Genome-Wide Association Studies in Muscle Physiology and Disease

  • Luca BelloEmail author
  • Elena Pegoraro
  • Eric P. Hoffman
Part of the Methods in Physiology book series (METHPHYS)


The Genome Wide Association Study (GWAS) is a potent research tool which leverages on large scale genotypization of single nucleotide polymorphisms (SNPs) in order to identify common variants in the human genome, that are associated with phenotypic traits and disease risks.

Skeletal muscle is a highly adaptable tissue that shows great phenotypic variability both in health and disease. This chapter briefly reviews the history and rationale of GWAS, and its applications both to muscle physiology, i.e. genetic bases of muscle variability in health, and to muscle disease, including risk variants for acquired muscle disorders and common variants that alter the expressivity of rare, Mendelian genetic muscle diseases, also known as genetic modifiers.


  1. 1.
    Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409, 860–921.PubMedCrossRefGoogle Scholar
  2. 2.
    Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., Smith, H. O., Yandell, M., Evans, C. A., Holt, R. A., et al. (2001). The sequence of the human genome. Science, 291, 1304–1351.PubMedCrossRefGoogle Scholar
  3. 3.
    Sachidanandam, R., Weissman, D., Schmidt, S. C., Kakol, J. M., Stein, L. D., Marth, G., Sherry, S., Mullikin, J. C., Mortimore, B. J., Willey, D. L., et al. (2001). A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature, 409, 928–933.PubMedCrossRefGoogle Scholar
  4. 4.
    International HapMap Consortium. (2005). A haplotype map of the human genome. Nature, 437, 1299–1320.CrossRefGoogle Scholar
  5. 5.
    McCarthy, M. I., Abecasis, G. R., Cardon, L. R., Goldstein, D. B., Little, J., Ioannidis, J. P. A., & Hirschhorn, J. N. (2008). Genome-wide association studies for complex traits: Consensus, uncertainty and challenges. Nature Reviews Genetics, 9, 356–369.PubMedCrossRefGoogle Scholar
  6. 6.
    Klein, R. J. (2005). Complement factor H polymorphism in age-related macular degeneration. Science, 308, 385–389.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Maher, B. (2008). Personal genomes: The case of the missing heritability. Nature, 456, 18–21.CrossRefGoogle Scholar
  8. 8.
    Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I., Brown, M. A., & Yang, J. (2017). 10 years of GWAS discovery: Biology, function, and translation. American Journal of Human Genetics, 101, 5–22.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Bello, L., Kesari, A., Gordish-Dressman, H., Cnaan, A., Morgenroth, L. P., Punetha, J., Duong, T., Henricson, E. K., Pegoraro, E., McDonald, C. M., et al. (2015). Genetic modifiers of ambulation in the cooperative international neuromuscular research group Duchenne natural history study. Annals of Neurology, 77, 684–696.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Bello, L., Flanigan, K. M., Weiss, R. B., United Dystrophinopathy Project, Spitali, P., Aartsma-Rus, A., Muntoni, F., Zaharieva, I., Ferlini, A., Mercuri, E., et al. (2016). Association study of exon variants in the NF-κB and TGFβ pathways identifies CD40 as a modifier of Duchenne muscular dystrophy. American Journal of Human Genetics, 99, 1163–1171.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Fontanesi, L., Schiavo, G., Galimberti, G., Bovo, S., Russo, V., Gallo, M., & Buttazzoni, L. (2017). A genome-wide association study for a proxy of intermuscular fat level in the Italian Large White breed identifies genomic regions affecting an important quality parameter for dry-cured hams. Animal Genetics, 48, 459–465.PubMedCrossRefGoogle Scholar
  12. 12.
