Advertisement

Skeletal Muscle Metabolomics for Metabolic Phenotyping and Biomarker Discovery

  • Kenneth Allen DyarEmail author
  • Anna Artati
  • Alexander Cecil
  • Jerzy Adamski
Chapter
Part of the Methods in Physiology book series (METHPHYS)

Abstract

Metabolism is the process of chemical transformation within a biological context. Metabolites comprise all the small-molecule (<1 kDa) substrates and end products of metabolism, including sugars, nucleotides, lipids, amino acids, organic acids, ketones, aldehydes, amines, alkaloids, phenols, steroids, small peptides, xenobiotics, and drugs. Similar in scope to other high-throughput “omics” technologies, the aim of metabolomics is to comprehensively and unbiasedly detect, identify, and quantify the metabolome, i.e., the full complement of small molecules found in cells, biological fluids, or tissues. Here we present a brief introduction of how skeletal muscle metabolomics can be used for metabolic phenotyping and biomarker discovery.

References

  1. 1.
    Holmes, E., Wilson, I. D., & Nicholson, J. K. (2008). Metabolic phenotyping in health and disease. Cell, 134, 714–717.PubMedCrossRefGoogle Scholar
  2. 2.
    Patti, G. J., Yanes, O., & Siuzdak, G. (2012). Innovation: Metabolomics: The apogee of the omics trilogy. Nature Reviews Molecular Cell Biology, 13, 263–269.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    van der Greef, J., van Wietmarschen, H., van Ommen, B., & Verheij, E. (2013). Looking back into the future: 30 years of metabolomics at TNO. Mass Spectrometry Reviews, 32, 399–415.PubMedCrossRefGoogle Scholar
  4. 4.
    Nicholson, J. K. (2006). Global systems biology, personalized medicine and molecular epidemiology. Molecular Systems Biology, 2, 52.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Ramautar, R., Berger, R., van der Greef, J., & Hankemeier, T. (2013). Human metabolomics: Strategies to understand biology. Current Opinion in Chemical Biology, 17, 841–846.PubMedCrossRefGoogle Scholar
  6. 6.
    Newgard, C. B. (2017). Metabolomics and metabolic diseases: Where do we stand? Cell Metabolism, 25, 43–56.PubMedCrossRefGoogle Scholar
  7. 7.
    McCarthy, M. I., Abecasis, G. R., Cardon, L. R., Goldstein, D. B., Little, J., Ioannidis, J. P., & Hirschhorn, J. N. (2008). Genome-wide association studies for complex traits: Consensus, uncertainty and challenges. Nature Reviews Genetics, 9, 356–369.CrossRefGoogle Scholar
  8. 8.
    Samani, N. J., Erdmann, J., Hall, A. S., Hengstenberg, C., Mangino, M., Mayer, B., Dixon, R. J., Meitinger, T., Braund, P., Wichmann, H. E., Barrett, J. H., Konig, I. R., Stevens, S. E., Szymczak, S., Tregouet, D. A., Iles, M. M., Pahlke, F., Pollard, H., Lieb, W., Cambien, F., Fischer, M., Ouwehand, W., Blankenberg, S., Balmforth, A. J., Baessler, A., Ball, S. G., Strom, T. M., Braenne, I., Gieger, C., Deloukas, P., Tobin, M. D., Ziegler, A., Thompson, J. R., Schunkert, H., & Wtccc, and the Cardiogenics Consortium. (2007). Genomewide association analysis of coronary artery disease. The New England Journal of Medicine, 357, 443–453.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Todd, J. A., Walker, N. M., Cooper, J. D., Smyth, D. J., Downes, K., Plagnol, V., Bailey, R., Nejentsev, S., Field, S. F., Payne, F., Lowe, C. E., Szeszko, J. S., Hafler, J. P., Zeitels, L., Yang, J. H., Vella, A., Nutland, S., Stevens, H. E., Schuilenburg, H., Coleman, G., Maisuria, M., Meadows, W., Smink, L. J., Healy, B., Burren, O. S., Lam, A. A., Ovington, N. R., Allen, J., Adlem, E., Leung, H. T., Wallace, C., Howson, J. M., Guja, C., Ionescu-Tirgoviste, C., Genetics of Type 1 Diabetes in F, Simmonds, M. J., Heward, J. M., Gough, S. C., Wellcome Trust Case Control C, Dunger, D. B., Wicker, L. S., & Clayton, D. G. (2007). Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nature Genetics, 39, 857–864.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Zeggini, E., Scott, L. J., Saxena, R., Voight, B. F., Marchini, J. L., Hu, T., de Bakker, P. I., Abecasis, G. R., Almgren, P., Andersen, G., Ardlie, K., Bostrom, K. B., Bergman, R. N., Bonnycastle, L. L., Borch-Johnsen, K., Burtt, N. P., Chen, H., Chines, P. S., Daly, M. J., Deodhar, P., Ding, C. J., Doney, A. S., Duren, W. L., Elliott, K. S., Erdos, M. R., Frayling, T. M., Freathy, R. M., Gianniny, L., Grallert, H., Grarup, N., Groves, C. J., Guiducci, C., Hansen, T., Herder, C., Hitman, G. A., Hughes, T. E., Isomaa, B., Jackson, A. U., Jorgensen, T., Kong, A., Kubalanza, K., Kuruvilla, F. G., Kuusisto, J., Langenberg, C., Lango, H., Lauritzen, T., Li, Y., Lindgren, C. M., Lyssenko, V., Marvelle, A. F., Meisinger, C., Midthjell, K., Mohlke, K. L., Morken, M. A., Morris, A. D., Narisu, N., Nilsson, P., Owen, K. R., Palmer, C. N., Payne, F., Perry, J. R., Pettersen, E., Platou, C., Prokopenko, I., Qi, L., Qin, L., Rayner, N. W., Rees, M., Roix, J. J., Sandbaek, A., Shields, B., Sjogren, M., Steinthorsdottir, V., Stringham, H. M., Swift, A. J., Thorleifsson, G., Thorsteinsdottir, U., Timpson, N. J., Tuomi, T., Tuomilehto, J., Walker, M., Watanabe, R. M., Weedon, M. N., Willer, C. J., Wellcome Trust Case Control C, Illig, T., Hveem, K., Hu, F. B., Laakso, M., Stefansson, K., Pedersen, O., Wareham, N. J., Barroso, I., Hattersley, A. T., Collins, F. S., Groop, L., McCarthy, M. I., Boehnke, M., & Altshuler, D. (2008). Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nature Genetics, 40, 638–645.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Gieger, C., Geistlinger, L., Altmaier, E., Hrabe de Angelis, M., Kronenberg, F., Meitinger, T., Mewes, H. W., Wichmann, H. E., Weinberger, K. M., Adamski, J., Illig, T., & Suhre, K. (2008). Genetics meets metabolomics: A genome-wide association study of metabolite profiles in human serum. PLoS Genetics, 4, e1000282.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Gates, S. C., & Sweeley, C. C. (1978). Quantitative metabolic profiling based on gas chromatography. Clinical Chemistry, 24, 1663–1673.PubMedGoogle Scholar
  13. 13.
    Gohlke, R. S., & McLafferty, F. W. (1993). Early gas chromatography/mass spectrometry. Journal of the American Society for Mass Spectrometry, 4, 367–371.PubMedCrossRefGoogle Scholar
  14. 14.
    Kell, D. B., & Oliver, S. G. (2016). The metabolome 18 years on: A concept comes of age. Metabolomics, 12, 148.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Rosato, A., Tenori, L., Cascante, M., De Atauri Carulla, P. R., Martins Dos Santos, V. A. P., & Saccenti, E. (2018). From correlation to causation: Analysis of metabolomics data using systems biology approaches. Metabolomics, 14, 37.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Zamboni, N., Saghatelian, A., & Patti, G. J. (2015). Defining the metabolome: Size, flux, and regulation. Molecular Cell, 58, 699–706.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Horning, E. C., & Horning, M. G. (1971). Metabolic profiles: Gas-phase methods for analysis of metabolites. Clinical Chemistry, 17, 802–809.PubMedGoogle Scholar
  18. 18.
    Mamer, O. A., Crawhall, J. C., & Tjoa, S. S. (1971). The identification of urinary acids by coupled gas chromatography-mass spectrometry. Clinica Chimica Acta, 32, 171–184.CrossRefGoogle Scholar
  19. 19.
