Advertisement

Possibly Essential Trace Elements

  • Forrest H. Nielsen
Chapter
Part of the Nutrition ◊ and ◊ Health book series (NH)

Abstract

An ever expanding number of mineral elements have received attention as being of possible importance in the prevention of disease with nutritional roots, or for the enhancement of health and longevity. Because of some promising physiological or clinical finding, most often in an animal model or a special human situation, these elements are promoted by the supplement industry, some authors of health books and newsletters, and other merchants of “health-promoting” materials whose objective is financial gain by taking advantage of the desire “to live better and to live longer.” It is not difficult for the public to get authoritative reports by apparently well-qualified individuals expounding the nutritional or health benefits of some element; most often the benefit involves avoiding some of life’s most feared diseases such as cancer, heart disease, and loss of cognitive function. Health and nutrition professionals will have many of these mineral elements brought to their attention by their clients. Ignoring the questions or dismissing the claims without providing sound reasons is unlikely to counteract an “authoritative” report that often gives disparaging statements about authentic health professionals. Additionally, several of these mineral elements apparently have health benefits that are now only being discovered or defined; some of these benefits might be the result of unrecognized essential functions. Being aware of these benefits could be of use in providing information that could promote health and well-being. Thus, it is appropriate that these possibly essential trace elements be discussed in a clinical nutrition text such as this book.

Keywords

Essential Trace Element Deficiency Sign Daily Dietary Intake Nutritional Importance Vanadyl Sulfate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Food and Nutrition Board. How Should the Recommended Dietary Allowances Be Revised? National Academy Press, Washington DC, 1994.Google Scholar
  2. 2.
    Schroeder HA, Balassa JJ, Tipton IH. Abnormal trace metals in man-nickel. J Chron Dis 1961; 15: 51–65.CrossRefGoogle Scholar
  3. 3.
    Cotzias GC. Importance of trace substances in environmental health as exemplified by manganese. Trace Sub Environ Health 1967; 1: 5–19.Google Scholar
  4. 4.
    Underwood EJ. Introduction. In: Underwood EJ, ed. Trace Elements in Human and Animal Nutrition 3rd ed. Academic Press, New York, NY, 1971, pp. 1–13.Google Scholar
  5. 5.
    Mertz W. Some aspects of nutritional trace element research. Fed Proc 1970; 29: 1482–1488.PubMedGoogle Scholar
  6. 6.
    Nielsen FH. Essentiality and function of nickel. In: Hoekstra WG, Suttie JW, Ganther HE, Mertz W, eds. Trace Element Metabolism in Animals-2. University Park Press_ Baltimore_ MD 1974 nn 1R1—~95Google Scholar
  7. 7.
    Mertz W. The essential trace elements. Science 1981; 213: 1332–1338.PubMedCrossRefGoogle Scholar
  8. 8.
    Nielsen FH. Ultratrace elements in nutrition. Annu Rev Nutr 1984; 4: 21–41.PubMedCrossRefGoogle Scholar
  9. 9.
    Food and Nutrition Board. National Research Council. Recommended Dietary Allowances 9th ed; National Academy Press, Washington, DC, 1980.Google Scholar
  10. 10.
    Food and Nutrition Board. National Research Council. Recommended Dietary Allowances 10th ed. National Academy Press, Washington, DC, 1989.Google Scholar
  11. 11.
    Food and Nutrition Board. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. National Academy Press, Washington, DC, 1997.Google Scholar
  12. 12.
    Harper AE. Evaluating the concept of nutritional essentiality. Nutritional essentiality: Historical perspective. In: Roche AF, Gussler JD, Silverman E, Redfern DE, eds. Nutritional Essentiality: A Changing Paradigm, Report of the Twelfth Ross Conference on Medical Research. Ross Products Division, Abbott Laboratories, Columbus, OH, 1993,pp. 3–11.Google Scholar
  13. 13.
    McCormick DB. The meaning of nutritional essentiality in today’s context of health and disease. In: Roche AF, Gussler JD, Silverman E, Redfern DE, eds. Nutritional Essentiality: A Changing Paradigm, Report of the Twelfth Ross Conference on Medical Research. Ross Products Division, Abbott Laboratories, Columbus, OH, 1993,pp. 11–15.Google Scholar
  14. 14.
    Nielsen FH. The importance of diet composition in ultratrace element research. J Nutr 1985; 115: 1239–1247.PubMedGoogle Scholar
  15. 15.
    Tapp WN, Natelson BH. Consequences of stress: a multiplicative function of health status. FASEB J 1988; 2: 2268–2271.PubMedGoogle Scholar
  16. 16.
    Hunt CD. The biochemical effects of physiologic amounts of dietary boron in animal nutrition models. Environ Health Perspect 1994; 1029 (Suppl 7): 35–43.Google Scholar
  17. 17.
    Bai Y, Hunt CD. Dietary boron enhances efficacy of cholecalciferol in broiler chicks. J Trace Elem Exp Med 1996; 9: 117–132.CrossRefGoogle Scholar
  18. 18.
    Uthus EO. Evidence for arsenic essentiality. Environ Geochem Health 1992; 14: 55–58.CrossRefGoogle Scholar
  19. 19.
    Uthus EO, Nielsen FH. Effect of vanadium, iodine and their interaction on growth, blood variables, liver trace elements and thyroid indices in rats. Magnesium Trace Elem 1990; 9: 219–226.Google Scholar
  20. 20.
    Nielsen FH. Dietary vanadium affects carbohydrate and thyroid metabolism in the BB rat. North Dakota Acad Sci Proc 1998; 52: 43.Google Scholar
  21. 21.
