Epidemic Models

  • Fred Brauer
  • Carlos Castillo-Chavez
  • Zhilan Feng
Part of the Texts in Applied Mathematics book series (TAM, volume 69)


In this chapter we describe models for epidemics, acting on a sufficiently rapid time scale that demographic effects, such as births, natural deaths, immigration into and emigration out of a population may be ignored. The prototype epidemic model is the simple Kermack–McKendrick model studied in Sect.  2.4.


  1. 1.
    Alexanderian, A., M.K. Gobbert, K.R. Fister, H. Gaff, S. Lenhart, and E. Schaefer (2011) An age-structured model for the spread of epidemic cholera: Analysis and simulation, Nonlin. Anal. Real World Appl. 12: 3483–3498.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Andrews, J.R. & and S. Basu (2011) Transmission dynamics and control of cholera in Haiti: an epidemic model, Lancet 377: 1248–1255.CrossRefGoogle Scholar
  3. 3.
    Arino, J., F. Brauer, P. van den Driessche, J. Watmough & J. Wu (2006) Simple models for containment of a pandemic, J. Roy. Soc. Interface, 3: 453–457.CrossRefGoogle Scholar
  4. 4.
    Arino, J. F. Brauer, P. van den Driessche, J. Watmough& J. Wu (2007) A final size relation for epidemic models, Math. Biosc. & Eng. 4: 159–176.Google Scholar
  5. 5.
    Arino, J., F. Brauer, P. van den Driessche, J. Watmough & J. Wu (2008) A model for influenza with vaccination and antiviral treatment, Theor. Pop. Biol. 253: 118–130.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bansal, S., J. Read, B. Pourbohloul, and L.A. Meyers (2010) The dynamic nature of contact networks in infectious disease epidemiology, J. Biol. Dyn., 4: 478–489.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Brauer, F., C. Castillo-Chavez, and Z. Feng (2010) Discrete epidemic models, Math. Biosc. & Eng. 7: 1–15.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Brauer, F., Z. Shuai, & P. van den Driessche (2013) Dynamics of an age-of-infection cholera model, Math. Biosc. & Eng. 10:1335–1349.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Brauer, F., P. van den Driessche and J. Wu, eds. (2008) Mathematical Epidemiology, Lecture Notes in Mathematics, Mathematical Biosciences subseries 1945, Springer, Berlin - Heidelberg - New York.Google Scholar
  10. 10.
    Callaway, D.S., M.E.J. Newman, S.H. Strogatz, D.J. Watts (2000) Network robustness and fragility: Percolation on random graphs, Phys. Rev. Letters, 85: 5468–5471.CrossRefGoogle Scholar
  11. 11.
    Codeço, C.T. (2001) Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir, BMC Infectious Diseases 1: 1.CrossRefGoogle Scholar
  12. 12.
    Diekmann,O. & J.A.P. Heesterbeek (2000) Mathematical Epidemiology of Infectious Diseases. Wiley, Chichester.zbMATHGoogle Scholar
  13. 13.
    Erdös, P. & A. Rényi (1959) On random graphs, Publicationes Mathematicae 6: 290–297.MathSciNetzbMATHGoogle Scholar
  14. 14.
    Erdös, P. & A. Rényi (1960) On the evolution of random Pub. Math. Inst. Hung. Acad. Science 5: 17–61.zbMATHGoogle Scholar
  15. 15.
    Erdös, P. & A. Rényi (1961) On the strengths of connectedness of a random graph, Acta Math. Scientiae Hung. 12: 261–267.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Feng, Z. (2007) Final and peak epidemic sizes for SEIR models with quarantine and isolation, Math. Biosc. & Eng. 4: 675–686.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Feng, Z., D. Xu & W. Zhao (2007) Epidemiological models with non-exponentially distributed disease stages and applications to disease control, Bull. Math. Biol. 69: 1511–1536.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Fine, P.E.M. (2003) The interval between successive cases of an infectious disease, Am. J. Epid. 158: 1039–1047.CrossRefGoogle Scholar
  19. 19.
    Gumel, A., S. Ruan, T. Day, J. Watmough, P. van den Driessche, F. Brauer, D. Gabrielson, C. Bowman, M.E. Alexander, S. Ardal, J. Wu & B.M. Sahai (2004) Modeling strategies for controlling SARS outbreaks based on Toronto, Hong Kong, Singapore and Beijing experience, Proc. Roy. Soc. London 271: 2223–2232.CrossRefGoogle Scholar
  20. 20.
    Diekmann, O., J.A.P. Heesterbeek, & J.A.J. Metz (1995) The legacy of Kermack and McKendrick, in Epidemic Models: Their Structure and Relation to Data, D. Mollison, ed., Cambridge University Press, pp. 95–115.Google Scholar
  21. 21.
    Hartley, D.M., J.G. Morris Jr. & D.L. Smith (2006) Hyperinfectivity: a critical element in the ability of V. cholerae to cause epidemics? PLOS Med. 3:63–69.CrossRefGoogle Scholar
  22. 22.
    Heffernan, J.M., R.J. Smith? & L.M. Wahl (2005) Perspectives on the basic reproductive ratio, J. Roy. Soc. Interface 2: 281–293.Google Scholar
  23. 23.
    Hyman, J.M., J. Li & E. A. Stanley (1999) The differential infectivity and staged progression models for the transmission of HIV, Math. Biosc. 155: 77–109.CrossRefGoogle Scholar
  24. 24.
    Kermack, W.O. & A.G. McKendrick (1927) A contribution to the mathematical theory of epidemics. Proc. Royal Soc. London. 115: 700–721.CrossRefGoogle Scholar
  25. 25.
    King, A.A. E.L. Ionides, M. Pascual, & M.J. Bouma (2008) Inapparent infectious and cholera dynamics, Nature 454: 877–890.CrossRefGoogle Scholar
  26. 26.
    Lloyd, A.L. (2001) Realistic distributions of infectious periods in epidemic models: Changing patterns of persistence and dynamics, Theor. Pop. Biol., 60: 59–71.CrossRefGoogle Scholar
  27. 27.
    Meyers, L.A. (2007) Contact network epidemiology: Bond percolation applied to infectious disease prediction and control, Bull. Am. Math. Soc., 44: 63–86.MathSciNetCrossRefGoogle Scholar
  28. 28.
    Meyers, L.A., M.E.J. Newman and B. Pourbohloul(2006) Predicting epidemics on directed contact networks, J. Theor. Biol., 240: 400–418.MathSciNetCrossRefGoogle Scholar
  29. 29.
    Meyers, L.A., B. Pourbohloul, M.E.J. Newman, D.M. Skowronski, and R.C. Brunham (2005) Network theory and SARS: predicting outbreak diversity, J. Theor. Biol., 232: 71–81.MathSciNetCrossRefGoogle Scholar
  30. 30.
    Miller, J.C. (2010) A note on a paper by Erik Volz: SIR dynamics in random networks. J. Math. Biol. Scholar
  31. 31.
    Miller, J.C. and E. Volz (2011) Simple rules govern epidemic dynamics in complex networks, to appear.Google Scholar
  32. 32.
    Newman, M.E.J. (2002) The spread of epidemic disease on networks, Phys. Rev. E 66, 016128.MathSciNetCrossRefGoogle Scholar
  33. 33.
    Newman, M.E.J. (2003) The structure and function of complex networks. SIAM Review, 45: 167–256.MathSciNetCrossRefGoogle Scholar
  34. 34.
    Newman, M.E.J., S.H. Strogatz & D.J. Watts (2001) Random graphs with arbitrary degree distributions and their applications, Phys. Rev. E 64.Google Scholar
  35. 35.
    Riley, S., C. Fraser, C.A. Donnelly, A.C. Ghani, L.J. Abu-Raddad, A.J. Hedley, G.M. Leung, L-M Ho, T-H Lam, T.Q. Thach, P. Chau, K-P Chan, S-V Lo, P-Y Leung, T. Tsang, W. Ho, K-H Lee, E.M.C. Lau, N.M. Ferguson, & R.M. Anderson (2003) Transmission dynamics of the etiological agent of SARS in Hong Kong: Impact of public health interventions, Science 300: 1961–1966.CrossRefGoogle Scholar
  36. 36.
    Roberts, M.G. and J.A.P. Heesterbeek (2003) A new method for estimating the effort required to control an infectious disease, Pro. Roy. Soc. London B 270: 1359–1364.Google Scholar
  37. 37.
    Scalia-Tomba, G., A. Svensson, T. Asikaiainen, and J. Giesecke (2010) Some model based considerations on observing generation times for communicable diseases, Math. Biosc. 223: 24–31.MathSciNetCrossRefGoogle Scholar
  38. 38.
    Shuai, Z. & P. van den Driessche (2011) Global dynamics of cholera models with differential infectivity, Math. Biosc. 234: 118–126.MathSciNetCrossRefGoogle Scholar
  39. 39.
    Strogatz, S.H. (2001) Exploring complex networks, Nature, 410: 268–276.CrossRefGoogle Scholar
  40. 40.
    Svensson, A. (2007) A note on generation time in epidemic models, Math. Biosc. 208: 300–311.MathSciNetCrossRefGoogle Scholar
  41. 41.
    Tien, J.H. & D.J.D. Earn (2010) Multiple transmission pathways and disease dynamics in a waterborne pathogen model, Bull. Math. Biol. 72: 1506–1533.MathSciNetCrossRefGoogle Scholar
  42. 42.
    van den Driessche, P. & J. Watmough (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosc., 180: 29–48.MathSciNetCrossRefGoogle Scholar
  43. 43.
    Volz, E. (2008) SIR dynamics in random networks with heterogeneous connectivity, J. Math. Biol., 56: 293–310.MathSciNetCrossRefGoogle Scholar
  44. 44.
    Wallinga, J. & M. Lipsitch (2007) How generation intervals shape the relationship between growth rates and reproductive numbers, Proc. Royal Soc. B 274: 599–604.CrossRefGoogle Scholar
  45. 45.
    Wallinga, J. & P. Teunis (2004) Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures, Am. J. Epidem. 160: 509–516,CrossRefGoogle Scholar
  46. 46.
    Wearing, H.J., P. Rohani & M. J. Keeling (2005) Appropriate models for the management of infectious diseases, PLOS Medicine, 2: 621–627.Google Scholar
  47. 47.
    Yan, P. and Z. Feng (2010) Variability order of the latent and the infectious periods in a deterministic SEIR epidemic model and evaluation of control effectiveness Math. Biosc. 224: 43–52.zbMATHGoogle Scholar
  48. 48.
    Yang, C.K. and F. Brauer (2009) Calculation of \(\mathcal {R}_0\) for age-of-infection models, Math. Biosc. & Eng. 5: 585–599Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Fred Brauer
    • 1
  • Carlos Castillo-Chavez
    • 2
  • Zhilan Feng
    • 3
  1. 1.Department of MathematicsUniversity of British ColumbiaVancouverCanada
  2. 2.Mathematical and Computational Modeling Center (MCMSC), Department of Mathematics and StatisticsArizona State UniversityTempeUSA
  3. 3.Department of MathematicsPurdue UniversityWest LafayetteUSA

Personalised recommendations