Advertisement

Models with Heterogeneous Mixing

  • Fred Brauer
  • Carlos Castillo-Chavez
  • Zhilan Feng
Chapter
Part of the Texts in Applied Mathematics book series (TAM, volume 69)

Abstract

To cope with annual seasonal influenza epidemics there is a program of vaccination before the “flu” season begins. Each year a vaccine is produced aimed at protecting against the three influenza strains considered most dangerous for the coming season. We formulate a model to add vaccination to the simple SIR model under the assumption that vaccination reduces susceptibility (the probability of infection if a contact with an infected member of the population is made).

References

  1. 1.
    Adler, F.R. (1992) The effects of averaging on the basic reproduction ratio, Math Biosci. 111(1): 89–98.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Allen,L.J. and P. van den Driessche (2008) The basic reproduction number in some discrete-time epidemic models, J. Diff. Equ. App. 14: 1127–1147.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Andersson, H. & Britton, T. (1998) Heterogeneity in epidemic models and its effect on the spread of infection, J. Appl. Prob. 35: 651–661.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Arino, J., F. Brauer, P. van den Driessche, J. Watmough & J. Wu (2006) Simple models for containment of a pandemic, J. Roy. Soc. Interface, 3: 453–457.CrossRefGoogle Scholar
  5. 5.
    Arino, J., F. Brauer, P. van den Driessche, J. Watmough & J. Wu (2007) A final size relation for epidemic models, Math. Biosc. & Eng. 4: 159–176.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Arino, J., F. Brauer, P. van den Driessche, J. Watmough & J. Wu (2008) A model for influenza with vaccination and antiviral treatment, Theor. Pop. Biol. 253: 118–130.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Berman, A. & R.J. Plemmons (1994) Nonnegative Matrices in the Mathematical Sciences, SIAM, Vol. 9, 1994.zbMATHGoogle Scholar
  8. 8.
    Blythe, S.P., S. Busenberg & C. Castillo-Chavez (1995) Affinity and paired-event probability, Math. Biosc. 128: 265–84 .MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Blythe, S.P. , C. Castillo-Chavez, J. Palmer & M. Cheng (1991) Towards a unified theory of mixing and pair formation, Math. Biosc. 107: 379–405.zbMATHCrossRefGoogle Scholar
  10. 10.
    Brauer, F. (2005) The Kermack–McKendrick epidemic model revisited, Math. Biosc. 198: 119–131.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Brauer, F. (2008) Epidemic models with treatment and heterogeneous mixing, Bull. Math. Biol. 70: 1869–1885.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Brauer, F. & J. Watmough (2009) Age of infection epidemic models with heterogeneous mixing, J. Biol. Dynamics 3: 324–330.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Busenberg, S. & C. Castillo-Chavez (1989) Interaction, pair formation and force of infection terms in sexually transmitted diseases, In Mathematical and Statistical Approaches to AIDS Epidemiology, Lect. Notes Biomath. 83, C. Castillo-Chavez (ed.), Springer-Verlag, Berlin-Heidelberg-New York, 289–300.CrossRefGoogle Scholar
  14. 14.
    Busenberg, S. & C. Castillo-Chavez (1991) A general solution of the problem of mixing of sub-populations and its application to risk- and age-structured epidemic models for the spread of AIDS, IMA J. Math. Appl. Med. Biol., 8: 1–29.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Chow, L., M. Fan, and Z. Feng (2011) Dynamics of a multi-group epidemiological model with group-targeted vaccination strategies, J. Theor. Biol. 29: 56–64.zbMATHCrossRefGoogle Scholar
  16. 16.
    De Jong, M., O. Diekmann and J.A.P. Heesterbeek (1994) The computation of R0 for discrete-time epidemic models with dynamic heterogeneity, Math. Biosci. 119(1): 97–114.zbMATHGoogle Scholar
  17. 17.
    Del Valle, S. Y., J.M. Hyman, H.W. Hethcote & S.G. Eubank (2007) Mixing patterns between age groups in social networks, Social Networks, 29(4): 539–554.CrossRefGoogle Scholar
  18. 18.
    Diekmann, O. & J.A.P. Heesterbeek (2000) Mathematical Epidemiology of Infectious Diseases. Wiley, Chichester (2000)Google Scholar
  19. 19.
    Diekmann, O., J.A.P. Heesterbeek & J.A.J. Metz (1990) On the definition and the computation of the basic reproductive ratio \(\mathcal {R}_0\) in models for infectious diseases in heterogeneous populations, J. Math. Biol. 28: 365–382.Google Scholar
  20. 20.
    Diekmann, O., J.A.P. Heesterbeek, & T. Britton (2012) Mathematical tools for understanding infectious disease dynamics, 2012, Princeton University Press.zbMATHCrossRefGoogle Scholar
  21. 21.
    Feng, Z., A.N. Hill, P.J. Smith, J.W. Glasser (2015) An elaboration of theory about preventing outbreaks in homogeneous populations to include heterogeneity or preferential mixing, J. Theor. Biol. 386: 177–187.MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Feng, Z., A.N. Hill, A.T. Curns, J.W. Glasser (2007) Evaluating targeted interventions via meta-population models with multi-level mixing, Math. Biosci. 287: 93–104.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Ferguson, N.M., D.A.T. Cummings, S. Cauchemez, C. Fraser, S. Riley, A. Meeyai, S. Iamsirithaworn, & D.S. Burke (2005) Strategies for containing an emerging influenza pandemic in Southeast Asia, Nature, 437: 209–214.CrossRefGoogle Scholar
  24. 24.
    Gani, R., H. Hughes, T. Griffin, J. Medlock, & S. Leach (2005) Potential impact of antiviral use on hospitalizations during influenza pandemic, Emerg. Infect. Dis. 11: 1355–1362.CrossRefGoogle Scholar
  25. 25.
    Glasser, J., Z. Feng, A. Moylan, S. Del Valle & C. Castillo-Chavez (2012) Mixing in age-structured population models of infectious diseases, Math. Biosci., 235(1): 1–7.MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Glasser, J.W., Z. Feng, S.B. Omer, P.J. Smith, L.E. Rodewald (2016) The effect of heterogeneity in uptake of the measles, mumps, and rubella vaccine on the potential for outbreaks of measles: a modelling study, 16(5): 599–605.Google Scholar
  27. 27.
    Hethcote, H.W. & J.A. Yorke (1984) Gonorrhea Transmission Dynamics and Control, Lect. Notes in Biomath. 56, Springer-Verlag, Berlin-Heidelberg-New York (1984).Google Scholar
  28. 28.
    Hethcote, H.W. & J.W. van Ark (1987) Epidemiological models for heterogeneous populations: proportionate mixing, parameter estimation and immunization programs. Math. Biosci., 84(1): 85–118.MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Hirsch, M.W. & S. Smale, Differential Equations (1974) Dynamical Systems, and Linear Algebra, Academic Press, Orlando, FL (1974).zbMATHGoogle Scholar
  30. 30.
    Jacquez, J.A., C.P. Simon, J. Koopman, L. Sattenspiel, & T. Perry (1988) Modeling and analyzing HIV transmission: the effect of contact patterns, Math. Biosci., 92: 119–199.MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Lewis, M.A., J. Renclawowicz, P. van Den Driessche, and M. Wonham (2006) A comparison of continuous and discrete-time West Nile Virus models, Bull. Math. Biol. 68(3): 491–509.MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Longini, I.M., M.E. Halloran, A. Nizam, & Y. Yang (2004) Containing pandemic influenza with antiviral agents, Am. J. Epidem. 159: 623–633.CrossRefGoogle Scholar
  33. 33.
    Longini, I.M., A. Nizam, S. Xu, K. Ungchusak, W. Hanshaoworakul, D.A.T. Cummings, & M.E. Halloran (2005) Containing pandemic influenza at the source, Science 309, 1083–1087.CrossRefGoogle Scholar
  34. 34.
    Longini, I. M. & M. E. Halloran (2005) Strategy for distribution of influenza vaccine to high - risk groups and children, Am. J. Epidem. 161: 303–306.CrossRefGoogle Scholar
  35. 35.
    Ma, J. & D.J.D. Earn (2006) Generality of the final size formula for an epidemic of a newly invading infectious disease, Bull. Math. Biol. 68: 679–702.MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    May, R.M. & R.M. Anderson (1984) Spatial heterogeneity and the design of immunization programs. Math Biosci. 72(1): 83–111.MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    May, R.M. & R.M. Anderson (1984) Spatial, temporal and genetic heterogeneity in host populations and the design of immunization programmes. IMA J Math Appl Math Biol. 1(3): 233–66.MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Meyers, L.A. (2007) Contact network epidemiology: Bond percolation applied to infectious disease prediction and control, Bull. Am. Math. Soc. 44, 63–86.MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Meyers, L.A. , M.E.J. Newman & B. Pourbohloul (2006) Predicting epidemics on directed contact networks, J. Theor. Biol. 240, 400–418.MathSciNetCrossRefGoogle Scholar
  40. 40.
    Meyers, L.A., B. Pourbohloul, M.E.J. Newman, D.M. Skowronski, & R.C. Brunham (2005) Network theory and SARS: predicting outbreak diversity. J. Theor. Biol., 232: 71–81.MathSciNetCrossRefGoogle Scholar
  41. 41.
    Mossong, J., N. Hens, M. Jit, P. Beutels, K. Auranen, R. Mikolajczyk, …& W. J. Edmunds (2008) Social contacts and mixing patterns relevant to the spread of infectious diseases, PLoS Medicine, 5(3): e74.Google Scholar
  42. 42.
    Nold, A. (1980) Heterogeneity in disease transmission modeling, Math. Biosci, 52: 227–240.MathSciNetzbMATHGoogle Scholar
  43. 43.
    Poghotanyan, G., Z. Feng, J.W. Glasser, A.N. Hill (2018) Constrained minimization problems for the reproduction number in meta-population models, J. Math. Biol. https:/doi.org/10.1007/s00285-018-1216-z.Google Scholar
  44. 44.
    Pourbohloul, B. & J. Miller (2008) Network theory and the spread of communicable diseases, Center for Disease Modeling Preprint 2008-03, www.cdm.yorku.ca/cdmprint03.pdf
  45. 45.
    van den Driessche, P. & J. Watmough (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosc. 180: 29–48.MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    van den Driessche, P. & J. Watmough (2002) Further notes on the basic reproduction number, in Mathematical Epidemiology, F. Brauer, P. van den Driessche, & J. Wu (eds.) Springer Lecture Notes, Vol. 1945.Google Scholar
  47. 47.
    Wallinga, J., P. Teunis, & M. Kretzschmar (2006) Using data on social contacts to estimate age-specific transmission parameters for respiratory-spread infectious agents, American Journal of Epi, 164(10): 936–944.CrossRefGoogle Scholar
  48. 48.
    Wesley, C. L., L.J. Allen, C.B. Jonsson, Y.-K. Chu, R.D. Owen (2009) A discrete-time rodent-hantavirus model structured by infection and developmental stages, Adv. Stu. Pure Math. 53: 387–398.MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Zagheni, E., F.C. Billari, P. Manfredi, A. Melegaro, J. Mossong & W.J. Edmunds (2008) Using time-use data to parameterize models for the spread of close-contact infectious diseases, Am. J. Epi., 168(9), 1082–1090.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Fred Brauer
    • 1
  • Carlos Castillo-Chavez
    • 2
  • Zhilan Feng
    • 3
  1. 1.Department of MathematicsUniversity of British ColumbiaVancouverCanada
  2. 2.Mathematical and Computational Modeling Center (MCMSC), Department of Mathematics and StatisticsArizona State UniversityTempeUSA
  3. 3.Department of MathematicsPurdue UniversityWest LafayetteUSA

Personalised recommendations