    Mertz W. Essential trace metals: New definitions based on new paradigms. Nutr Rev 1993; 51: 287–295.PubMedCrossRefGoogle Scholar
  22. 22.
    Anke M, Groppel B, Müller M, Regius A. Effects of aluminum-poor nutrition in animals. In: Pais I, ed. Proceedings of the 4 International Trace Element Symposium. New Results in the Research of Hardly Known Trace Elements and Their Importance in the International Geosphere-Biosphere Programme, University of Horticulture and Food Industry, Budapest, 1990,pp. 303–324.Google Scholar
  23. 23.
    Angelow L, Anke M, Groppel B, Glei M, Müller M. Aluminum: an essential element for goats. In: Anke M, Meissner D, Mills CF, eds. Trace Elements. Man and Animals-TEMA 8.Verlag Media Touristik, Gersdorf, 1993,pp. 699–704.Google Scholar
  24. 24.
    Carlisle EM, Curran MJ. Aluminum: an essential element for the chick in Trace Elements. In: Anke M, Meissner D, Mills CF, eds. Trace Elements. Man and Animals-TEMA 8. Verlag Media Touristik, Gersdorf, 1993,pp. 695–698.Google Scholar
  25. 25.
    Stemweis PC, Gilman AG. Aluminum: a requirement for activation of the regulatory component of adenylate cyclase by fluoride. Proc Natl Acad Sci USA 1982; 79: 4888–4891.CrossRefGoogle Scholar
  26. 26.
    Smith JB. Aluminum ions stimulate DNA synthesis in quiescent cultures of Swiss 3T3 and 3T6 cells. J Cell Physiol 1984; 118: 298–304.PubMedCrossRefGoogle Scholar
  27. 27.
    Quarles LD, Hartle JE II, Middleton JP, Zhang J, Arthur JM, Raymond JR. Aluminum-induced DNA synthesis in osteoblasts: Mediation by a G-protein coupled cation sensing mechanism. J Cell Biochem 1994; 56: 106–117.PubMedCrossRefGoogle Scholar
  28. 28.
    Crapper McLachlan DR, Farnell BJ. Aluminum and neuronal degeneration. In: Gabay S, Harris J, Ho BT, eds. Metal Ions in Neurology and Psychiatry Alan R Liss, New York, 1985,pp. 69–87.Google Scholar
  29. 29.
    Crapper McLachlan DR, Lukiw WJ, Kruck TPA. Aluminum altered transcription and the pathogenesis of Alzheimer’s disease. Environ Geochem Health 1990; 12: 103–114.CrossRefGoogle Scholar
  30. 30.
    Glenner GG. The pathobiology of Alzheimer’s disease. Ann Rev Med 1989; 40: 45–51.PubMedCrossRefGoogle Scholar
  31. 31.
    Joshi JG, Dhar M, Clauberg M, Chauthaiwale V. Iron and aluminum homeostasis in neural disorders. Environ Health Perspect 1994; 102 (Suppl 3): 207–213.PubMedCrossRefGoogle Scholar
  32. 32.
    Van De Vyver FL, Visser WJ. Aluminum accumulation in bone. In: Priest ND, Van De Vyver FL, eds. Trace Metals and Fluoride in Bones and Teeth. CRC Press, Boca Raton, FL, 1990,pp. 41–81.Google Scholar
  33. 33.
    Alfrey AC. Aluminum. In: Mertz W, ed. Trace Elements in Human and Animal Nutrition, Vol 2. Academic Press, Orlando, 1986,pp. 399–413.CrossRefGoogle Scholar
  34. 34.
    Greger JL. Aluminum metabolism. Ann Rev Nutr 1993; 13: 43–63.CrossRefGoogle Scholar
  35. 35.
    Nielsen FH, Uthus EO. Arsenic. In: Frieden E, ed. Biochemistry of the Essential Ultratrace Elements. Plenum, New York, 1984,pp. 319–340.CrossRefGoogle Scholar
  36. 36.
    Uthus EO. Arsenic essentiality and factors affecting its importance. In: Chappell WR, Abernathy CO, Cothern CR, eds. Arsenic: Exposure and Health. Science and Technology Letters, Northwood, 1994,pp. 199–208.Google Scholar
  37. 37.
    Anke M. Arsenic. In: Mertz W, ed. Trace Elements in Human and Animal Nutrition, Vol 2. Academic Press, Orlando. 1986;pp:347–372.Google Scholar
  38. 38.
    Uthus EO. Diethyl maleate, an in vivo chemical depletor of glutathioine affects the response of male and female rats to arsenic deprivation. Biol Trace Elem Res 1994; 46: 247–259.PubMedCrossRefGoogle Scholar
  39. 39.
    Desrosiers R, Tanguay RM. Further characterization of the posttranslational modifications of core histones in response to heat and arsenite stress in Drosphilia: Biochem Cell Bio 1986; 64: 750–757.Google Scholar
  40. 40.
    Wang L, Roop BC, Mass MJ. Arsenic hypermethylates the p53 promotor in human lung cells. Fund Appl Toxicol Toxicologist 1996; 30: 87.Google Scholar
  41. 41.
    Meng Z, Meng N. Effects of inorganic arsenicals on DNA synthesis in unsensitized human blood lymphocytes in vitro. Biol Trace Elem Res 1994; 42: 201–208.PubMedCrossRefGoogle Scholar
  42. 42.
    Vahter M. Metabolism of arsenic. In: Fowler BA, ed. Biological and Environmental Effects of Arsenic. Elsevier, Amsterdam, 1983;pp,171–198.Google Scholar
  43. 43.