    Pauling, L., Robinson, A. B., Teranishi, R., & Cary, P. (1971). Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proceedings of the National Academy of Sciences of the United States of America, 68, 2374–2376.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Hoult, D. I., Busby, S. J., Gadian, D. G., Radda, G. K., Richards, R. E., & Seeley, P. J. (1974). Observation of tissue metabolites using 31P nuclear magnetic resonance. Nature, 252, 285–287.PubMedCrossRefGoogle Scholar
  21. 21.
    Radda, G. K., & Seeley, P. J. (1979). Recent studies on cellular metabolism by nuclear magnetic resonance. Annual Review of Physiology, 41, 749–769.PubMedCrossRefGoogle Scholar
  22. 22.
    Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francis-McIntyre, S., Anderson, N., Brown, M., Knowles, J. D., Halsall, A., Haselden, J. N., Nicholls, A. W., Wilson, I. D., Kell, D. B., Goodacre, R., & Human Serum Metabolome Consortium. (2011). Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols, 6, 1060–1083.PubMedCrossRefGoogle Scholar
  23. 23.
    Wollenberger, A., Ristau, O., & Schoffa, G. (1960). A simple technic for extremely rapid freezing of large pieces of tissue. Pflügers Archiv für die Gesamte Physiologie des Menschen und der Tiere, 270, 399–412.PubMedCrossRefGoogle Scholar
  24. 24.
    Haid, M., Muschet, C., Wahl, S., Romisch-Margl, W., Prehn, C., Moller, G., & Adamski, J. (2018). Long-term stability of human plasma metabolites during storage at −80 degrees C. Journal of Proteome Research, 17, 203–211.PubMedCrossRefGoogle Scholar
  25. 25.
    Issaq, H. J., Van, Q. N., Waybright, T. J., Muschik, G. M., & Veenstra, T. D. (2009). Analytical and statistical approaches to metabolomics research. Journal of Separation Science, 32, 2183–2199.PubMedCrossRefGoogle Scholar
  26. 26.
    Ellis, D. I., Dunn, W. B., Griffin, J. L., Allwood, J. W., & Goodacre, R. (2007). Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics, 8, 1243–1266.PubMedCrossRefGoogle Scholar
  27. 27.
    Illig, T., Gieger, C., Zhai, G., Romisch-Margl, W., Wang-Sattler, R., Prehn, C., Altmaier, E., Kastenmuller, G., Kato, B. S., Mewes, H. W., Meitinger, T., de Angelis, M. H., Kronenberg, F., Soranzo, N., Wichmann, H. E., Spector, T. D., Adamski, J., & Suhre, K. (2010). A genome-wide perspective of genetic variation in human metabolism. Nature Genetics, 42, 137–141.PubMedCrossRefGoogle Scholar
  28. 28.
    Griffiths, W. J., Karu, K., Hornshaw, M., Woffendin, G., & Wang, Y. (2007). Metabolomics and metabolite profiling: Past heroes and future developments. European Journal of Mass Spectrometry (Chichester), 13, 45–50.CrossRefGoogle Scholar
  29. 29.
    Zhao, X., Fritsche, J., Wang, J., Chen, J., Rittig, K., Schmitt-Kopplin, P., Fritsche, A., Haring, H. U., Schleicher, E. D., Xu, G., & Lehmann, R. (2010). Metabonomic fingerprints of fasting plasma and spot urine reveal human pre-diabetic metabolic traits. Metabolomics, 6, 362–374.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Lawton, K. A., Berger, A., Mitchell, M., Milgram, K. E., Evans, A. M., Guo, L., Hanson, R. W., Kalhan, S. C., Ryals, J. A., & Milburn, M. V. (2008). Analysis of the adult human plasma metabolome. Pharmacogenomics, 9, 383–397.PubMedCrossRefGoogle Scholar
  31. 31.
    Ohta, T., Masutomi, N., Tsutsui, N., Sakairi, T., Mitchell, M., Milburn, M. V., Ryals, J. A., Beebe, K. D., & Guo, L. (2009). Untargeted metabolomic profiling as an evaluative tool of fenofibrate-induced toxicology in Fischer 344 male rats. Toxicologic Pathology, 37, 521–535.PubMedCrossRefGoogle Scholar
  32. 32.
