Advertisement

Models for Ebola

  • Fred Brauer
  • Carlos Castillo-Chavez
  • Zhilan Feng
Chapter
Part of the Texts in Applied Mathematics book series (TAM, volume 69)

Abstract

Another important infectious disease is Ebola virus disease (EVD). Ebola hemorrhagic fever is a very infectious disease with a case fatality rate of more than 70%. It was first identified in 1976 in the Democratic Republic of Congo and there have been more than a dozen serious outbreaks since then. The most serious outbreak to date occurred in 2014 in Guinea, Liberia, and Sierra Leone and caused more than 10,000 deaths. Response to this epidemic included the development of vaccines to combat the disease, currently being used to combat the most recent outbreak in the Democratic Republic of Congo.

References

  1. 1.
    Althaus, C.L. (2014) Estimating the reproduction number of Ebola Virus (EBOV) during the 2014 outbreak in West Africa, PLoS Currents: Edition 1.  https://doi.org/10.1371/current.outbreaks.91afb5e0f279e7f29e7056095255b288.
  2. 2.
    Barbarossa, M.V., A Denes, G. Kiss, Y. Nakata, G. Rost, & Z. Vizi (2015) Transmission dynamics and final epidemic size of Ebola virus disease dynamics with varying interventions, PLoS One 10(7): e0131398.  https://doi.org/10.1371/journalpone.0131398.CrossRefGoogle Scholar
  3. 3.
    Bellan, S.E., J.R.C. Pulliam, J. Dushoff, and L.A. Meyers (2014) Ebola control: effect of asymptomatic infection and acquired immunity, The Lancet 384:1499–1500.CrossRefGoogle Scholar
  4. 4.
    Bichara, D., Y. Kang, C. Castillo-Chavez, R. Horan and C. Perringa (2015) SIS and SIR epidemic models under virtual dispersal, Bull. Math. Biol. 77: 2004–2034.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Blower, S.M. and H. Dowlatabadi (1994) Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int Stat Rev. 2: 229–243.CrossRefGoogle Scholar
  6. 6.
    Brauer, F. (2019) The final size of a serious epidemic, Bull. Math. Biol. https://doi.org/10.1017/s11538-018-00549-x
  7. 7.
    Browne, C.J., H. Gulbudak, and G. Webb (2015) Modeling contact tracing in outbreaks with application to Ebola, J. Theor. Biol. 384: 33–49.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Butler, D. (2014) Models overestimate Ebola cases, Nature 515: 18. https://doi.org/10.1038/515018a.CrossRefGoogle Scholar
  9. 9.
    Byrne, J.P. (2008) Encyclopedia of Pestilence, Pandemics, and Plagues, 1 ABC-CLIO, 2008.Google Scholar
  10. 10.
    Chowell, D., C. Castillo-Chavez, S. Krishna, X. Qiu, and K.S. Anderson (2015) Modelling the effect of early detection of Ebola, Lancet Infectious Diseases, February, DOI: http://dx.doi.org/10.1016/S1473-3099(14)71084-9.CrossRefGoogle Scholar
  11. 11.
    Chowell, G., N.W. Hengartnerb, C. Castillo-Chavez, P.W, Fenimore, and J.M. Hyman (2004) The basic reproductive number of Ebola and the effects of public health measures: the cases of Congo and Uganda, J. Theor. Biol. 229: 119–126.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Chowell, G. and J. M. Hyman (2016) Mathematical and Statistical Modeling for Emerging and Re-emerging Infectious Diseases. Springer, 2016.Google Scholar
  13. 13.
    Chowell G., C. Viboud, J.M. Hyman, L. Simonsen (2015) The Western Africa Ebola virus disease epidemic exhibits both global exponential and local polynomial growth rates. PLOS Current Outbreaks, January 21.Google Scholar
  14. 14.
    Chowell, G. and C. Viboud (2016) Is it growing exponentially fast?–impact of assuming exponential growth for characterizing and forecasting epidemics with initial near-exponential growth dynamics Infectious Dis. Modelling 1: 71–78.Google Scholar
  15. 15.
    Chowell, G., C. Viboud, L. Simonsen, & S. Moghadas (2016) Characterizing the reproduction number of epidemics with early sub-exponential growth dynamics, J. Roy. Soc. Interface:  https://doi.org/10.1098/rsif.2016.0659.CrossRefGoogle Scholar
  16. 16.
    Colgate, S.A., E. A. Stanley, J. M. Hyman, S. P. Layne, and C. Qualls (1989) Risk behavior-based model of the cubic growth of acquired immunodeficiency syndrome in the United States. Proc. Nat. Acad. Sci., textbf86: 4793–4797CrossRefGoogle Scholar
  17. 17.
    Espinoza, B., V. Moreno, D, Bichara, and C. Castillo-Chavez (2016) Assessing the efficiency of movement restriction as a control strategy of Ebola, In Mathematical and Statistical Modeling for Emerging and Re-emerging Infectious Diseases, Springer International Publishing: pp. 123–145.zbMATHGoogle Scholar
  18. 18.
    Feng, Z., Z. Zheng, N. Hernandez-Ceron, J.W. Glasser, and A.N. Hill (2016) Mathematical models of Ebola - Consequences of underlying assumptions, Math. Biosc. 277: 89–107.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Fisman, D.N., T.S. Hauck, A.R. Tuite, & A.L. Greer (2013) An IDEA for short term outbreak projection: nearcasting using the basic reproduction number, PLOS One 8: 1–8.CrossRefGoogle Scholar