    Phillips DJH. The chemical forms of arsenic in aquatic organisms and their interrelationships. hi: Nriagu JO, ed. Arsenic in the Environment, Part I: Cycling and Characterization. Wiley & Sons, New York, 1994,pp.263–288.Google Scholar
  44. 44.
    Ahmann D, Roberts AL, Krumholz LR, Morel FMM. Microbe grows by reducing arsenic. Nature 1994; 371: 750.Google Scholar
  45. 45.
    Aposhian HV. Enzymatic methylation of arsenic species and other new approaches to arsenic toxicity. Annu Rev Pharmacol Toxicol 1997; 37: 397–419.PubMedCrossRefGoogle Scholar
  46. 46.
    Mushak P. Arsenic and human health: some persisting scientific issues. In: Chappell WR, Abernathy CO, Cothem CR, eds. Arsenic: Exposure and Health. Science and Technology Letters, Northwood, 1994,pp. 305–318.Google Scholar
  47. 47.
    Mayer DR, Kosmus W, Pogglitsch H, Mayer D, Beyer W. Essential trace elements in humans. Serum arsenic concentrations in hemodialysis patients in comparison to healthy controls. Biol Trace Elem Res 1993; 37: 27–38.PubMedCrossRefGoogle Scholar
  48. 48.
    Dizik M, Christman JK, Wainfan E. Alternatives in expression and methylation of specific genes in livers of rats fed a cancer promoting methyl-deficient diet. Carcinogenesis 1991; 12: 1307–1312.PubMedCrossRefGoogle Scholar
  49. 49.
    Zapisek WF, Cronin GM, Lyn-Cook BD, Poirier LA. The onset of oncogene hypomethylation in the livers of rats fed methyl-deficient amino acid-defined diets. Carcinogenesis 1992; 13: 1869–1872.PubMedCrossRefGoogle Scholar
  50. 50.
    Uthus EO Estimation of safe and adequate daily intake for arsenic. In: Mertz W, Abernathy CO, Olin SS, eds. Risk Assessment of Essential Elements. ILSI Press, Washington, DC, 1994,pp. 273–282.Google Scholar
  51. 51.
    Abernathy CO, Dourson ML. Derivation of the inorganic arsenic reference dose. In: Chappell WR, Abernathy CO, Cothern CR, eds. Arsenic: Exposure and Health. Science and Technology Letters, Northwood, 1994,pp. 295–303.Google Scholar
  52. 52.
    Adams MA, Bolger PM, Gunderson EL. Dietary intake and hazards of arsenic. In: Chappell WR, Abernathy CO, Cothern CR, eds. Arsenic Exposure and Health. Science and Technology Letters, Northwood, 1994,pp. 41–49.Google Scholar
  53. 53.
    Rowe RI, Eckhert CD. Boron is essential for zebrafish embryogenesis. FASEB J 1998; 12: A205.Google Scholar
  54. 54.
    Forte DJ, Propst TL, Schetter T, Stover EL, Strong PL, Murray FJ. Adverse development and reproductive effects of insufficient boron in Xenopus: Building a case for nutritional essentiality. FASEB J 1998; 12: A205.Google Scholar
  55. 55.
    Lovatt CJ, Dugger WM. Boron. In: Frieden E, ed. Biochemistry of the Essential Ultratrace Elements. Plenum, New York, 1984,pp. 389–421.CrossRefGoogle Scholar
  56. 56.
    Hunt CD. Biochemical effects of physiological amounts of dietary boron. J Trace Elem Exp Med 1996; 9: 185–213.CrossRefGoogle Scholar
  57. 57.
    Power PP, Wood WG. The chemistry of boron and its speciation in plants. Plant and Soil 1997; 193: 1–13.CrossRefGoogle Scholar
  58. 58.
    Nielsen FH. Evidence for the nutritional essentiality of boron. J Trace Elem Exp Med 1996; 9: 215–229.CrossRefGoogle Scholar
  59. 59.
    Bai Y, Hunt CD. Dietary boron alleviates adjuvant-induced arthritis (AIA) in rats. FASEB J 1995; 9: A576.Google Scholar
  60. 60.
    Bai Y, Hunt CD. Dietary boron (B) increases serum antibody concentrations in rats immunized with heat-killed mycobacterium tuberculosis (MT). FASEB J 1996; 10: A819.Google Scholar
  61. 61.
    Beattie JH, MacDonald A. Effect of boron on bone metabolism in rats. In: Momcilovic B, ed. Trace Elements in Man and Animals-7. IMI, Zagreb, 1991,pp.26: 29–26: 30.Google Scholar
  62. 62.
    Nielsen FH. Biochemical and physiologic consequences of boron deprivation in humans. Environ Health Perspec 1994; 102 (Supp17): 59–63.Google Scholar
  63. 63.
    Nielsen FH, Gallagher SK, Johnson LK, Nielsen EJ. Boron enhances and mimics some effects of estrogen therapy in postmenopausal women. J Trace Elem Exp Med 1992: 5: 237–246.Google Scholar
  64. 64.
    Penland JG. Dietary boron: brain function and cognitive performance. Environ Health Perspect 1994; 102 (Suppl 7): 65–72.PubMedCrossRefGoogle Scholar
  65. 65.
    Beattie JH, Peace HS. The influence of a low-boron diet and boron supplementation on bone, major mineral and sex steroid metabolism in postmenopausal women. Br J Nutr 1993; 69: 871–884.PubMedCrossRefGoogle Scholar
  66. 66.
    Nielsen FH. Boron–an overlooked element of potential nutritional importance. Nutr Today 1988; 23: 4–7.CrossRefGoogle Scholar
  67. 67.
    Nielsen FH. Facts and fallacies about boron. Nutr Today 1992; 27: 6–12.CrossRefGoogle Scholar
  68. 68.
    WHO/FAO/IAEA. Trace Elements in Human Nutrition and Health, World Health Organization, Geneva, 1996,pp. 175–179.Google Scholar
  69. 69.
    Nielsen FH. Dietary supplementation of physiological amounts of boron increases plasma and urinary boron of perimenopausal women. Proc ND Acad Sci 1996; 50: 52.Google Scholar
  70. 70.
    Rainey CJ, Christensen RE, Nyquist LA, Strong PL, Coughlin JR. Boron daily intake from the American diet. FASEB J 1996; 10: A785.Google Scholar
  71. 71.
    Anderson DL, Cunningham WC, Lindstrom TR. Concentration and intakes of H, B, S, K, Na, Cl, and NaC1, in foods. J Food Comp Anal 1994; 7: 59–82.Google Scholar
  72. 72.
    Anke M, Regius A, Groppel B, Arnhold W. Essentiality of the trace element bromine. Acta Agron Hung 1990; 39: 297–303.Google Scholar
  73. 73.
    Anke M, Groppel B, Angelow L, Dorn W, Drusch S. Bromine: an essential element for goats. In: Anke M, Meissner D, Mills CF, eds. Trace Elements in Man and Animals-TEMA 8. Verlag Media Touristik, Gersdorf, 1993,pp. 737–738.Google Scholar
  74. 74.
    Oe PL, Vis RD, Meijer JH, van Langevelde F, Allon W, Meer Cvd, Verheul H. Bromine deficiency and insomnia in patients on dialysis. In: Howell JMcC, Gawthorne JM, White CL, eds. Trace Element Metabolism in Man and Animals, TEMA-4. Australian Academy of Science, Canberra, 1981,pp. 526–529.CrossRefGoogle Scholar
  75. 75.
    Huff JW, Bosshardt DK, Miller OP, Barnes RH. A nutritional requirement for bromine. Proc Soc Exp Biol Med 1956; 92: 216–219.PubMedGoogle Scholar
  76. 76.
    Bosshardt DK, Huff JW, Barnes RH. Effect of bromine on chick growth. Proc Soc Exp Biol Med 1956; 92: 219–221.PubMedGoogle Scholar
  77. 77.
    Leach RM Jr, Nesheim MC. Studies on chloride deficiency in chicks. J Nutr 1963; 81: 193–199.PubMedGoogle Scholar
  78. 78.
    Yanagisawa I, Yoshikawa H. A bromine compound isolated from human cereobrospinal fluid. Biochim Biophys Acta 1973; 329: 283–294.PubMedCrossRefGoogle Scholar
  79. 79.
    Torii S, Mitsumori K, Inubushi S, Yanagisawa I. The REM sleep-inducing action of a naturally occurring organic bromine compound in the encéphale isolé cat. Psychopharmacologia 1973; 29: 65–75.PubMedCrossRefGoogle Scholar
  80. 80.
    Nielsen FH. Other elements: Sb, Ba, B, Br, Cs, Ge, Rb, Ag, Sr, Sn, Ti, Zr, Be, Bi, Ga, Au, In, Nb, Sc, Te, Tl, W. In: Mertz W, ed. Trace Elements in Human and Animal Nutrition, Vol 2. Academic Press, Orlando, 1986,pp:415–463.Google Scholar
  81. 81.
    Anke M, Hennig A, Groppel B, Partschefeld M, Grün M. The biochemical role of cadmium. In: Kirchgessner M, ed. Trace Element Metabolism in Man and Animals-3 Tech Univ Munchen, FreisingWeihenstephen, 1978,pp. 540–548.Google Scholar
  82. 82.
    Schwarz K, Spallholz JE. The potential essentiality of cadmium. In: Bolck F, Anke M, Schneider H-J, eds. Kadmium-Symposium. Friedrich-Schiller Universitat, Jena, 1979,pp. 188–194.Google Scholar
  83. 83.
    Barham SS, Tarara JE, Enger MD. Cadmium as a transforming growth factor. Fed Proc 1985; 44: 520.Google Scholar
  84. 84.
    Kostial K. Cadmium. In: Mertz W, ed. Trace Elements in Human and Animal Nutrition, Vol 2. Academic Press, Orlando, 1986,pp:319–345.Google Scholar
  85. 85.
    World Health Organization. Evaluation of Certain Food Additives and Contaminants. 33rd Report of the Joint FAO/WHO Expert Committee on Food Additives 776. World Health Organization, Geneva, 1989,pp. 28–31.Google Scholar
  86. 86.
    Vincent JB. Mechanism of chromium action. In: International Symposium on the Health Effects of Dietary Chromium Abstracts. Dedham, MA, 1998,pp. 16.Google Scholar
  87. 87.
    Schwarz K, Milne DB. Fluorine requirement for growth in the rat. Bioinorg Chem 1972; 1: 331–338.CrossRefGoogle Scholar
  88. 88.
    Anke M, Groppel B, Krause U. Fluorine deficiency in goats. In: Momcilovic B, ed. Trace Elements in Man and Animals-7. IMI, Zagreb, 1991,pp. 26: 28–26: 29.Google Scholar
  89. 89.
    Avtsyn AP, Anke M, Zhavoronkov AA, Groppel B, Kaktursky LV, Mikhaleva LM, Lösch E. Pathological anatomy of the experimentally-induced fluorine deficiency in she-goats. In: Anke M, Meissner D, Mills CF, eds. Trace Elements in Man and Animals-TEMA 8. Verlag Media Touristik, Gersdorf, 1993,pp. 745–746.Google Scholar
  90. 90.