    Sreekumar, A., Poisson, L. M., Rajendiran, T. M., Khan, A. P., Cao, Q., Yu, J., Laxman, B., Mehra, R., Lonigro, R. J., Li, Y., Nyati, M. K., Ahsan, A., Kalyana-Sundaram, S., Han, B., Cao, X., Byun, J., Omenn, G. S., Ghosh, D., Pennathur, S., Alexander, D. C., Berger, A., Shuster, J. R., Wei, J. T., Varambally, S., Beecher, C., & Chinnaiyan, A. M. (2009). Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 457, 910–914.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Azur, M. J., Stuart, E. A., Frangakis, C., & Leaf, P. J. (2011). Multiple imputation by chained equations: What is it and how does it work? International Journal of Methods in Psychiatric Research, 20, 40–49.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Croghan, C. W., & Egeghy, P. P. (2003). Methods of dealing with values below the limit of detection using SAS. St. Petersburg, FL: Southeastern SAS User Group.Google Scholar
  35. 35.
    Gromski, P. S., Xu, Y., Kotze, H. L., Correa, E., Ellis, D. I., Armitage, E. G., Turner, M. L., & Goodacre, R. (2014). Influence of missing values substitutes on multivariate analysis of metabolomics data. Metabolites, 4, 433–452.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Hrydziuszko, O., & Viant, M. R. (2012). Missing values in mass spectrometry based metabolomics: An undervalued step in the data processing pipeline. Metabolomics, 8, 161–174.CrossRefGoogle Scholar
  37. 37.
    Lubin, J. H., Colt, J. S., Camann, D., Davis, S., Cerhan, J. R., Severson, R. K., Bernstein, L., & Hartge, P. (2004). Epidemiologic evaluation of measurement data in the presence of detection limits. Environmental Health Perspectives, 112, 1691–1696.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Xia, J., Psychogios, N., Young, N., & Wishart, D. S. (2009). MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Research, 37, W652–W660.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Brereton, R. G., & Lloyd, G. R. (2014). Partial least squares discriminant analysis: Taking the magic away. Journal of Chemometrics, 28, 213–225.CrossRefGoogle Scholar
  40. 40.
    Efron, B., & Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science, 1, 54–75.CrossRefGoogle Scholar
  41. 41.
    Eriksson, L., Trygg, J., & Wold, S. (2014). A chemometrics toolbox based on projections and latent variables. Journal of Chemometrics, 28, 332–346.CrossRefGoogle Scholar
  42. 42.
    Grissa, D., Petera, M., Brandolini, M., Napoli, A., Comte, B., & Pujos-Guillot, E. (2016). Feature selection methods for early predictive biomarker discovery using untargeted metabolomic data. Frontiers in Molecular Biosciences, 3, 30.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Gromski, P. S., Muhamadali, H., Ellis, D. I., Xu, Y., Correa, E., Turner, M. L., & Goodacre, R. (2015). A tutorial review: Metabolomics and partial least squares-discriminant analysis – A marriage of convenience or a shotgun wedding. Analytica Chimica Acta, 879, 10–23.PubMedCrossRefGoogle Scholar
  44. 44.
    Gromski, P. S., Xu, Y., Correa, E., Ellis, D. I., Turner, M. L., & Goodacre, R. (2014). A comparative investigation of modern feature selection and classification approaches for the analysis of mass spectrometry data. Analytica Chimica Acta, 829, 1–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning. New York: Springer.CrossRefGoogle Scholar
  46. 46.
    Jolliffe, I. T. (2002). Principal component analysis. New York: Springer.Google Scholar
  47. 47.
    Kastenmuller, G., Romisch-Margl, W., Wagele, B., Altmaier, E., & Suhre, K. (2011). metaP-server: A web-based metabolomics data analysis tool. Journal of Biomedicine and Biotechnology, 2011, 839862.PubMedCrossRefGoogle Scholar
  48. 48.
    Ren, S., Hinzman, A. A., Kang, E. L., Szczesniak, R. D., & Lu, L. J. (2015). Computational and statistical analysis of metabolomics data. Metabolomics, 11, 1492–1513.CrossRefGoogle Scholar
  49. 49.
    Saccenti, E., Hoefsloot, H. C. J., Smilde, A. K., Westerhuis, J. A., & Hendriks, M. M. W. B. (2014). Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics, 10, 361–374.CrossRefGoogle Scholar
  50. 50.
    Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52, 591–611.CrossRefGoogle Scholar
  51. 51.
