The Phase Shift of Line Solitons for the KP-II Equation

  • Tetsu MizumachiEmail author
Part of the Fields Institute Communications book series (FIC, volume 83)


The KP-II equation was derived by Kadomtsev and Petviashvili (Sov Phys Dokl 15:539–541, 1970) to explain stability of line solitary waves of shallow water. Stability of line solitons has been proved by Mizumachi (Mem AMS 238:1125, 2015; Proc R Soc Edinb Sect A 148:149–198, 2018) and it turns out the local phase shift of modulating line solitons are not uniform in the transverse direction. In this paper, we obtain the L-bound for the local phase shift of modulating line solitons for polynomially localized perturbations.

2010 Mathematics Subject Classification Primary:

35B35 37K40; Secondary 35Q35 



This research is supported by JSPS KAKENHI Grant Number 17K05332.


  1. 1.
    J. C. Alexander, R. L. Pego and R. L. Sachs, On the transverse instability of solitary waves in the Kadomtsev-Petviashvili equation, Phys. Lett. A 226 (1997), 187–192.MathSciNetCrossRefGoogle Scholar
  2. 2.
    O. V. Besov, V. P. Ilín and S. M. Nikolskii. Integral representations of functions and imbedding theorems Vol. I (New York-Toronto: J. Wiley & Sons, 1978).Google Scholar
  3. 3.
    J. Bourgain, On the Cauchy problem for the Kadomtsev-Petviashvili equation, GAFA 3 (1993), 315–341.MathSciNetzbMATHGoogle Scholar
  4. 4.
    S. P. Burtsev, Damping of soliton oscillations in media with a negative dispersion law, Sov. Phys. JETP 61 (1985).Google Scholar
  5. 5.
    S. Cuccagna, On asymptotic stability in 3D of kinks for theϕ 4model, Trans. Amer. Math. Soc. 360 (2008), 2581–2614.Google Scholar
  6. 6.
    A. de Bouard and Y. Martel, Non existence ofL 2-compact solutions of the Kadomtsev-Petviashvili II equation, Math. Ann. 328 (2004) 525–544.Google Scholar
  7. 7.
    A. de Bouard and J. C. Saut, Remarks on the stability of generalized KP solitary waves, Mathematical problems in the theory of water waves, 75–84, Contemp. Math. 200, Amer. Math. Soc., Providence, RI, 1996.Google Scholar
  8. 8.
    A. Grünrock, M. Panthee and J. Drumond Silva, On KP-II equations on cylinders, Ann. IHP Analyse non linéaire 26 (2009), 2335–2358.MathSciNetCrossRefGoogle Scholar
  9. 9.
    M. Hadac, Well-posedness of the KP-II equation and generalizations, Trans. Amer. Math. Soc. 360 (2008), 6555–6572.MathSciNetCrossRefGoogle Scholar
  10. 10.
    M. Hadac, S. Herr and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space, Ann. IHP Analyse non linéaire 26 (2009), 917–941.MathSciNetCrossRefGoogle Scholar
  11. 11.
    M. Haragus, Transverse spectral stability of small periodic traveling waves for the KP equation, Stud. Appl. Math. 126 (2011), 157–185.MathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Haragus, Jin Li and D. E. Pelinovsky, Counting Unstable Eigenvalues in Hamiltonian Spectral Problems via Commuting Operators, Comm. Math. Phys. 354 (2017), 247–268.MathSciNetCrossRefGoogle Scholar
  13. 13.
    P. Isaza and J. Mejia, Local and global Cauchy problems for the Kadomtsev-Petviashvili (KP-II) equation in Sobolev spaces of negative indices, Comm. Partial Differential Equations 26 (2001), 1027–1057.MathSciNetCrossRefGoogle Scholar
  14. 14.
    M. A. Johnson and K. Zumbrun, Transverse instability of periodic traveling waves in the generalized Kadomtsev-Petviashvili equation SIAM J. Math. Anal. 42 (2010), 2681–2702.MathSciNetzbMATHGoogle Scholar
  15. 15.
    B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dispersive media, Sov. Phys. Dokl. 15 (1970), 539–541.zbMATHGoogle Scholar
  16. 16.
    T. Kapitula, Multidimensional stability of planar traveling waves, Trans. Amer. Math. Soc. 349 (1997), 257–269.MathSciNetCrossRefGoogle Scholar
  17. 17.
    G. Karch, Self-similar large time behavior of solutions to Korteweg-de Vries-Burgers equation. Nonlinear Anal. Ser. A: Theory Methods 35 (1999), 199–219.MathSciNetCrossRefGoogle Scholar
  18. 18.
    H. Koch and D. Tataru, Dispersive estimates for principally normal pseudodifferential operators, Comm. Pure Appl. Math. 58 (2005), 217–284.MathSciNetCrossRefGoogle Scholar
  19. 19.
