Introduction: A Prelude to Mathematical Epidemiology

  • Fred Brauer
  • Carlos Castillo-Chavez
  • Zhilan Feng
Part of the Texts in Applied Mathematics book series (TAM, volume 69)


Recorded history continuously documents the invasion of populations by infectious agents, some causing many deaths before disappearing, others reappearing in invasions some years later in populations that have acquired some degree of immunity, due to prior exposure to related infectious pathogens. The “Spanish” flu epidemic of 1918–1919 exemplifies the devastating impact of relatively rare pandemics; this one was responsible for about 50,000,000 deaths worldwide, while on the mild side of the spectrum we experience annual influenza seasonal epidemics that cause roughly 35,000 deaths in the USA each year.


  1. 1.
    Abbey, H. (1952) An estimation of the Reed–Frost theory of epidemics, Human Biol. 24; 201–223.Google Scholar
  2. 2.
    Allen, L.J.S. (2003) An Introduction to Stochastic Processes with Applications to Biology, Pearson Education Inc.zbMATHGoogle Scholar
  3. 3.
    Andreasen, V. (2011) The final size of an epidemic and its relation to the basic reproduction number, Bull. Math. Biol. 73: 2305–2321.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bailey. N.T.J. (1975) The Mathematical Theory of Infectious Diseases and its Applications, Oxford Univ. Press.zbMATHGoogle Scholar
  5. 5.
    Ball, F.G. (1983) The threshold behaviour of epidemic models, J. App. Prob. 20: 227–241.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bartlett, M.S. (1949) Some evolutionary stochastic processes J. Roy. Stat. Soc. B 11: 211–229.MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bernoulli, D. (1760) Réflexions sur les avantages de l’inoculation, Mercure de Paris, p. 173.Google Scholar
  8. 8.
    Bernoulli, D. (1766) Essai d’une nouvelle analyse de la mortalité causeé par la petite vérole, Mem. Math. Phys. Acad. Roy. Sci. Paris, 1–45.Google Scholar
  9. 9.
    Blythe, S.P., S. Busenberg & C. Castillo-Chavez (1995) Affinity and paired-event probability, Math. Biosc. 128: 265–84 .MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Blythe, S.P., C. Castillo-Chavez, J. Palmer & M. Cheng (1991) Towards a unified theory of mixing and pair formation, Math. Biosc. 107: 379–405.zbMATHCrossRefGoogle Scholar
  11. 11.
    Brauer, F. (2004) Backward bifurcations in simple vaccination models, J. Math. Anal. & Appl. 298: 418–431.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Brauer, F. (2008) Epidemic models with treatment and heterogeneous mixing, Bull. Math. Biol. 70: 1869–1885.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Brauer, F. (2008) Age of infection models and the final size relation, Math. Biosc. & Eng. 5: 681–690.zbMATHCrossRefGoogle Scholar
  14. 14.
    Brauer, F., C. Castillo-Chavez, and Z. Feng (2010) Discrete epidemic models, Math. Biosc. & Eng. 7: 1–15.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Brauer, F. & J. Watmough (2009) Age of infection models with heterogeneous mixing, J. Biol. Dyn. 3: 324–330.MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Breda, D., O. Diekmann, W.F. deGraaf, A. Pugliese, & R. Vermiglio (2012) On the formulation of epidemic models (an appraisal of Kermack and McKendrick, J. Biol. Dyn. 6: 103–117.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Budd, W. (1873) Typhoid Fever; Its Nature, Mode of Spreading, and Prevention, Longmans, London.Google Scholar
  18. 18.
    Busenberg, S. & C. Castillo-Chavez (1989) Interaction, pair formation and force of infection terms in sexually transmitted diseases, In Mathematical and Statistical Approaches to AIDS Epidemiology, Lect. Notes Biomath. 83, C. Castillo-Chavez (ed.), Springer-Verlag, Berlin-Heidelberg-New York, pp. 289–300.CrossRefGoogle Scholar
  19. 19.
    Busenberg, S. & K.L. Cooke (1993) Vertically Transmitted Diseases: Models and Dynamics, Biomathematics 23, Springer-Verlag, Berlin-Heidelberg-New York.zbMATHCrossRefGoogle Scholar
  20. 20.
    Callaway, D.S., M.E.J. Newman, S.H. Strogatz, & D.J. Watts (2000) Network robustness and fragility: Percolation on random graphs, Phys. Rev. Letters, 85: 5468–5471.CrossRefGoogle Scholar
  21. 21.
    Castillo-Chavez, C. & A. Yakubu (2001) Discrete-time SIS models with simple and complex dynamics, Nonlinear Analysis, Theory. Methods, and Applications 47: 4753–4762.zbMATHGoogle Scholar
  22. 22.
    Castillo-Chavez, C. & A. Yakubu (2002) Discrete-time SIS models with simple and complex population dynamics, in Mathematical Approaches for Emerging and Reemerging Infectious Diseases IMA Vol. 125; 153–164.Google Scholar
  23. 23.
    Castillo-Chavez, C. & A. Yakubu (2002) Intraspecific competition, dispersal and disease dynamics in discrete-time patchy environments, in Mathematical Approaches for Emerging and Reemerging Infectious Diseases IMA Vol. 125; 165–181.Google Scholar
  24. 24.
    Chowell, G., P.W. Fenimore, M.A. Castillo-Garsow, and C.Castillo-Chavez (2003) SARS outbreaks in Ontario, Hong Kong and Singapore: the role of diagnosis and isolation as a control mechanism. J. Theor. Biol. 224: 1–8.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Daley, D.J. & J. Gani (1999) Epidemic Models: An Introduction, Cambridge Studies in Mathematical Biology 15, Cambridge University Press.CrossRefGoogle Scholar
  26. 26.
    Diekmann, O. & J.A.P. Heesterbeek (2000) Mathematical epidemiology of infectious diseases: Model building, analysis and interpretation, John Wiley and Sons, ltd.zbMATHGoogle Scholar
  27. 27.
    Diekmann,O., Heesterbeek,J.A.P., Metz,J.A.J. (1995) The legacy of Kermack and McKendrick, in Mollison,D. (ed)Epidemic Models: Their Structure and Relation to Data. Cambridge University Press, Cambridge, pp. 95–115.Google Scholar
  28. 28.
    Dietz, K, (1988) The first epidemic model: a historical note on P.D. En’ko, Australian J. Stat. 30A: 56–65.Google Scholar
  29. 29.
    Dushoff, J., W. Huang, & C. Castillo-Chavez (1998) Backwards bifurcations and catastrophe in simple models of fatal diseases, J. Math. Biol. 36: 227–248.MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    En’ko, P.D. (1889) On the course of epidemics of some infectious diseases, Vrach. St. Petersburg, X: 1008–1010, 1039–1042, 1061–1063. [translated from Russian by K. Dietz, Int. J. Epidemiology (1989) 18: 749–755].CrossRefGoogle Scholar
  31. 31.
    Dietz, K. & J.A.P. Heesterbeek (2002) Daniel Bernoulli’s epidemiological model revisited, Math. Biosc. 180: 1–221.MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Epstein, J.M. & R.L. Axtell (1996) Growing Artificial Societies: Social Science from the Bottom Up, MIT/Brookings Institution.Google Scholar
  33. 33.
    Erdös, P. & A. Rényi (1959) On random graphs, Publicationes Mathematicae 6: 290–297.MathSciNetzbMATHGoogle Scholar
  34. 34.
    Erdös, P. & A. Rényi (1960) On the evolution of random graphs, Pub. Math. Inst. Hung. Acad. Science 5: 17–61.MathSciNetzbMATHGoogle Scholar
  35. 35.
    Erdös, P. & A. Rényi (1961) On the strengths of connectedness of a random graph, Acta Math. Scientiae Hung. 12: 261–267.MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Farr, W. (1840) Progress of epidemics, Second Report of the Registrar General of England and Wales, 91–98.Google Scholar
  37. 37.
    Feng, Z., Hill, A.N., Smith, P.J. Glasser, J.W. (2015) An elaboration of theory about preventing outbreaks in homogeneous populations to include heterogeneity or preferential mixing, J. Theor. Biol. 386: 177–187.MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Feng, Z. and H.R. Thieme (1995) Recurrent outbreaks of childhood diseases revisited: the impact of isolation, Math. Biosc. 128: 93–130.MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Galton, F. (1889) Natural Inheritance (2 nd ed.), App. F, pp. 241–248.Google Scholar
  40. 40.
    Greenwood, M. (1931) On the statistical measure of infectiousness, J. Hygiene 31: 336–351.CrossRefGoogle Scholar
  41. 41.
    Greenwood, P.E. & L.F. Gordillo (2009) Stochastic epidemic modeling, in Mathematical and Statistical Estimation Approaches in Epidemiology, G. Chowell, J.M. Hyman, L.M.A. Bettencourt, & C. Castillo-Chavez (eds.), Springer, pp. 31–52.Google Scholar
  42. 42.
    Hadeler, K.P. & C. Castillo-Chavez (1995) A core group model for disease transmission, Math Biosc. 128: 41–55.zbMATHCrossRefGoogle Scholar
  43. 43.
    Hadeler, K.P. & P. van den Driessche (1997) Backward bifurcation in epidemic control, Math. Biosc. 146: 15–35.MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Hamer, W.H. (1906) Epidemic disease in England - the evidence of variability and of persistence, The Lancet 167: 733–738.CrossRefGoogle Scholar
  45. 45.
    Harris, T.E. (1963) The Theory of Branching Processes, Springer.zbMATHCrossRefGoogle Scholar
  46. 46.
    Hethcote, H.W. (1976) Qualitative analysis for communicable disease models, Math. Biosc., 28:335–356.zbMATHCrossRefGoogle Scholar
  47. 47.
    Hethcote, H.W. (1978) An immunization model for a heterogeneous population, Theor. Pop. Biol., 14:338–349.MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Hethcote, H.W. (1989) Three basic epidemiological models. In Applied Mathematical Ecology, S. A. Levin, T.G. Hallam and L.J. Gross, eds., Biomathematics 18: 119–144, Springer-Verlag, Berlin-Heidelberg-New York.Google Scholar
  49. 49.
    Hethcote, H.W. (1997) An age-structured model for pertussis transmission, Math. Biosci., 145: 89–136.MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Hethcote, H.W. (2000) The mathematics of infectious diseases, SIAM Review, 42: 599–653.MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Hethcote, H.W., H.W. Stech and P. van den Driessche (1981) Periodicity and stability in epidemic models: a survey. In: S. Busenberg & K.L. Cooke (eds.) Differential Equations and Applications in Ecology, Epidemics and Population Problems, Academic Press, New York: 65–82.CrossRefGoogle Scholar
  52. 52.
    Hethcote, H.W. & J.A. Yorke (1984) Gonorrhea Transmission Dynamics and Control, Lect. Notes in Biomath. 56, Springer-Verlag.Google Scholar
  53. 53.
    Huang, W., K.L. Cooke, & C. Castillo-Chavez (1992) Stability and bifurcation for a multiple group model for the dynamics of HIV/AIDS transmission, SIAM J. App. Math. 52: 835–853.zbMATHGoogle Scholar
  54. 54.
    Johnson, S. (2006) The Ghost Map, Riverhead Books, New York,Google Scholar
  55. 55.
    Kermack, W.O. & A.G. McKendrick (1927) A contribution to the mathematical theory of epidemics, Proc. Royal Soc. London, 115:700–721.zbMATHCrossRefGoogle Scholar
  56. 56.
    Kermack, W.O. & A.G. McKendrick (1932) Contributions to the mathematical theory of epidemics, part. II, Proc. Roy. Soc. London, 138:55–83.zbMATHCrossRefGoogle Scholar
  57. 57.
    Kermack, W.O. & A.G. McKendrick (1933) Contributions to the mathematical theory of epidemics, part. III, Proc. Roy. Soc. London, 141:94–112.zbMATHCrossRefGoogle Scholar
  58. 58.
    Kribs-Zaleta, C.K. & J.X. Velasco-Hernandez (2000) A simple vaccination model with multiple endemic states, Math Biosc. 164: 183–201.zbMATHCrossRefGoogle Scholar
  59. 59.
    Ma, J. & D.J.D. Earn (2006) Generality of the final size formula for an epidemic of a newly invading infectious disease, Bull. Math. Biol. 68: 679–702.MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    MacDonald, G. (1957) The Epidemiology and Control of Malaria, Oxford University Press. Oxford University Press.Google Scholar
  61. 61.
    McKendrick, A.G. (1926) Applications of mathematics to medical problems, Proc. Edinburgh Math. Soc. 44: 98–130.CrossRefGoogle Scholar
  62. 62.
    Metz, J.A.J. (1978) The epidemic in a closed population with all susceptibles equally vulnerable; some results for large susceptible populations and small initial infections, Acta Biotheoretica 78: 75–123.CrossRefGoogle Scholar
  63. 63.
    Miller, J.C. (2011) A note on a paper by Erik Volz: SIR dynamics in random networks, J. Math. Biol. 62: 349–358.MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Miller, J.C., & E. Volz (2013) Incorporating disease and population structure into models of SIR disease in contact networks, PLoS One 8: e69162, Scholar
  65. 65.
    Newman, M.E.J. (2002) The spread of epidemic disease on networks, Phys. Rev. E 66, 016128. ks, Phys. Rev. E 66, 016128.Google Scholar
  66. 66.
    Newman, M.E.J., S.H. Strogatz, & D.J. Watts (2001) Random graphs with arbitrary degree distributions and their applications, Phys. Rev. E 64, 026118.CrossRefGoogle Scholar
  67. 67.
    Nowak, M., & R.M. May (1996) Virus Dynamics: Mathematical Principles of Immunology and Virology, Oxford Univ. Press.zbMATHGoogle Scholar
  68. 68.
    Nold, A. (1980) Heterogeneity in disease transmission modeling, Math. Biosc. 52: 227–240.MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    Ross, R.A.(1911) The prevention of malaria (2nd edition, with Addendum). John Murray, London.Google Scholar
  70. 70.
    Schuler-Faccini, L. (2016) Possible association between Zika virus infections and microcephaly Brazil 2015, MMWR Morbidity and Mortality weekly report: 65.Google Scholar
  71. 71.
    Snow, J. (1855) The mode of communication of cholera (2 nd ed.), Churchill, London.Google Scholar
  72. 72.
    Steffensen, G.F. (1930) Om sandsynligheden for at affkommet uddor, Matematisk Tiddskrift B 1: 19–23.zbMATHGoogle Scholar
  73. 73.
    Steffensen, G.F. (1931) Deux problèmes du calcul des probabilités, Ann. Inst. H. Poincaré 3: 319–341.zbMATHGoogle Scholar
  74. 74.
    Thieme, H.R. and C. Castillo-Chavez (1989) On the role of variable infectivity in the dynamics of the human immunodeficiency virus. In Mathematical and statistical approaches to AIDS epidemiology, C. Castillo-Chavez, ed., Lect. Notes Biomath. 83, 200–217, Springer-Verlag, Berlin-Heidelberg-New York.Google Scholar
  75. 75.
    Thieme, H.R. and C. Castillo-Chavez (1993) How may infection-age dependent infectivity affect the dynamics of HIV/AIDS?, SIAM J. Appl. Math., 53:1447–1479.MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    Volz, E. (2008) SIR dynamics in random networks with heterogeneous connectivity, J. Math. Biol., 56: 293–310.MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    Watson, H.W. & F. Galton (1874) On the probability of the extinction of families, J. Anthrop. Inst. Great Britain and Ireland 4: 138–144.CrossRefGoogle Scholar
  78. 78.
    Wilson, E.B. & M.H. Burke (1942) The epidemic curve, Proc. Nat. Acad. Sci. 28: 361–367.MathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    Yakubu, A. & C. Castillo-Chavez (2002) Interplay between local dynamics and dispersal in discrete-time metapopulation models, J. Theor. Biol. 218: 273–288.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Fred Brauer
    • 1
  • Carlos Castillo-Chavez
    • 2
  • Zhilan Feng
    • 3
  1. 1.Department of MathematicsUniversity of British ColumbiaVancouverCanada
  2. 2.Mathematical and Computational Modeling Center (MCMSC), Department of Mathematics and StatisticsArizona State UniversityTempeUSA
  3. 3.Department of MathematicsPurdue UniversityWest LafayetteUSA

Personalised recommendations