    Messer HH. Fluorine. In: Frieden E, ed. Biochemistry of the Essential Ultratrace Elements. Plenum, New York, 1984,pp. 55–87.CrossRefGoogle Scholar
  91. 91.
    Fransbergen AJ, Lemmens AG, Beynen AC. Dietary fluoride, unlike bromide or iodide, counteracts phosphorus-induced nephrocalcinosis in female rats. Biol Trace Elem Res 1991; 31: 71–78.PubMedCrossRefGoogle Scholar
  92. 92.
    Jenkins GN. The metabolism and effects of fluoride. In: Priest ND, Van De Vyver FL, eds. Trace Metals and Fluoride in Bones and Teeth. CRC Press, Boca Raton, FL, 1990,pp. 141–173.Google Scholar
  93. 93.
    Kleerekoper M, Balena R. Fluorides and osteoporosis. Annu Rev Nutr 1991; 11: 309–324.PubMedCrossRefGoogle Scholar
  94. 94.
    Krishnamachari KAVR. Fluorine. In: Mertz W, ed. Trace Elements in Human and Animal Nutrition, Vol 1. Academic Press, San Diego, CA, 1987,pp:365–415.Google Scholar
  95. 95.
    Phipps KR. Fluoride. In: Ziegler EE, FilerLJ Jr, eds. Present Knowledge in Nutrition, 7f ed. ILSI Press, Washington, DC, 1996,pp:329–333.Google Scholar
  96. 96.
    Seaborn CD, Nielsen FH. Effects of germanium and silicon on bone mineralization. Biol Trace Elem Res 1994; 42: 151–164.PubMedCrossRefGoogle Scholar
  97. 97.
    Schauss AG. Nephrotoxicity and neurotoxicity in humans from organogermanium compounds and germanium dioxide. Biol Trace Elem Res 1991; 29: 267–280.PubMedCrossRefGoogle Scholar
  98. 98.
    Loomis WD, Durst RW. Chemistry and biology of boron. Biofactors 1992; 3: 229–239.PubMedGoogle Scholar
  99. 99.
    Kirchgessner M, Reichlmayr-Lais AM. Lead deficiency and its effects on growth and metabolism. In: Howell JMcC, Gawthorne JM, White CL, eds. Trace Element Metabolism in Man and Animals, TEMA-4. Australian Academy of Science, Canberra 1981,pp. 390–393.CrossRefGoogle Scholar
  100. 100.
    Reichlmayr-Lais AM, Kirchgessner M. Newer research on lead essentiality. In: Mills CF, Bremner I, Chesters JK, eds. Trace Elements in Man and Animals-TEMA 5. Commonwealth Agricultural Bureaux, Farnham Royal, 1985,pp. 283–286.Google Scholar
  101. 101.
    Reichlmayr-Lais AM, Kirchgessner M. Lead - an essential trace element. In: Momcilovic B, ed. Trace Elements in Man and Animals 7. IMI, Zagreb, 1991,pp.35:l-35:2.Google Scholar
  102. 102.
    Kirchgessner M, Plass DL, Reichlmayr-Lais AM. Lead deficiency in swine. In: Momcilovic B, ed. Trace Elements in Man and Animals 7. IMI, Zagreb, 1991,pp.11: 20–11: 21.Google Scholar
  103. 103.
    Schwarz K. Potential essentiality of lead. Ash Hig Rada Toksikol 1975; 26 (Suppl): 13–28.Google Scholar
  104. 104.
    Uthus EO, Nielsen FH. Effects in rats of iron on lead deprivation. Biol Trace Elem Res 1988; 16: 155–163.PubMedCrossRefGoogle Scholar
  105. 105.
    Quarterman J. Lead. In: Mertz W, ed. Trace Elements in Human and Animal Nutrition, Vol 2. Academic Press, Orlando, 1986,pp:281–317.Google Scholar
  106. 106.
    Patterson C, Ericson J, Manca-Krichten M, Shirahara H. Natural skeletal levels of lead in Homo sapiens sapiens uncontaminated by technological lead. Sci Total Environ 1991; 107: 205–236.PubMedCrossRefGoogle Scholar
  107. 107.
    Goyer RA. Lead. In: Bronner F, Cobum JW, eds. Disorders of Mineral Metabolism, Vol I. Academic Press, New York, 1981,pp. 159–199.Google Scholar
  108. 108.
    Müller M, Anke M, Thiel C, Hartmann E. Exposure of adults to lead from food estimated by analysis and calculation-comparison of methods. In: Anke M, Meissner D, Mills CF, eds. Trace Elements in Man and Animals-TEMA 8. Verlag Media Touristik, Gersdorf, 1993,pp. 241–242.Google Scholar
  109. 109.
    Birch NJ. Lithium in medicine. In: Berthon G, ed. Handbook of Metal-Ligand Interactions in Biological Fluids. Bioinorganic Medicine, Vol 2. Marcel Dekker, New York, 1995,pp. 1274–1281.Google Scholar
  110. 110.
    Schrauzer GN, Shrestha KP. Lithium in drinking water and the incidence of crimes, suicides, and arrests related to drug addictions. Biol Trace Elem Res 1990; 25: 105–113.PubMedCrossRefGoogle Scholar
  111. 111.
    Klemfuss H, Schrauzer GN. Effects of nutritional lithium deficiency on behavior in rats. Biol Trace Elem Res 1995; 48: 131–139.PubMedCrossRefGoogle Scholar
  112. 112.
    Anke M, Grün M, Groppel B, Kronemann H The biological importance of lithium. In: Anke M, Schneider H-J, eds. Mengen-und Spurenelemente. Karl-Marx- Universitat, Leipzig, 1981,pp:217–239.Google Scholar
  113. 113.
    Anke M, Arnhold W, Groppel B, Krause U. The biological importance of lithium. In: Schrauzer GN, Klippel K-F, eds. Lithium in Biology and Medicine. VCH Publishers, Weinheim, 1990,pp. 148–167.Google Scholar
  114. 114.
    Patt EL, Pickett EE, O’Dell BL. Effect of dietary lithium levels on tissue lithium concentrations, growth rate and reproduction in the rat. Bioinorg Chem 1978; 9: 299–310.CrossRefGoogle Scholar
  115. 115.
    Pickett EE, O’Dell BL. Evidence for dietary essentiality of lithium in the rat. Biol Trace Elem Res 1992; 34: 299–319.PubMedCrossRefGoogle Scholar
  116. 116.
    Rybak SM, Stockdale FE. Growth effects of lithium chloride in BALB/c 3T3 fibroblasts and MadinDarby canine epithilial cells. Exp Cell Res 1981; 136: 263–270.PubMedCrossRefGoogle Scholar
  117. 117.
    Rossetti L, Giaccari A, Klein-Robbenhaar E, Vogel LR. Insulinomimetic properties of trace elements and characterization of their in vivo mode of action. Diabetes 1990; 39: 1243–1250.PubMedCrossRefGoogle Scholar
  118. 118.
    Amdisen A. Serum level monitoring and clinical pharmacokinetics of lithium. Clin Pharmacokinet 1977; 2: 73–91.PubMedCrossRefGoogle Scholar
  119. 119.
    Nielsen FH. Nickel. In: Frieden E, ed. Biochemistry of the Essential Ultratrace Elements. Plenum, New York, 1984,pp. 293–308.CrossRefGoogle Scholar
  120. 120.
    Kirchgessner M, Roth-Maier DA, Schnegg A. Progress of nickel metabolism and nutrition research. In: Howell JMcC, Gawthome JM, White CL, eds. Trace Element Metabolism in Man and Animals, TEMA-4. Australian Academy of Science, Canberra 1981,pp. 621–624.CrossRefGoogle Scholar
  121. 121.
    Anke M, Groppel B, Kronemann H, Grün M. Nickel–an essential element. In: Sunderman FW, ed. Nickel in the Human Environment. International Agency for Research of Cancer, Lyon, 1984,pp. 339–365.Google Scholar
  122. 122.
    Spears JW. Nickel as a “newer trace element” in the nutrition of domestic animals. J Anim Sci 1984; 59: 823–835.PubMedGoogle Scholar
  123. 123.
    Nielsen FH, Shuler TR, McLeod TG, Zimmerman TJ. Nickel influences iron metabolism through physiologic pharmacologic and toxicologic mechanisms in the rat. J Nutr 1984; 114: 1280–1288.PubMedGoogle Scholar
  124. 124.
    Nielsen FH. Individual functional roles of metal ions in vivo. Beneficial metal ions. Nickel, In: Berthon G, ed. Handbook of Metal-Ligand Interactions in Biological Fluids. Bioinorganic Medicine, Vol I. Marcel Dekker, New York, 1995, pp. 257–260.Google Scholar
  125. 125.
    Nielsen FH, Zimmerman TJ, Shuler TR, Brossait B, Uthus EO. Evidence for a cooperative metabolic relationship between nickel and vitamin Bit in rats. J Trace Elem Exp Med 1989; 2: 21–29.Google Scholar
  126. 126.
    Nielsen FH, Uthus EO, Peollot RA, Shuler TR. Dietary vitamin Biz sulfur amino acids and odd-chain fatty acids affect the response of rats to nickel deprivation. Biol Trace Elem Res 1993; 37: 1–15.PubMedCrossRefGoogle Scholar
  127. 127.
    Uthus EO, Poellot RA. Dietary folate affects the response of rats to nickel deprivation. Biol Trace Elem Res 1996; 52: 23–35.PubMedCrossRefGoogle Scholar
  128. 128.
    Przybyla AE, Robbins J, Menon N, Peck HD, Jr. Structure-function relationships among the nickel-containing hydrogenases. FEMS Microbiol Rev 1992; 88: 109–136.CrossRefGoogle Scholar
  129. 129.
    Hausinger RP. Nickel enzymes in microbes. Sci Tot Environ 1994; 148: 157–166.CrossRefGoogle Scholar
  130. 130.
    Andrews RK, Blakely RL, Zerner B. Urease–a Ni (II) metalleonzyme. In: Lancaster JR Jr, ed. The Bioinorganic Chemistry of Nickel. VCH, New York, 1988,pp. 141–165.Google Scholar
  131. 131.
    Mobley HL, Island MD, Hausinger RP. Molecular biology of microbiol ureases. Microbiol Rev 1995; 59: 451–480.PubMedGoogle Scholar
  132. 132.
    Nomoto S, Sunderman FW Jr. Presence of nickel in alpha-2 macroglobulin isolated from human serum by high performance liquid chromatography. Ann Clin Lab Sci 1988; 18: 78–84.PubMedGoogle Scholar
  133. 133.
    Malinow MR. Plasma homocyst(e)ine: A risk factor for arterial occlusive diseases. J Nutr 1996; 126: 1238S - 1243S.PubMedGoogle Scholar
  134. 134.
    Oakley GP Jr, Adams MJ, Dickinson CM. More folic acid for everyone now. JNutr 1996;126:751S-755 S.Google Scholar
  135. 135.