    H. Koch and D. Tataru, A priori bounds for the 1D cubic NLS in negative Sobolev spaces, Int. Math. Res. Not. (2007), Art. ID rnm053.Google Scholar
  20. 20.
    C. D. Levermore and J. X. Xin, Multidimensional stability of traveling waves in a bistable reaction-diffusion equation, II. Comm. Partial Differential Equations 17 (1992), 1901–1924.MathSciNetCrossRefGoogle Scholar
  21. 21.
    T. Mizumachi, Asymptotic stability of lattice solitons in the energy space, Comm. Math. Phys. 288 (2009), 125–144.MathSciNetCrossRefGoogle Scholar
  22. 22.
    T. Mizumachi, Stability of line solitons for the KP-II equation in \(\mathbb {R}^2\), Mem. of AMS 238 (2015), 1125.Google Scholar
  23. 23.
    T. Mizumachi, Stability of line solitons for the KP-II equation in \(\mathbb {R}^2\). II, Proc. Roy. Soc. Edinburgh Sect. A. 148 (2018), 149–198.MathSciNetCrossRefGoogle Scholar
  24. 24.
    T. Mizumachi, R. L. Pego and J. R. Quintero, Asymptotic stability of solitary waves in the Benney-Luke model of water waves, Differential Integral Equations 26 (2013), 253–301.MathSciNetzbMATHGoogle Scholar
  25. 25.
    T. Mizumachi and Y. Shimabukuro, Asymptotic linear stability of Benney-Luke line solitary waves in 2D, Nonlinearity 30 (2017), 3419–3465.MathSciNetCrossRefGoogle Scholar
  26. 26.
    T. Mizumachi and N. Tzvetkov, Stability of the line soliton of the KP-II equation under periodic transverse perturbations, Mathematische Annalen 352 (2012), 659–690.MathSciNetCrossRefGoogle Scholar
  27. 27.
    T. Mizumachi and N. Tzvetkov, L 2-stability of solitary waves for the KdV equation via Pego and Weinstein’s method, RIMS Kôkyûroku Bessatsu B49 (2014): Harmonic Analysis and Nonlinear Partial Differential Equations, eds. M. Sugimoto and H. Kubo, pp.33–63.Google Scholar
  28. 28.
    L. Molinet, J. C. Saut and N. Tzvetkov, Global well-posedness for the KP-II equation on the background of a non-localized solution, Ann. Inst. H. Poincaré Anal. Non Linéaire 28 (2011), 653–676.MathSciNetCrossRefGoogle Scholar
  29. 29.
    G. Pedersen, Nonlinear modulations of solitary waves, J. Fluid Mech. 267 (1994), 83–108.MathSciNetCrossRefGoogle Scholar
  30. 30.
    R. L. Pego and M. I. Weinstein, Asymptotic stability of solitary waves, Comm. Math. Phys. 164 (1994), 305–349.MathSciNetCrossRefGoogle Scholar
  31. 31.
    F. Rousset and N. Tzvetkov, Transverse nonlinear instability for two-dimensional dispersive models, Ann. IHP, Analyse Non Linéaire 26 (2009), 477–496.CrossRefGoogle Scholar
  32. 32.
    F. Rousset and N. Tzvetkov, Transverse nonlinear instability for some Hamiltonian PDE’s, J. Math. Pures Appl. 90 (2008), 550–590.MathSciNetCrossRefGoogle Scholar
  33. 33.
    F. Rousset and N. Tzvetkov, Stability and instability of the KDV solitary wave under the KP-I flow, Commun. Math. Phys. 313 (2012), 155–173.MathSciNetCrossRefGoogle Scholar
  34. 34.
    J. C. Saut, Remarks on the generalized Kadomtsev-Petviashvili equations, Indiana Univ. Math. J. 42 (1993), 1011–1026.MathSciNetCrossRefGoogle Scholar
  35. 35.
    H. Takaoka, Global well-posedness for the Kadomtsev-Petviashvili II equation, Discrete Contin. Dynam. Systems 6 (2000), 483–499.MathSciNetCrossRefGoogle Scholar
  36. 36.
    H. Takaoka and N. Tzvetkov, On the local regularity of Kadomtsev-Petviashvili-II equation, IMRN 8 (2001), 77–114.MathSciNetCrossRefGoogle Scholar
  37. 37.
    N. Tzvetkov, Global low regularity solutions for Kadomtsev-Petviashvili equation, Diff. Int. Eq. 13 (2000), 1289–1320.MathSciNetzbMATHGoogle Scholar
  38. 38.
    S. Ukai, Local solutions of the Kadomtsev-Petviashvili equation, J. Fac. Sc. Univ. Tokyo Sect. IA Math. 36 (1989), 193–209.MathSciNetzbMATHGoogle Scholar
  39. 39.
    J. X. Xin, Multidimensional stability of traveling waves in a bistable reaction-diffusion equation, I. Comm. Partial Differential Equations 17 (1992), 1889–1899.MathSciNetCrossRefGoogle Scholar
  40. 40.
    V. Zakharov, Instability and nonlinear oscillations of solitons, JEPT Lett. 22(1975), 172–173.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Mathematical and Information SciencesHiroshima UniversityKagamiyama, HiroshimaJapan

Personalised recommendations