Parabolic Equation Techniques

  • Michael D. Collins
  • William L. Siegmann


Parabolic equation techniques are based on rational approximations of the square root and other functions. The split-step Padé solution is based on an exponential of the square root [1], which takes into account the range numerics and allows large range steps. An initial condition may be obtained using the self-starter [2], which is based on a far-field approximation of a Hankel function of the square root. Accurate solutions to range-dependent problems may be obtained with the energy-conserving parabolic equation [3], which is based on the fourth root. Three-dimensional parabolic equations are derived by factoring the wave equation without making the uncoupled azimuth approximation [4–6]. When horizontal variations in the environment are sufficiently gradual so that energy coupling between modes may be neglected, three-dimensional calculations can be avoided by solving horizontal wave equations for the mode coefficients [7, 8].


  1. 1.
    M.D. Collins, “A split-step Padé solution for the parabolic equation method,” J. Acoust. Soc. Am. 93, 1736–1742 (1993).ADSCrossRefGoogle Scholar
  2. 2.
    M.D. Collins, “A self-starter for the parabolic equation method,” J. Acoust. Soc. Am. 92, 2069–2074 (1992).ADSCrossRefGoogle Scholar
  3. 3.
    M.D. Collins, “An energy-conserving parabolic equation for elastic media,” J. Acoust. Soc. Am. 94, 975–982 (1993).ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    R.N. Baer, “Propagation through a three-dimensional eddy including effects on an array,” J. Acoust. Soc. Am. 69, 70–75 (1981).ADSCrossRefGoogle Scholar
  5. 5.
    W.L. Siegmann, G.A. Kriegsmann, and D. Lee, “A wide-angle three-dimensional parabolic wave equation,” J. Acoust. Soc. Am. 78, 659–664 (1985).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    M.D. Collins and S.A. Chin-Bing, “A three-dimensional parabolic equation model that includes the effects of rough boundaries,” J. Acoust. Soc. Am. 87, 1104–1109 (1990).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    M.D. Collins, “The adiabatic mode parabolic equation,” J. Acoust. Soc. Am. 94, 2269–2278 (1993).ADSCrossRefGoogle Scholar
  8. 8.
    M.D. Collins, B.E. McDonald, K.D. Heaney, and W.A. Kuperman, “Three-dimensional effects in global acoustics,” J. Acoust. Soc. Am. 97, 1567–1575 (1995).ADSCrossRefGoogle Scholar
  9. 9.
    A. Bamberger, B. Engquist, L. Halpern, and P. Joly, “Higher order paraxial wave equation approximations in heterogeneous media,” SIAM J. Appl. Math. 48, 129–154 (1988).MathSciNetCrossRefGoogle Scholar
  10. 10.
    M.D. Collins, “Applications and time-domain solution of higher-order parabolic equations in underwater acoustics,” J. Acoust. Soc. Am. 86, 1097–1102 (1989).ADSCrossRefGoogle Scholar
  11. 11.
    R.J. Cederberg and M.D. Collins, “Application of an improved self-starter to geoacoustic inversion,” IEEE J. Ocean. Eng. 22, 102–109 (1997).ADSCrossRefGoogle Scholar
  12. 12.
    M.D. Collins, “Higher-order Padé approximations for accurate and stable elastic parabolic equations with application to interface wave propagation,” J. Acoust. Soc. Am. 89, 1050–1057 (1991).ADSCrossRefGoogle Scholar
  13. 13.
    W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes (Cambridge University Press, Cambridge, 1986).zbMATHGoogle Scholar
  14. 14.
    F.A. Milinazzo, C.A. Zala, and G.H. Brooke, “ Rational square-root approximations for parabolic equation algorithms,” J. Acoust. Soc. Am. 101, 760–766 (1997).ADSCrossRefGoogle Scholar
  15. 15.
    A.R. Mitchell and D.F. Griffiths, The Finite Difference Method in Partial Differential Equations (Wiley, New York, 1980).zbMATHGoogle Scholar
  16. 16.
    R.B. Evans, “A coupled mode solution for acoustic propagation in a waveguide with stepwise depth variations of a penetrable bottom,” J. Acoust. Soc. Am. 74, 188–195 (1983).ADSCrossRefGoogle Scholar
  17. 17.
    H. Schmidt, W. Seong, and J.T. Goh, “Spectral super-element approach to range-dependent ocean acoustic modeling,” J. Acoust. Soc. Am. 98, 465–472 (1995).ADSCrossRefGoogle Scholar
  18. 18.
    G. Strang, Linear Algebra and Its Applications (Academic Press, New York, 1980).zbMATHGoogle Scholar
  19. 19.
    M.D. Collins, “Benchmark calculations for higher-order parabolic equations,” J. Acoust. Soc. Am. 87, 1535–1538 (1990).ADSCrossRefGoogle Scholar
  20. 20.
    M.D. Collins, “The stabilized self-starter,” J. Acoust. Soc. Am. 106, 1724–1726 (1999).ADSCrossRefGoogle Scholar
  21. 21.
    M.D. Collins, “Wave-number sampling at short range,” J. Acoust. Soc. Am. 106, 2535–2539 (1999).ADSCrossRefGoogle Scholar
  22. 22.
    F.B. Jensen and C.M. Ferla, “Numerical solutions of range-dependent benchmark problems,” J. Acoust. Soc. Am. 87, 1499–1510 (1990).ADSCrossRefGoogle Scholar
  23. 23.
    M.D. Collins and R.B. Evans, “A two-way parabolic equation for acoustic backscattering in the ocean,” J. Acoust. Soc. Am. 91, 1357–1368 (1992).ADSCrossRefGoogle Scholar
  24. 24.
    M.B. Porter, F.B. Jensen, and C.M. Ferla, “The problem of energy conservation in one-way models,” J. Acoust. Soc. Am. 89, 1058–1067 (1991).ADSCrossRefGoogle Scholar
  25. 25.
    M.D. Collins and E.K. Westwood, “A higher-order energy-conserving parabolic equation for range-dependent ocean depth, sound speed, and density,” J. Acoust. Soc. Am. 89, 1068–1075 (1991).ADSCrossRefGoogle Scholar
  26. 26.
    M.D. Collins, “The rotated parabolic equation and sloping interfaces,” J. Acoust. Soc. Am. 87, 1035–1037 (1990).ADSCrossRefGoogle Scholar
  27. 27.
    D.A. Outing, W.L. Siegmann, M.D. Collins, and E.K. Westwood, “Generalization of the rotated parabolic equation to variable slopes,” J. Acoust. Soc. Am. 120, 3534–3538 (2006).ADSCrossRefGoogle Scholar
  28. 28.
    M.D. Collins, R.A. Coury, and W.L. Siegmann, “Beach acoustics,” J. Acoust. Soc. Am. 97, 2767–2770 (1995).ADSCrossRefGoogle Scholar
  29. 29.
    M.D. Collins and D.K. Dacol, “A mapping approach for handling sloping interfaces,” J. Acoust. Soc. Am. 107, 1937–1942 (2000).ADSCrossRefGoogle Scholar
  30. 30.
    COMSOL Multiphysics® v. 5.2 (COMSOL AB, Stockholm, Sweden).Google Scholar
  31. 31.
    E.K. Westwood, “Ray methods for flat and sloping shallow-water waveguides,” J. Acoust. Soc. Am. 85, 1885–1894 (1989).ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    D.A. Outing, W.L. Siegmann, and M.D. Collins, “Scholte-to-Rayleigh conversion and other effects in range-dependent elastic media,” IEEE J. Ocean. Eng. 32, 620–625 (2007).ADSCrossRefGoogle Scholar
  33. 33.
    W.H. Munk, “Sound channel in an exponentially stratified ocean, with applications to SOFAR,” J. Acoust. Soc. Am. 55, 220–226 (1974).ADSCrossRefGoogle Scholar
  34. 34.
    Digital Bathymetric Data Base 5-minute (DBDB5) (U.S. Naval Oceanographic Office, Stennis Space Center, Mississippi).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Michael D. Collins
    • 1
  • William L. Siegmann
    • 2
  1. 1.Naval Research LaboratoryWashington, DCUSA
  2. 2.Department of Mathematical SciencesRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations