO mutations by mutant recA alleles in Escherichia coli cells. Mutation Res. 294: 157–166.

    Article  PubMed  CAS  Google Scholar 

  104. Wang, T. C. V., M. V. V. S. Madiraju, A. Templin, and A. J. Clark. 1991. Cloning and preliminary characterization of srf-2020 and srf-801, the recF partial suppressor mutations which map in recA of Escherichia coli K-12. Biochimie 73: 335–340.

    Article  PubMed  CAS  Google Scholar 

  105. Webb, B. L., M. M. Cox, and R. B. Inman. 1995. An interaction between the Escherichia coli RecF and RecR proteins dependent on ATP and double-stranded DNA. J. Biol. Chem. 270: 31397–31404.

    Article  PubMed  CAS  Google Scholar 

  106. Webb, B. L., M. M. Cox, and R. B. Inman. 1997. Recombinational DNA repair: the RecF and RecR proteins limit the extension of RecA filaments beyond single-strand DNA gaps. Cell 91: 347–356.

    Article  PubMed  CAS  Google Scholar 

  107. Whitby, M. C., and R. G. Lloyd. 1995. Altered SOS induction associated with mutations in recF, recO and recR. Mol. Gen. Genet. 246: 174–179.

    Article  PubMed  CAS  Google Scholar 

  108. Wu, C. A., E. L. Zechner, J. A. Reems, C. S. McHenry, and K. J. Marians. 1992. Coordinated leading-and lagging-strand synthesis at the Escherichia coli DNA replication fork. V. Primase action regulates the cycle of Okazaki fragment synthesis. J. Biol. Chem. 267: 4074–4083.

    PubMed  CAS  Google Scholar 

  109. Zavitz, K. H., and K. J. Marians. 1992. ATPase-deficient mutants of the Escherichia coli DNA replication protein PriA are capable of catalyzing the assembly of active primosomes. J. Biol. Chem. 267: 6933–6940.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Sandler, S.J. (2001). Post-Replication Repair. In: Nickoloff, J.A., Hoekstra, M.F. (eds) DNA Damage and Repair. Contemporary Cancer Research. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-095-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-095-7_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9635-2

  • Online ISBN: 978-1-59259-095-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics