Epidemiological Models Incorporating Mobility, Behavior, and Time Scales

  • Fred Brauer
  • Carlos Castillo-Chavez
  • Zhilan Feng
Part of the Texts in Applied Mathematics book series (TAM, volume 69)


The work of Eubank et al., Sara del Valle et al., Chowell et al., and Castillo-Chavez and Song have highlighted the impact of modified modeling approaches that incorporate heterogeneous modes of mobility within variable environments in order to study their impact on the dynamics of infectious diseases. Castillo-Chavez and Song, for example, proceeded to highlight a Lagrangian perspective, that is, the use of models that keep track at all times of the identity of each individual. This approach was used to study the consequences of deliberate efforts to transmit smallpox in a highly populated city, involving transient sub-populations and the availability of massive modes of public transportation.


  1. 1.
    Andrews, J.R., C. Morrow, and R. Wood (2013) Modeling the role of public transportation in sustaining tuberculosis transmission in South Africa. Am J Epidemiol 177: 556–561.CrossRefGoogle Scholar
  2. 2.
    Banks, H.T. and C. Castillo-Chavez (2003) Bioterrorism: Mathematical Modeling Applications in Homeland Security. SIAM, 2003.Google Scholar
  3. 3.
    Baroyan, O., L. Rvachev, U. Basilevsky, V. Ermakov, K. Frank, M. Rvachev, and V. Shashkov (1971) Computer modelling of influenza epidemics for the whole country (USSR), Advances in Applied Probability 3: 224–226.CrossRefGoogle Scholar
  4. 4.
    Bichara, D. and C. Castillo-Chavez (2016) Vector-borne diseases models with residence times–a Lagrangian perspective, Math. Biosc. 281: 128–138.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bichara, D., S. A. Holechek, J. Velázquez-Castro, A. L. Murillo, and C. Castillo-Chavez (2016) On the dynamics of dengue virus type 2 with residence times and vertical transmission. Letters in Biomathematics 3:140–160.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bichara, D. and A. Iggidr (2017) Multi-patch and multi-group epidemic models: a new framework. J. Math. Biol.
  7. 7.
    Bichara, D., Y. Kang, C. Castillo-Chavez, R. Horan, and C. Perrings (2015) SIS and SIR epidemic models under virtual dispersal, Bull. Math. Biol. 77: 2004–2034.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Brauer, F., C. Castillo-Chavez, A. Mubayi, and S. Towers (2016) Some models for epidemics of vector-transmitted diseases. Infectious Disease Modelling 1: 79–87.CrossRefGoogle Scholar
  9. 9.
    Brauer,F. and C. Castillo-Chavez (2012) Mathematical Models for Communicable Diseases 84 SIAM.Google Scholar
  10. 10.
    Castillo-Chavez, C., K. Barley, D. Bichara, D. Chowell, E.D. Herrera, B. Espinoza, V. Moreno, S. Towers, and K. Yong (2016) Modeling Ebola at the mathematical and theoretical biology institute (MTBI). Notices of the AMS 63.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Castillo-Chavez, C., D. Bichara, and B.R. Morin (2016) Perspectives on the role of mobility, behavior, and time scales in the spread of diseases, Proc. Nat. Acad. Sci. 113: 14582–14588.CrossRefGoogle Scholar
  12. 12.
    Castillo-Chavez, C., R. Curtiss, P. Daszak, S.A. Levin, O. Patterson-Lomba, C. Perrings, G. Poste, and S. Towers (2015) Beyond Ebola: Lessons to mitigate future pandemics. The Lancet Global Health 3: e354–e355.CrossRefGoogle Scholar
  13. 13.
    Castillo-Chavez, C., B. Song, and J. Zhangi (2003) An epidemic model with virtual mass transportation: The case of smallpox. Bioterrorism: Mathematical Modeling Applications in Homeland Security 28: 173.Google Scholar
  14. 14.
    CDC(a) (2016) Zika virus. Online, February 01, 2016.Google Scholar
  15. 15.
    Chatterjee, D. and A. K. Pramanik (2015) Tuberculosis in the African continent: A comprehensive review. Pathophysiology 22: 73–83.CrossRefGoogle Scholar
  16. 16.
    Chowell, D., C. Castillo-Chavez, S. Krishna, X. Qiu, and K.S. Anderson (2015) Modelling the effect of early detection of Ebola. The Lancet Infectious DiseasesGoogle Scholar
  17. 17.
    Chowell, G., P.W. Fenimore, M.A. Castillo-Garsow, and C. Castillo-Chavez (2003) SARS outbreaks in Ontario, Hong Kong and Singapore: the role of diagnosis and isolation as a control mechanism, J. Theor. Biol. 224: 1–8.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Chowell, G., J.M. Hyman, S. Eubank, and C. Castillo-Chavez (2003) Scaling laws for the movement of people between locations in a large city. Phys. Rev. 68: 066102.Google Scholar
  19. 19.
    Daniel, T.M. (2006) The history of tuberculosis. Respiratory Medicine 100: 1862–1870.CrossRefGoogle Scholar
  20. 20.
    de Oliveira, G.P., A.W. Torrens, P. Bartholomay, and D. Barreira (2013) Tuberculosis in Brazil: last ten years analysis – 2001–2010 in Journal of Infectious Diseases 17: 218–233.Google Scholar
  21. 21.
    Duffy, M.R., T.-H. Chen, W.T. Hancock, A.M. Powers, J.L. Kool, R.S. Lanciotti, M. Pretrick, M. Marfel, S. Holzbauer, C. Dubray, et al (2009) Zika virus outbreak on yap island, federated states of Micronesia. New England J. Medicine 360: 2536–2543.CrossRefGoogle Scholar
  22. 22.
    Elveback, L.R., J.P. Fox, E. Ackerman, A. Langworthy, M. Boyd, and L. Gatewood (1976) An influenza simulation model for immunization studies. Am. J. Epidemiology 103: 152–165.CrossRefGoogle Scholar
  23. 23.
    Espinoza, B., V. Moreno, D. Bichara, and C. Castillo-Chavez (2016) Assessing the efficiency of movement restriction as a control strategy of Ebola. In Mathematical and Statistical Modeling for Emerging and Re-emerging Infectious Diseases, pages 123–145. Springer.Google Scholar
  24. 24.
    Eubank, S., H. Guclu, V. A. Kumar, M.V. Marathe, A. Srinivasan, Z. Toroczkai, and N. Wang (2004) Modelling disease outbreaks in realistic urban social networks. Nature 429: 180–184.CrossRefGoogle Scholar
  25. 25.
    Feng, Z., C. Castillo-Chavez, and A.F. Capurro (2000) A model for tuberculosis with exogenous reinfection. Theor. Pop. Biol. 57: 235–247.CrossRefGoogle Scholar
  26. 26.
    Fenichel, E.P., C. Castillo-Chavez, M.G. Ceddia, G. Chowell, P.A.G. Parra, G.J. Hickling, G. Holloway, R. Horan, B. Morin, C. Perrings, et al (2011) Adaptive human behavior in epidemiological models. Proc. Nat. Acad. Sci. 108: 6306–6311.CrossRefGoogle Scholar
  27. 27.
    Herrera-Valdez, M.A., M. Cruz-Aponte, and C. Castillo-Chavez (2011) Multiple outbreaks for the same pandemic: Local transportation and social distancing explain the different “waves” of A-H1N1pdm cases observed in México during 2009. Math. Biosc. Eng. 8: 21–48.CrossRefGoogle Scholar
  28. 28.
    Hyman, J.M. and T. LaForce (2003) Modeling the spread of influenza among cities. In Bioterrorism: Mathematical Modeling Applications in Homeland Security, pages 211–236. SIAM.Google Scholar
  29. 29.
    Jaitman, L. (2015) Los costos del crimen y la violencia en el bienestar en America Latina y el Caribe, L. Jaitman Ed. Banco Interamericano del Desarrollo.Google Scholar
  30. 30.
    Khan, K., J. Arino, W. Hu, P. Raposo, J. Sears, F. Calderon, C. Heidebrecht, M. Macdonald, J. Liauw, A. Chan, et al (2009) Spread of a novel influenza a (H1N1) virus via global airline transportation. New England J. Medicine 361: 212–214.CrossRefGoogle Scholar
  31. 31.
    Kucharski, A.J., S. Funk, R.M. Eggo, H.-P. Mallet, J. Edmunds, and E.J. Nilles (2016) Transmission dynamics of Zika virus in island populations: a modelling analysis of the 2013–14 French Polynesia outbreak. bioRxiv, page 038588.Google Scholar
  32. 32.
    Lee, S. and C. Castillo-Chavez (2015) The role of residence times in two-patch dengue transmission dynamics and optimal strategies, J. Theor. Biol. 374:152–164.MathSciNetCrossRefGoogle Scholar
  33. 33.
    Luzze, H., D.F. Johnson, K. Dickman, H. Mayanja-Kizza, A. Okwera, K. Eisenach, M. D. Cave, C.C. Whalen, J.L. Johnson, W.H. Boom, M. Joloba, and Tuberculosis Research Unit (2013) Relapse more common than reinfection in recurrent tuberculosis 1–2 years post treatment in urban Uganda. Int. J. of Tuberculosis and Lung Disease 17: 361–367.CrossRefGoogle Scholar
  34. 34.
    Moreno, V., B. Espinoza, K. Barley, M. Paredes, D. Bichara, A. Mubayi, and C. Castillo-Chavez (2017) The role of mobility and health disparities on the transmission dynamics of tuberculosis. Theoretical Biology and Medical Modelling 14 :3, 2017.Google Scholar
  35. 35.
    Moreno, V.M., B. Espinoza, D. Bichara, S. A. Holechek, and C. Castillo-Chavez (2017) Role of short-term dispersal on the dynamics of Zika virus in an extreme idealized environment. Infectious Disease Modelling 2: 21–34.CrossRefGoogle Scholar
  36. 36.
    Morin, B.R., E.P. Fenichel, and C. Castillo-Chavez (2013) SIR dynamics with economically driven contact rates, Natural resource modeling 26: 505–525.MathSciNetCrossRefGoogle Scholar
  37. 37.
    Nishiura, H., C. Castillo-Chavez, M. Safan, and G. Chowell (2009) Transmission potential of the new influenza A (H1N1) virus and its age-specificity in Japan, Eurosurveillance 14: 19227.Google Scholar
  38. 38.
    Nishiura, H., G. Chowell, and C. Castillo-Chavez (2011) Did modeling overestimate the transmission potential of pandemic (H1N1-2009)? sample size estimation for post-epidemic seroepidemiological studies. PLoS One 6: e17908.CrossRefGoogle Scholar
  39. 39.
    Padmanabhan, P., P. Seshaiyer, and C. Castillo-Chavez (2017) Mathematical modeling, analysis and simulation of the spread of Zika with influence of sexual transmission and preventive measures. Letters in Biomathematics 4: 148–166.MathSciNetCrossRefGoogle Scholar
  40. 40.
    Patterson-Lomba, O., E. Goldstein, A. Gómez-Liévano, C. Castillo-Chavez, and S. Towers (2015) Infections increases systematically with urban population size: a cross-sectional study. Sex Transm Infect 91: 610–614.CrossRefGoogle Scholar
  41. 41.
    Patterson-Lomba, O., M. Safan, S. Towers, and J. Taylor (2016) Modeling the role of healthcare access inequalities in epidemic outcomes. Math. Biosc. Eng. 13: 1011–1041.MathSciNetCrossRefGoogle Scholar
  42. 42.
    Perrings, C. Castillo-Chavez, G. Chowell, P. Daszak, E.P. Fenichel, D. Finnoff, R.D. Horan, A.M. Kilpatrick, A.P. Kinzig, N.V. Kuminoff, et al (2014) Merging economics and epidemiology to improve the prediction and management of infectious disease. EcoHealth 11: 464–475.CrossRefGoogle Scholar
  43. 43.
    Rvachev, L.A. and I.M. Longini Jr. (1985) A mathematical model for the global spread of influenza. Math. Biosc. 75: 3–22.MathSciNetCrossRefGoogle Scholar
  44. 44.
    Stroud, P., S. Del Valle, S. Sydoriak, J. Riese, and S. Mniszewski (2007) Spatial dynamics of pandemic influenza in a massive artificial society. Journal of Artificial Societies and Social Simulation 10: 9.Google Scholar
  45. 45.
    Towers, S., F. Brauer, C. Castillo-Chavez, A.K. Falconar, A. Mubayi, and C.M. Romero-Vivas (2016) Estimation of the reproduction number of the 2015 Zika virus outbreak in Barranquilla, Colombia, and estimation of the relative role of sexual transmission. Epidemics 17: 50–55.CrossRefGoogle Scholar
  46. 46.
    Towers, S., O. Patterson-Lomba, and C. Castillo-Chavez (2014) Temporal variations in the effective reproduction number of the 2014 West Africa Ebola outbreak. PLoS currents 6.Google Scholar
  47. 47.
    Verver, S., R.M. Warren, N. Beyers, M. Richardson, G.D. van der Spuy, M.W. Borgdorff, D. A. Enarson, M.A. Behr, and P.D. van Helden (2005) Rate of reinfection tuberculosis after successful treatment is higher than rate of new tuberculosis, Am. J. Respiratory and Critical Care Medicine 171: 1430–1435.CrossRefGoogle Scholar
  48. 48.
    W. H. O. (WHO) (2015) Tuberculosis, fact sheet no. 104. Online, October 2015.Google Scholar
  49. 49.
    Yong, K., E.D. Herrera, and C. Castillo-Chavez (2016) From bee species aggregation to models of disease avoidance: The Ben-Hur effect. In Mathematical and Statistical Modeling for Emerging and Re-emerging Infectious Diseases, pages 169–185. Springer.Google Scholar
  50. 50.
    Zhao, H., Z. Feng, and C. Castillo-Chavez (2014) The dynamics of poverty and crime. J. Shanghai Normal University (Natural Sciences· Mathematics), pages 225–235.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Fred Brauer
    • 1
  • Carlos Castillo-Chavez
    • 2
  • Zhilan Feng
    • 3
  1. 1.Department of MathematicsUniversity of British ColumbiaVancouverCanada
  2. 2.Mathematical and Computational Modeling Center (MCMSC), Department of Mathematics and StatisticsArizona State UniversityTempeUSA
  3. 3.Department of MathematicsPurdue UniversityWest LafayetteUSA

Personalised recommendations