Advertisement

Models for Tuberculosis

  • Fred Brauer
  • Carlos Castillo-Chavez
  • Zhilan Feng
Chapter
Part of the Texts in Applied Mathematics book series (TAM, volume 69)

Abstract

In this chapter we describe several models for tuberculosis (TB) . The disease is endemic in many areas of the world. The models in this chapter will be extensions of the standard SIR or SEIR type of endemic models presented in Chap.  3. Depending on the typical characteristics of a specific disease, various modifications of the standard models will be considered.

References

  1. 1.
    Aparicio, J. P., and C. Castillo-Chavez (2009) Mathematical modelling of tuberculosis epidemics, Math. Biosc. Eng. 6: 209–237.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Blower, S. M., and T. Chou (2004) Modeling the emergence of the ‘hot zones’: tuberculosis and the amplification dynamics of drug resistance, Nature Medicine 10: 1111–1116.CrossRefGoogle Scholar
  3. 3.
    Blower, S. M., P.M. Small, and P.C. Hopewell (1996) Control strategies for tuberculosis epidemics: new models for old problems, Science 273: 497–500.CrossRefGoogle Scholar
  4. 4.
    Castillo-Chavez, C., and Z. Feng (1997) To treat or not to treat: the case of tuberculosis. J. Math. Biol. 35: 629–656.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Castillo-Chavez, C., and Z. Feng (1998) Global stability of an age-structure model for TB and its applications to optimal vaccination strategies, Math.Biosc. 151: 135–154.CrossRefGoogle Scholar
  6. 6.
    CDC, Tuberculosis treatment (2014) http://www.cdc.gov/tb/topic/treatment/.
  7. 7.
    Cohen, T., and M. Murray (2004) Modeling epidemics of multidrug-resistant M. tuberculosis of heterogeneous fitness Nature Medicine 10: 1117–1121.CrossRefGoogle Scholar
  8. 8.
    Dye, C., and B.G. Williams (2000) Criteria for the control of drug-resistant tuberculosis, Proc. Nat. Acad. Sci. 97: 8180–8185.CrossRefGoogle Scholar
  9. 9.
    Feng, Z., C. Castillo-Chavez, and A.F. Capurro (2000) A model for tuberculosis with exogenous reinfection, Theor. Pop. Biol. 57: 235–247.CrossRefGoogle Scholar
  10. 10.
    Feng, Z., W. Huang, and C. Castillo-Chavez (2001) On the role of variable latent periods in mathematical models for tuberculosis, J. Dyn. Diff. Eq. 13: 435–452.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Feng, Z., M. Iannelli, and F.A. Milner (2002) A two-strain tuberculosis model with age of infection, SIAM J. Appl. Math. 62: 1634–1656.MathSciNetzbMATHGoogle Scholar
  12. 12.
    Fister, K. R., S. Lenhart, and J.S. McNally (1998) Optimizing chemotherapy in an HIV model, Electronic J. Diff. Eq. 32: 1–12.zbMATHGoogle Scholar
  13. 13.
    Fleming, W., and R. Rishel (1975) Deterministic and Stochastic Optimal Control, Springer.Google Scholar
  14. 14.
    Jung, E., S. Lenhart, and Z. Feng (2002) Optimal control of treatments in a two-strain tuberculosis model, Discrete and Continuous Dynamical Systems Series B 2: 473–482.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kirschner, D., S. Lenhart, and S. Serbin (1997) Optimal control of the chemotherapy of HIV J. Math. Biol. 35: 775–792.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Levin, S. and D. Pimentel (1981) Selection of intermediate rates of increase in parasite-host systems, Am. Naturalist 117: 308–315.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Murphy, B. M., B.H. Singer, and D. Kirschner (2003) On treatment of tuberculosis in heterogeneous populations, J. Theor. Biol. 223: 391–404.CrossRefGoogle Scholar
  18. 18.
    Nowak, M.A., and R.M. May (1994) Superinfection and the evolution of parasite virulence, Proc. Roy. Soc. London, Series B: Biological Sciences 255: 81–89.Google Scholar
  19. 19.
    Pontryagin, L.S. (1987) Mathematical Theory of Optimal Processes, CRC Press.Google Scholar
  20. 20.
    Porco, T.C., P.M. Small, and S.M. Blower (2001) Amplification dynamics: predicting the effect of HIV on tuberculosis outbreaks, J. Acquired Immune Deficiency Syndromes 28: 437–444.CrossRefGoogle Scholar
  21. 21.
    Rodrigues, P., M.G.M. Gomes, and C. Rebelo (2007) Drug resistance in tuberculosis, a reinfection model, Theor. Pop. Biol. 71: 196–212.CrossRefGoogle Scholar
  22. 22.
    Roeger, L-I.W., Z. Feng, and C. Castillo-Chavez (2009) Modeling TB and HIV co-infections Math. Biosc. Eng. 6: 815–837.CrossRefGoogle Scholar
  23. 23.
    Singer, B.H., and D.E. Kirschner (2004) Influence of backward bifurcation on interpretation of \({\mathcal R}_0\) in a model of epidemic tuberculosis with reinfection, Math. Biosc. Eng. 1: 81–93.CrossRefGoogle Scholar
  24. 24.
    Styblo, K. (1991) Selected papers. vol. 24, Epidemiology of tuberculosis, Hague, The Netherlands: Royal Netherlands Tuberculosis Association.Google Scholar
  25. 25.
    WHO. Global tuberculosis report 2013 http://www.who.int/tb/publications/global_report/.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Fred Brauer
    • 1
  • Carlos Castillo-Chavez
    • 2
  • Zhilan Feng
    • 3
  1. 1.Department of MathematicsUniversity of British ColumbiaVancouverCanada
  2. 2.Mathematical and Computational Modeling Center (MCMSC), Department of Mathematics and StatisticsArizona State UniversityTempeUSA
  3. 3.Department of MathematicsPurdue UniversityWest LafayetteUSA

Personalised recommendations