  20. 20.
    Fisman, D.N., E. Khoo, & A.R. Tuite (2014) Early epidemic dynamics of the west Africa 2014 Ebola outbreak: Estimates derived with a simple two-parameter model, PLOS currents 6: September 8.Google Scholar
  21. 21.
    Hethcote, H.W. (2000) The mathematics of infectious diseases, SIAM Review 42: 599–653.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Hsieh, Y.-H. (2009) Richards model: a simple procedure for real-time prediction of outbreak severity In Modeling and Dynamics of Infectious Diseases, pages 216–236. World Scientific.Google Scholar
  23. 23.
    Khan, A., M. Naveed, M. Dur-e-Ahmad, and M. Imran (2015) Estimating the basic reproductive ratio for the Ebola outbreak in Liberia and Sierra Leone, Infect. Dis. Poverty 4.CrossRefGoogle Scholar
  24. 24.
    Khan, A.S, F.K. Tshioko, D.L. Heymann, et al (1999) The reemergence of Ebola hemorrhagic fever, Democratic Republic of the Congo, 1995, J. Inf. Dis. 179: S76–86.CrossRefGoogle Scholar
  25. 25.
    King, K., et al (2015) Avoidable errors in the modelling of outbreaks of emerging pathogens, with special reference to Ebola, Proc. R. Soc. B 282: 20150347. http://dx.doi.org/10.1098/rspb.2015.0347CrossRefGoogle Scholar
  26. 26.
    Legrand, J., R.F. Grais, P.Y. Boelle, A.J. Valleron, and A. Flahault (2007) Understanding the dynamics of Ebola epidemics, Epidemiol. Infect 135: 610–621.Google Scholar
  27. 27.
    Lewnard, J.A., M.L.N. Mbah, J.A. Alfaro-Murillo, et al. (2014) Dynamics and control of Ebola virus transmission in Montserrado, Liberia: a mathematical modelling analysis, Lancet Infect. Dis. 14: 1189–1195.Google Scholar
  28. 28.
    Manfredi, P. & A. d’Onofrio (eds.) (2013) Modeling the Interplay between Human Behavior and the Spread of Infectious Diseases, Springer - Verlag, New York-Heidelberg-Dordrecht-London.Google Scholar
  29. 29.
    Meltzer M.I., C.Y. Atkins, S. Santibanez, et al. (2014) Estimating the future number of cases in the Ebola epidemic: Liberia and Sierra Leone, 2014–2015. MMWR Surveill. Summ. 63: 2014–2015.Google Scholar
  30. 30.
    McNeil Jr., D.G. Jr. 9@014) NYT: Using a Tactic Unseen in a Century, Countries Cordon Off Ebola-Racked Areas, August 12, 2014.Google Scholar
  31. 31.
    Nishiura, H and G. Chowell (2014) Early transmission dynamics of Ebola virus disease (EVD), west Africa, March to August 2014, Euro Surveill. 19: 1–6.Google Scholar
  32. 32.
    Nyenswah, T.G., F. Kateh, L. Bawo, M. Massaquoi, M. Gbanyan, M. Fallah, T. K. Nagbe, K. K. Karsor, C. S. Wesseh, S. Sieh, et al. (2016) Ebola and its control in Liberia, 2014–2015, Emerging Infectious Diseases 22: 169.CrossRefGoogle Scholar
  33. 33.
    Renshaw, E. (1991) Modelling Biological Populations in Space and Time. Cambridge University Press, Cambridge, 1991.Google Scholar
  34. 34.
    Richards, F. (1959) A flexible growth function for empirical use, J. Experimental Botany 10: 290–301.CrossRefGoogle Scholar
  35. 35.
    Rivers, C.M. et al. (2014) Modeling the impact of interventions on an epidemic of Ebola in Sierra Leone and Liberia, PLoS Current Outbreaks, November 6, 2014.Google Scholar
  36. 36.
    Towers, S., O. Patterson-Lomba, and C. Castillo-Chavez (2014) Temporal variations in the effective reproduction number of the 2014 West Africa Ebola Outbreak, PLoS Currents: Outbreaks 1.Google Scholar
  37. 37.
    Tuite, A.R. & D.N. Fisman (2016) The IDEA model: A single equation approach to the Ebola forecasting challenge, Epidemics, http://dx.doi.org/10.1016/j.epidem.2016.09.001
  38. 38.
    van den Driessche, P. & J. Watmough (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosc., 180: 29–48.MathSciNetCrossRefGoogle Scholar
  39. 39.
    Viboud, C., L. Simonsen, and G. Chowell (2016) A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks, Epidemics 15: 27–37.CrossRefGoogle Scholar
  40. 40.
    Webb G., C. Browne, X. Huo, O. Seydi, M. Seydi, and P. Magal (2014) A model of the 2014 Ebola epidemic in west Africa with contact tracing. PLoS Currents,  https://doi.org/10.1371/currents.outbreaks.846b2a31ef37018b7d1126a9c8adf22a.
  41. 41.
    World Health Organization (WHO) (2001) Outbreak of Ebola hemorrhagic fever, Uganda, August 2000 - January 2001. Weekly epidemiological record 2001;76:41–48.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Fred Brauer
    • 1
  • Carlos Castillo-Chavez
    • 2
  • Zhilan Feng
    • 3
  1. 1.Department of MathematicsUniversity of British ColumbiaVancouverCanada
  2. 2.Mathematical and Computational Modeling Center (MCMSC), Department of Mathematics and StatisticsArizona State UniversityTempeUSA
  3. 3.Department of MathematicsPurdue UniversityWest LafayetteUSA

Personalised recommendations