    Jiang, Y., Tang, S., Wang, C., Wang, Y., Qin, Y., Wang, Y., Zhang, J., Song, H., Mi, S., Yu, F., Xiao, W., Zhang, Q., & Ding, X. (2018). A genome-wide association study of growth and fatness traits in two pig populations with different genetic backgrounds. Journal of Animal Science, 96, 806–816.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Yoshida, G. M., Lhorente, J. P., Carvalheiro, R., & Yáñez, J. M. (2017). Bayesian genome-wide association analysis for body weight in farmed Atlantic salmon (Salmo salar L.). Animal Genetics, 48, 698–703.PubMedCrossRefGoogle Scholar
  14. 14.
    Eynon, N., Hanson, E. D., Lucia, A., Houweling, P. J., Garton, F., North, K. N., & Bishop, D. J. (2013). Genes for elite power and sprint performance: ACTN3 leads the way. Sports Medicine, 43, 803–817.PubMedCrossRefGoogle Scholar
  15. 15.
    Ahmetov, I. I., Egorova, E. S., Gabdrakhmanova, L. J., & Fedotovskaya, O. N. (2016). Genes and athletic performance: An update. Medicine and Sport Science, 61, 41–54.PubMedCrossRefGoogle Scholar
  16. 16.
    Zillikens, M. C., Demissie, S., Hsu, Y. H., Yerges-Armstrong, L. M., Chou, W. C., Stolk, L., Livshits, G., Broer, L., Johnson, T., Koller, D. L., et al. (2017). Large meta-analysis of genome-wide association studies identifies five loci for lean body mass. Nature Communications, 8, 80.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Gaulton, K. J. (2017). Mechanisms of type 2 diabetes risk loci. Current Diabetes Reports, 17, 72.PubMedCrossRefGoogle Scholar
  18. 18.
    Spain, S. L., & Barrett, J. C. (2015). Strategies for fine-mapping complex traits. Human Molecular Genetics, 24, R111–R119.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Sorrentino, R. (2014). Genetics of autoimmunity: An update. Immunology Letters, 158, 116–119.PubMedCrossRefGoogle Scholar
  20. 20.
    Parkes, M., Cortes, A., van Heel, D. A., & Brown, M. A. (2013). Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nature Reviews Genetics, 14, 661–673.PubMedCrossRefGoogle Scholar
  21. 21.
    Dalakas, M. C. (2015). Inflammatory muscle diseases. The New England Journal of Medicine, 372, 1734–1747.PubMedCrossRefGoogle Scholar
  22. 22.
    Miller, F. W., Chen, W., O’Hanlon, T. P., Cooper, R. G., Vencovsky, J., Rider, L. G., Danko, K., Wedderburn, L. R., Lundberg, I. E., Pachman, L. M., et al. (2015). Genome-wide association study identifies HLA 8.1 ancestral haplotype alleles as major genetic risk factors for myositis phenotypes. Genes and Immunity, 16, 470–480.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Rothwell, S., Cooper, R. G., Lundberg, I. E., Miller, F. W., Gregersen, P. K., Bowes, J., Vencovsky, J., Danko, K., Limaye, V., Selva-O’Callaghan, A., et al. (2016a). Dense genotyping of immune-related loci in idiopathic inflammatory myopathies confirms HLA alleles as the strongest genetic risk factor and suggests different genetic background for major clinical subgroups. Annals of the Rheumatic Diseases, 75, 1558–1566.PubMedCrossRefGoogle Scholar
  24. 24.
    Rothwell, S., Lamb, J. A., & Chinoy, H. (2016b). New developments in genetics of myositis. Current Opinion in Rheumatology, 28, 651–656.PubMedCrossRefGoogle Scholar
  25. 25.
    Britson, K. A., Yang, S. Y., & Lloyd, T. E. (2018). New developments in the genetics of inclusion body myositis. Current Rheumatology Reports, 20(5), 26.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Hilton-Jones, D. (2018). Statin-related myopathies. Practical Neurology, 18, 97–105.PubMedCrossRefGoogle Scholar
  27. 27.
    SEARCH Collaborative Group, Link, E., Parish, S., Armitage, J., Bowman, L., Heath, S., Matsuda, F., Gut, I., Lathrop, M., & Collins, R. (2008). SLCO1B1 variants and statin-induced myopathy—A genomewide study. The New England Journal of Medicine, 359, 789–799.CrossRefGoogle Scholar
  28. 28.