    Nielsen FH. Nickel toxicity. In: Goyer RA, Mehlman MA, eds. Advances in Modern Toxicology: Toxicology of Trace Elements, Vol 2. Wiley, New York 1977;pp. 129–146.Google Scholar
  136. 136.
    Cronin E, DiMichiel AD, Brown SS. Oral challenge in nickel-sensitive women with hand eczema. In: Brown SS, Sunderman FW Jr, eds. Nickel Toxicology. Academic Press, New York,1980,pp:149–152.Google Scholar
  137. 137.
    Anke M, Angelow L, Müller M, Glei M. Dietary trace element intake and excretion of man. In: Anke M, Meissner D, Mills CF, eds. Trace Elements in Man and Animals-TEMA 8. Verlag Media Touristik, Gersdorf 1993,pp:180–188.Google Scholar
  138. 138.
    Pennington JAT, Jones JW. Molybdenum, nickel, cobalt, vanadium, and strontium in total diets. J Am Diet Assoc 1987; 87: 1644–1650.PubMedGoogle Scholar
  139. 139.
    Anke M, Angelow L, Schmidt A, Gürtler H. Rubidium: an essential element for animal and man? In: Anke M, Meissner D, Mills CF, eds. Trace Elements in Man and Animals-TEMA 8. Verlag Media Touristik, Gersdorf 1993,pp. 719–723.Google Scholar
  140. 140.
    Stolk JM, Nowack WI, Barchas JD, Platman SR. Brain norepinephrine• enhanced turnover after rubidium treatment. Science 1970; 168: 501–503.PubMedCrossRefGoogle Scholar
  141. 141.
    Meltzer HL, Nowack WJ, Barchas JD, Platman SR. Rubidium: A potential modifier of affect and behaviour. Nature (London) 1969; 223: 321–322.CrossRefGoogle Scholar
  142. 142.
    Anke M, Angelow L. Rubidium in the food chain. Fresenius J Anal Chem 1995; 352: 236–239.CrossRefGoogle Scholar
  143. 143.
    Carlisle EM. Silicon in bone formation. In: Simpson TL, Volcani BE, eds. Silicon and Siliceous Structures in Biological Systems. Springer, New York, 1981,pp. 69–94.CrossRefGoogle Scholar
  144. 144.
    Carlisle EM. Silicon. In: Frieden E, ed. Biochemistry of the Essential Ultratrace Elements. Plenum, New York, 1984,pp. 257–291.CrossRefGoogle Scholar
  145. 145.
    Schwarz K. Recent dietary trace element research exemplified by tin, fluorine, and silicon. Fed Proc 1974; 33: 1748–1757.PubMedGoogle Scholar
  146. 146.
    Seaborn CD, Nielsen FH. Silicon: A nutritional beneficence for bones, brains, and blood vessels? Nutr Today 1993; 28: 13–18.CrossRefGoogle Scholar
  147. 147.
    Carlisle EM, Curran MJ. Effect of dietary silicon and aluminum on silicon and aluminum levels in the rat brain. Alzheimer Dis Assoc Disorders 1987; 1: 83–89.CrossRefGoogle Scholar
  148. 148.
    Carlisle EM, Berger JW, Alpenfels WF. A silicon requirement for prolyl hydroxylase activity. Fed Proc 1981; 40: 886.Google Scholar
  149. 149.
    Villota R, Hawkes JG. Food applications and the toxicological and nutritional implications of amorphous silicon dioxide. CRC Crit Rev Food Sci Nutr 1986; 23: 289–321.CrossRefGoogle Scholar
  150. 150.
    Gouget MA. Athérome expérimental et silicate de soude. La Presse Medicale 1911; 97: 1005–1006.Google Scholar
  151. 151.
    Carlisle EM. Silicon as an essential element. Fed Proc 1974; 33: 1758–66.PubMedGoogle Scholar
  152. 152.
    Nasolodin VV, Rusin VY, Vorob’ ev VA. Zinc and silicon metabolism in highly trained athletes under hard physical stress (in Russian). Vopr Pitan 1987; 4: 37–39.PubMedGoogle Scholar
  153. 153.
    Kelsay JL, Behall KM, Prather ES. Effect of fiber from fruits and vegetables on metabolic responses of human subjects. II. Calcium, magnesium, iron, and silicon balances. Am J Clin Nutr 1979; 32: 1876–1880.PubMedGoogle Scholar
  154. 154.
    Bowen HJM, Peggs A. Determination of the silicon content of food. J Sci Food Agric 1984; 35: 1225–1229.CrossRefGoogle Scholar
  155. 155.
    Pennington JAT. Silicon in foods and diets. Foods Addit Contam 1991; 8: 97–118.CrossRefGoogle Scholar
  156. 156.
    Schwarz K, Milne DB, Vinyard E. Growth effects of tin compounds in rats maintained in a trace element-controlled environment. Biochem Biophys Res Commun 1970; 40: 22–29.PubMedCrossRefGoogle Scholar
  157. 157.
    Yokoi K, Kimura M, Itokawa Y. Effect of dietary tin deficiency on growth and mineral status in rats. Biol Trace Elem Res 1990; 24: 223–231.PubMedCrossRefGoogle Scholar
  158. 158.
    Cardarelli N. Tin and the thymus gland: A review. Thymus 1990; 15: 223–231.Google Scholar
  159. 159.
    Greger JL. Tin and aluminum. In: Smith KT, ed. Trace Minerals in Foods. Marcel Dekker, New York, 1988,pp. 291–323.Google Scholar
  160. 160.
    Schroeder HA, Balassa JJ, Tipton IH. Abnormal trace metals in man–vanadium. J Chronic Dis 1963; 16: 1047–1071.PubMedCrossRefGoogle Scholar
  161. 161.