    Dube, M.-P., Zetler, R., Barhdadi, A., Brown, A. M. K., Mongrain, I., Normand, V., Laplante, N., Asselin, G., Zada, Y. F., Provost, S., et al. (2014). CKM and LILRB5 are associated with serum levels of Creatine kinase. Circulation. Cardiovascular Genetics, 7, 880–886.PubMedCrossRefGoogle Scholar
  29. 29.
    Kristjansson, R. P., Oddsson, A., Helgason, H., Sveinbjornsson, G., Arnadottir, G. A., Jensson, B. O., Jonasdottir, A., Jonasdottir, A., Bragi Walters, G., Sulem, G., et al. (2016). Common and rare variants associating with serum levels of creatine kinase and lactate dehydrogenase. Nature Communications, 7, 10572.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Humbertclaude, V., Hamroun, D., Bezzou, K., Bérard, C., Boespflug-Tanguy, O., Bommelaer, C., Campana-Salort, E., Cances, C., Chabrol, B., Commare, M.-C., et al. (2012). Motor and respiratory heterogeneity in Duchenne patients: Implication for clinical trials. European Journal of Paediatric Neurology: EJPN: Official Journal of European Paediatric Neurology Society, 16, 149–160.CrossRefGoogle Scholar
  31. 31.
    Ricotti, V., Muntoni, F., & Voit, T. (2015). Challenges of clinical trial design for DMD. Neuromuscular Disorders, 25, 932–935.PubMedCrossRefGoogle Scholar
  32. 32.
    Hoffman, E. P., Brown, R. H., & Kunkel, L. M. (1987). Dystrophin: The protein product of the Duchenne muscular dystrophy locus. Cell, 51, 919–928.PubMedCrossRefGoogle Scholar
  33. 33.
    Monaco, A. P., Bertelson, C. J., Liechti-Gallati, S., Moser, H., & Kunkel, L. M. (1988). An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics, 2, 90–95.PubMedCrossRefGoogle Scholar
  34. 34.
    Uaesoontrachoon, K., Yoo, H.-J., Tudor, E. M., Pike, R. N., Mackie, E. J., & Pagel, C. N. (2008). Osteopontin and skeletal muscle myoblasts: Association with muscle regeneration and regulation of myoblast function in vitro. The International Journal of Biochemistry and Cell Biology, 40, 2303–2314.PubMedCrossRefGoogle Scholar
  35. 35.
    Uaesoontrachoon, K., Wasgewatte Wijesinghe, D. K., Mackie, E. J., & Pagel, C. N. (2013). Osteopontin deficiency delays inflammatory infiltration and the onset of muscle regeneration in a mouse model of muscle injury. Disease Models and Mechanisms, 6, 197–205.PubMedCrossRefGoogle Scholar
  36. 36.
    Capote, J., Kramerova, I., Martinez, L., Vetrone, S., Barton, E. R., Sweeney, H. L., Miceli, M. C., & Spencer, M. J. (2016). Osteopontin ablation ameliorates muscular dystrophy by shifting macrophages to a pro-regenerative phenotype. The Journal of Cell Biology, 213, 275–288.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Vetrone, S. A., Montecino-Rodriguez, E., Kudryashova, E., Kramerova, I., Hoffman, E. P., Liu, S. D., Miceli, M. C., & Spencer, M. J. (2009). Osteopontin promotes fibrosis in dystrophic mouse muscle by modulating immune cell subsets and intramuscular TGF-β. The Journal of Clinical Investigation, 119, 1583–1594.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Giacopelli, F., Marciano, R., Pistorio, A., Catarsi, P., Canini, S., Karsenty, G., & Ravazzolo, R. (2004). Polymorphisms in the osteopontin promoter affect its transcriptional activity. Physiological Genomics, 20, 87–96.PubMedCrossRefGoogle Scholar
  39. 39.
    Pegoraro, E., Hoffman, E., Piva, L., Gavassini, B., Cagnin, S., Ermani, M., Bello, L., Soraru, G., Pacchioni, B., Bonifati, M., et al. (2011). SPP1 genotype is a determinant of disease severity in Duchenne muscular dystrophy. Neurology, 76, 219–226.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Bello, L., Piva, L., Barp, A., Taglia, A., Picillo, E., Vasco, G., Pane, M., Previtali, S. C., Torrente, Y., Gazzerro, E., et al. (2012). Importance of SPP1 genotype as a covariate in clinical trials in Duchenne muscular dystrophy. Neurology, 79, 159–162.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Flanigan, K. M., Ceco, E., Lamar, K.-M., Kaminoh, Y., Dunn, D. M., Mendell, J. R., King, W. M., Pestronk, A., Florence, J. M., Mathews, K. D., et al. (2013). LTBP4 genotype predicts age of ambulatory loss in Duchenne muscular dystrophy. Annals of Neurology, 73, 481–488.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    van den Bergen, J. C., Hiller, M., Böhringer, S., Vijfhuizen, L., Ginjaar, H. B., Chaouch, A., Bushby, K., Straub, V., Scoto, M., Cirak, S., et al. (2015). Validation of genetic modifiers for Duchenne muscular dystrophy: A multicentre study assessing SPP1 and LTBP4 variants. Journal of Neurology, Neurosurgery, and Psychiatry, 86, 1060–1065.PubMedCrossRefGoogle Scholar
  43. 43.
    Hoffman, E. P., Gordish-Dressman, H., McLane, V. D., Devaney, J. M., Thompson, P. D., Visich, P., Gordon, P. M., Pescatello, L. S., Zoeller, R. F., Moyna, N. M., et al. (2013). Alterations in osteopontin modify muscle size in females in both humans and mice. Medicine and Science in Sports and Exercise, 45, 1060–1068.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Vianello, S., Pantic, B., Fusto, A., Bello, L., Galletta, E., Borgia, D., Gavassini, B. F., Semplicini, C., Sorarù, G., Vitiello, L., et al. (2017). SPP1 genotype and glucocorticoid treatment modify osteopontin expression in Duchenne muscular dystrophy cells. Human Molecular Genetics, 26, 3342–3351.PubMedCrossRefGoogle Scholar
  45. 45.
    Heydemann, A., Ceco, E., Lim, J. E., Hadhazy, M., Ryder, P., Moran, J. L., Beier, D. R., Palmer, A. A., & McNally, E. M. (2009). Latent TGF-beta-binding protein 4 modifies muscular dystrophy in mice. The Journal of Clinical Investigation, 119, 3703–3712.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Chen, Y.-W., Nagaraju, K., Bakay, M., McIntyre, O., Rawat, R., Shi, R., & Hoffman, E. P. (2005). Early onset of inflammation and later involvement of TGF in Duchenne muscular dystrophy. Neurology, 65, 826–834.PubMedCrossRefGoogle Scholar
  47. 47.
    Dadgar, S., Wang, Z., Johnston, H., Kesari, A., Nagaraju, K., Chen, Y.-W., Hill, D. A., Partridge, T. A., Giri, M., Freishtat, R. J., et al. (2014). Asynchronous remodeling is a driver of failed regeneration in Duchenne muscular dystrophy. The Journal of Cell Biology, 207, 139–158.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Hogarth, M. W., Houweling, P. J., Thomas, K. C., Gordish-Dressman, H., Bello, L., Cooperative International Neuromuscular Research Group (CINRG), Pegoraro, E., Hoffman, E. P., Head, S. I., & North, K. N. (2017). Evidence for ACTN3 as a genetic modifier of Duchenne muscular dystrophy. Nature Communications, 8, 14143.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Weiss, R. B., Vieland, V. J., Dunn, D. M., Kaminoh, Y., Flanigan, K. M., & United Dystrophinopathy Project. (2018). Long-range genomic regulators of THBS1 and LTBP4 modify disease severity in duchenne muscular dystrophy. Annals of Neurology, 84, 234–245.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Hoffmann, T. J., & Witte, J. S. (2015). Strategies for imputing and analyzing rare variants in association studies. Trends in Genetics, 31, 556–563.PubMedCrossRefGoogle Scholar
  51. 51.
    Morris, A. P., & Zeggini, E. (2010). An evaluation of statistical approaches to rare variant analysis in genetic association studies. Genetic Epidemiology, 34, 188–193.PubMedCrossRefGoogle Scholar
  52. 52.
    Lee, S., Abecasis, G. R., Boehnke, M., & Lin, X. (2014). Rare-variant association analysis: Study designs and statistical tests. American Journal of Human Genetics, 95, 5–23.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The American Physiological Society 2019

Authors and Affiliations

  1. 1.Department of Neurosciences DNSUniversity of PadovaPadovaItaly
  2. 2.School of Pharmacy and Pharmaceutical SciencesBinghamton UniversityBinghamtonUSA

Personalised recommendations