    Anke M, Groppel B, Gruhn K, Langer M, Arnhold W. The essentiality of vanadium for animals. In: Anke M, Baumann W, Bräunlich H, Bruckner C, Groppel B, Grün M, eds. 6th International Trace Element Symposium, Vol 1. Friedrich-Schiller-Universitat, Jena, 1989,pp. 17–27.Google Scholar
  162. 162.
    Vilter H. Vanadium-dependent haloperoxidases. In: Sigel H, Sigel A, eds. Metal Ions in Biological Systems, Vol 31, Vanadium and Its Role in Life. Marcel Dekker, New York, 1995,pp,325–362.Google Scholar
  163. 163.
    Weyer R, Krenn BE. Vanadium haloperoxidases. In: Chasteen ND, ed. Vanadium in Biological Systems, Physiology and Biochemistry. Kluwer Academic, Dordrecht, Netherlands, 1990,pp. 81–97.Google Scholar
  164. 164.
    van Schijndel JWPM, Vollenbroek EGM, Weyer R. The chloroperoxidase from the fungus Curvularia inaequalis; a novel vanadium enzyme. Biochim Biophys Acta 1993; 1161: 249–256.PubMedCrossRefGoogle Scholar
  165. 165.
    Eady RR. Vanadium nitrogenases of Azotobacter. In: Sigel H, Sigel A, eds. Metal Ions in Biological Systems, Vol 31, Vanadium and Its Role in Life. Marcel Dekker, New York, 1995,pp. 363–405.Google Scholar
  166. 166.
    Boyd DW, Kustin K. Vanadium: a versatile biochemical effector with an elusive biological function. Adv Inorg Biochem 1984; 6: 311–365.PubMedGoogle Scholar
  167. 167.
    Nechay BR. Mechanisms of action of vanadium. Annu Rev Pharmacol Toxicol 1984; 24: 501–524.PubMedCrossRefGoogle Scholar
  168. 168.
    Willsky GR. Vanadium in the biosphere. In: Chasteen ND, ed. Vanadium in Biological Systems, Physiology and Biochemistry. Kluwer Academic, Dordrecht, Netherlands, 1990,pp. 1–24.CrossRefGoogle Scholar
  169. 169.
    Stern A, Yin X, Tsang S-S, Davison A, Moon J. Vanadium as a modulator of cellular regulatory cascades and oncogene expressions. Biochem Cell Biol 1993; 71: 103–112.PubMedCrossRefGoogle Scholar
  170. 170.
    Orvig C, Thompson KH, Battell M, McNeill JH. Vanadium compounds as insulin mimics. In: Sigel H, Sigel A, eds. Metal Ions in Biological Systems, Vol 31, Vanadium and Its Role in Life. Marcel Dekker, New York, 1995,pp. 575–594.Google Scholar
  171. 171.
    Carmignani M, Boscolo P, Ripanti G, Porcelli G, Volpe AR. Mechanisms of the vanadate-induced arterial hypertension only in part depend on the levels of exposure. In: Anke M, Meissner D, Mills CF, eds. Trace Elements in Man and Animals–TEMA 8. Verlag Media Touristik, Gersdorf, 1993,pp. 971–975.Google Scholar
  172. 172.
    Agency for Toxic Substances and Disease Registry (ASTDR). Toxicological Profile for Vanadium, US Department of Health and Human Services, Public Health Service, Atlanta, GA, 1992.Google Scholar
  173. 173.
    Cohen N, Halbertstam M, Shlimovich P, Chang CJ, Shamoon H, Rossetti L. Oral vanadyl sulfate improves hepatic and peripheral insulin sensitivity in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 1995; 95: 2501–2509.PubMedCrossRefGoogle Scholar
  174. 174.
    Goldfine AB, Simonson DC, Folli F, Patti M-E, Kahn R. Metabolic effects of sodium metavanadate in humans with insulin-dependent and noninsulin-dependent diabetes mellitus in vivo and in vitro studies. J Clin Endocrinol Metab 1995; 80: 3311–20.PubMedCrossRefGoogle Scholar
  175. 175.
    Halbertstam M, Cohen N, Shlimovich P, Rossetti L, Shamoon H. Oral vanadyl sulfate improves insulin sensitivity in NIDDM but not in obese nondiabetic subjects. Diabetes 1996; 45: 659–666.CrossRefGoogle Scholar
  176. 176.
    Boden G, Chen X, Ruiz J, van Rossum GDV, Turco S. Effects of vanadyl sulfate on carbohydrate and lipid metabolism in patients with non-insulin-dependent diabetes mellitus. Metabolism 1996; 45: 1130–35.PubMedCrossRefGoogle Scholar
  177. 177.
    Nielsen FH. Other Trace Elements. In: Ziegler EE, Filer LJ Jr, eds. Present Knowledge in Nutrition. ILSI Press, Washington, DC, 1996,pp. 353–376.Google Scholar
  178. 178.
    Byrne AR, Kosta L. Vanadium in foods and in human body fluids and tissues. Sci Total Environ 1978; 10: 17–30.PubMedCrossRefGoogle Scholar
  179. 179.
    Myron DR, Zimmerman TJ, Shuler TR, Klevay LM, Lee DE, Nielsen FH. Intake of nickel and vanadium by humans. A survey of selected diets. Am J Clin Nutr 1978; 31: 527–531.PubMedGoogle Scholar
  180. 180.
    Myron DR, Givand SH, Nielsen FH. Vanadium content of selected foods as determined by nameless atomic absorption spectroscopy. Agric Food Chem 1977; 25: 297–300.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Forrest H. Nielsen

There are no affiliations available

Personalised recommendations