    Tautenhahn, R., Patti, G. J., Rinehart, D., & Siuzdak, G. (2012). XCMS online: A web-based platform to process untargeted metabolomic data. Analytical Chemistry, 84, 5035–5039.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Vinaixa, M., Samino, S., Saez, I., Duran, J., Guinovart, J. J., & Yanes, O. (2012). A guideline to univariate statistical analysis for LC/MS-based untargeted metabolomics-derived data. Metabolites, 2, 775–795.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58, 109–130.CrossRefGoogle Scholar
  54. 54.
    Xia, J., Sinelnikov, I. V., Han, B., & Wishart, D. S. (2015). MetaboAnalyst 3.0 – making metabolomics more meaningful. Nucleic Acids Research, 43, W251–W257.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Brereton, R. G. (2006). Consequences of sample size, variable selection, and model validation and optimisation, for predicting classification ability from analytical data. TrAC Trends in Analytical Chemistry, 25, 1103–1111.CrossRefGoogle Scholar
  56. 56.
    Esbensen, K. H., & Geladi, P. (2010). Principles of proper validation: Use and abuse of re-sampling for validation. Journal of Chemometrics, 24, 168–187.CrossRefGoogle Scholar
  57. 57.
    Trygg, J., & Wold, S. (2002). Orthogonal projections to latent structures (O-PLS). Journal of Chemometrics, 16, 119–128.CrossRefGoogle Scholar
  58. 58.
    Westerhuis, J. A., Hoefsloot, H. C. J., Smit, S., Vis, D. J., Smilde, A. K., van Velzen, J. J., van Duijnhoven, J. P. M., & van Dorsten, F. A. (2008). Assessment of PLSDA cross validation. Metabolomics, 4, 81–89.CrossRefGoogle Scholar
  59. 59.
    Xia, J., Broadhurst, D. I., Wilson, M., & Wishart, D. S. (2013). Translational biomarker discovery in clinical metabolomics: An introductory tutorial. Metabolomics, 9, 280–299.PubMedCrossRefGoogle Scholar
  60. 60.
    Vouk, K., Hevir, N., Ribic-Pucelj, M., Haarpaintner, G., Scherb, H., Osredkar, J., Moller, G., Prehn, C., Rizner, T. L., & Adamski, J. (2012). Discovery of phosphatidylcholines and sphingomyelins as biomarkers for ovarian endometriosis. Human Reproduction, 27, 2955–2965.PubMedCrossRefGoogle Scholar
  61. 61.
    Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., Wishart, D. S., & Xia, J. (2018). MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Research, 46, W486–W494.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Zurlo, F., Larson, K., Bogardus, C., & Ravussin, E. (1990). Skeletal muscle metabolism is a major determinant of resting energy expenditure. The Journal of Clinical Investigation, 86, 1423–1427.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Hargreaves, M. (2000). Skeletal muscle metabolism during exercise in humans. Clinical and Experimental Pharmacology and Physiology, 27, 225–228.PubMedCrossRefGoogle Scholar
  64. 64.
    Shearer, J., & Weljie, A. (2014). Biomarkers of skeletal muscle regulation, metabolism and dysfunction. In: Jones, O. A. H. (Ed.), Metabolomics and systems biology in human health and medicine (pp. 157–170). CABI.Google Scholar
  65. 65.
    Hadrevi, J., Ghafouri, B., Sjors, A., Antti, H., Larsson, B., Crenshaw, A. G., Gerdle, B., & Hellstrom, F. (2013). Comparative metabolomics of muscle interstitium fluid in human trapezius myalgia: an in vivo microdialysis study. European Journal of Applied Physiology, 113, 2977–2989.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Zhang, J., Bhattacharyya, S., Hickner, R. C., Light, A. R., Lambert, C. J., Gale, B. K., Fiehn, O., & Adams, S. H. (2019). Skeletal muscle interstitial fluid metabolomics at rest and associated with an exercise bout: Application in rats and humans. American Journal of Physiology Endocrinology and Metabolism, 316, E43–E53.PubMedCrossRefGoogle Scholar
  67. 67.
    Ivanisevic, J., Elias, D., Deguchi, H., Averell, P. M., Kurczy, M., Johnson, C. H., Tautenhahn, R., Zhu, Z., Watrous, J., Jain, M., Griffin, J., Patti, G. J., & Siuzdak, G. (2015). Arteriovenous blood metabolomics: A readout of intra-tissue metabostasis. Scientific Reports, 5, 12757.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Dotzert, M. S., Murray, M. R., McDonald, M. W., Olver, T. D., Velenosi, T. J., Hennop, A., Noble, E. G., Urquhart, B. L., & Melling, C. W. (2016). Metabolomic response of skeletal muscle to aerobic exercise training in insulin resistant type 1 diabetic rats. Scientific Reports, 6, 26379.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Goto-Inoue, N., Yamada, K., Inagaki, A., Furuichi, Y., Ogino, S., Manabe, Y., Setou, M., & Fujii, N. L. (2013). Lipidomics analysis revealed the phospholipid compositional changes in muscle by chronic exercise and high-fat diet. Scientific Reports, 3, 3267.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Ilaiwy, A., Quintana, M. T., Bain, J. R., Muehlbauer, M. J., Brown, D. I., Stansfield, W. E., & Willis, M. S. (2016). Cessation of biomechanical stretch model of C2C12 cells models myocyte atrophy and anaplerotic changes in metabolism using non-targeted metabolomics analysis. The International Journal of Biochemistry and Cell Biology, 79, 80–92.PubMedCrossRefGoogle Scholar
  71. 71.
    Saoi, M., Percival, M., Nemr, C., Li, A., Gibala, M., & Britz-McKibbin, P. (2019). Characterization of the human skeletal muscle metabolome for elucidating the mechanisms of bicarbonate ingestion on strenuous interval exercise. Analytical Chemistry, 91, 4709–4718.PubMedCrossRefGoogle Scholar
  72. 72.
    Sato, S., Parr, E. B., Devlin, B. L., Hawley, J. A., & Sassone-Corsi, P. (2018). Human metabolomics reveal daily variations under nutritional challenges specific to serum and skeletal muscle. Molecular Metabolism, 16, 1–11.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Starnes, J. W., Parry, T. L., O’Neal, S. K., Bain, J. R., Muehlbauer, M. J., Honcoop, A., Ilaiwy, A., Christopher, P. M., Patterson, C., & Willis, M. S. (2017). Exercise-induced alterations in skeletal muscle, heart, liver, and serum metabolome identified by non-targeted metabolomics analysis. Metabolites, 7, 40.PubMedCentralCrossRefPubMedGoogle Scholar
  74. 74.
    White, P. J., Lapworth, A. L., An, J., Wang, L., McGarrah, R. W., Stevens, R. D., Ilkayeva, O., George, T., Muehlbauer, M. J., Bain, J. R., Trimmer, J. K., Brosnan, M. J., Rolph, T. P., & Newgard, C. B. (2016). Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export. Molecular Metabolism, 5, 538–551.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Abdullah, M., Kornegay, J. N., Honcoop, A., Parry, T. L., Balog-Alvarez, C. J., O’Neal, S. K., Bain, J. R., Muehlbauer, M. J., Newgard, C. B., Patterson, C., & Willis, M. S. (2017). Non-targeted metabolomics analysis of golden retriever muscular dystrophy-affected muscles reveals alterations in arginine and proline metabolism, and elevations in glutamic and oleic acid in vivo. Metabolites, 7(3), 38.PubMedCentralCrossRefPubMedGoogle Scholar
  76. 76.
    Buzkova, J., Nikkanen, J., Ahola, S., Hakonen, A. H., Sevastianova, K., Hovinen, T., Yki-Jarvinen, H., Pietilainen, K. H., Lonnqvist, T., Velagapudi, V., Carroll, C. J., & Suomalainen, A. (2018). Metabolomes of mitochondrial diseases and inclusion body myositis patients: Treatment targets and biomarkers. EMBO Molecular Medicine, 10, e9091.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Griffin, J. L., & Des, R. C. (2009). Applications of metabolomics and proteomics to the mdx mouse model of Duchenne muscular dystrophy: Lessons from downstream of the transcriptome. Genome Medicine, 1, 32.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Du, T., Lin, Z., Xie, Y., Ye, X., Tu, C., Jin, K., Xie, J., & Shen, Y. (2018). Metabolic profiling of femoral muscle from rats at different periods of time after death. PLoS One, 13, e0203920.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Fazelzadeh, P., Hangelbroek, R. W., Tieland, M., de Groot, L. C., Verdijk, L. B., van Loon, L. J., Smilde, A. K., Alves, R. D., Vervoort, J., Muller, M., van Duynhoven, J. P., & Boekschoten, M. V. (2016). The muscle metabolome differs between healthy and frail older adults. Journal of Proteome Research, 15, 499–509.PubMedCrossRefGoogle Scholar
  80. 80.
    Garvey, S. M., Dugle, J. E., Kennedy, A. D., McDunn, J. E., Kline, W., Guo, L., Guttridge, D. C., Pereira, S. L., & Edens, N. K. (2014). Metabolomic profiling reveals severe skeletal muscle group-specific perturbations of metabolism in aged FBN rats. Biogerontology, 15, 217–232.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Houtkooper, R. H., Argmann, C., Houten, S. M., Canto, C., Jeninga, E. H., Andreux, P. A., Thomas, C., Doenlen, R., Schoonjans, K., & Auwerx, J. (2011). The metabolic footprint of aging in mice. Scientific Reports, 1, 134.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Jang, C., Oh, S. F., Wada, S., Rowe, G. C., Liu, L., Chan, M. C., Rhee, J., Hoshino, A., Kim, B., Ibrahim, A., Baca, L. G., Kim, E., Ghosh, C. C., Parikh, S. M., Jiang, A., Chu, Q., Forman, D. E., Lecker, S. H., Krishnaiah, S., Rabinowitz, J. D., Weljie, A. M., Baur, J. A., Kasper, D. L., & Arany, Z. (2016). A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nature Medicine, 22, 421–426.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Montgomery, M. K., Brown, S. H. J., Mitchell, T. W., Coster, A. C. F., Cooney, G. J., & Turner, N. (2017). Association of muscle lipidomic profile with high-fat diet-induced insulin resistance across five mouse strains. Scientific Reports, 7, 13914.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Roberts, L. D., Bostrom, P., O’Sullivan, J. F., Schinzel, R. T., Lewis, G. D., Dejam, A., Lee, Y. K., Palma, M. J., Calhoun, S., Georgiadi, A., Chen, M. H., Ramachandran, V. S., Larson, M. G., Bouchard, C., Rankinen, T., Souza, A. L., Clish, C. B., Wang, T. J., Estall, J. L., Soukas, A. A., Cowan, C. A., Spiegelman, B. M., & Gerszten, R. E. (2014). beta-Aminoisobutyric acid induces browning of white fat and hepatic beta-oxidation and is inversely correlated with cardiometabolic risk factors. Cell Metabolism, 19, 96–108.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Tonks, K. T., Coster, A. C., Christopher, M. J., Chaudhuri, R., Xu, A., Gagnon-Bartsch, J., Chisholm, D. J., James, D. E., Meikle, P. J., Greenfield, J. R., & Samocha-Bonet, D. (2016). Skeletal muscle and plasma lipidomic signatures of insulin resistance and overweight/obesity in humans. Obesity (Silver Spring), 24, 908–916.CrossRefGoogle Scholar
  86. 86.
    Wood, P., & Shirley, N. (2013). Lipidomics analysis of postmortem interval: Preliminary evaluation of human skeletal muscle. Metabolomics, 3, 127–129.Google Scholar
  87. 87.
    Aguer, C., Piccolo, B. D., Fiehn, O., Adams, S. H., & Harper, M. E. (2017). A novel amino acid and metabolomics signature in mice overexpressing muscle uncoupling protein 3. The FASEB Journal, 31, 814–827.PubMedCrossRefGoogle Scholar
  88. 88.
    An, J., Muoio, D. M., Shiota, M., Fujimoto, Y., Cline, G. W., Shulman, G. I., Koves, T. R., Stevens, R., Millington, D., & Newgard, C. B. (2004). Hepatic expression of malonyl-CoA decarboxylase reverses muscle, liver and whole-animal insulin resistance. Nature Medicine, 10, 268–274.PubMedCrossRefGoogle Scholar
  89. 89.
    Cheng, K. K., Akasaki, Y., Lecommandeur, E., Lindsay, R. T., Murfitt, S., Walsh, K., & Griffin, J. L. (2015). Metabolomic analysis of akt1-mediated muscle hypertrophy in models of diet-induced obesity and age-related fat accumulation. Journal of Proteome Research, 14, 342–352.PubMedCrossRefGoogle Scholar
  90. 90.
    Choi, C. S., Befroy, D. E., Codella, R., Kim, S., Reznick, R. M., Hwang, Y. J., Liu, Z. X., Lee, H. Y., Distefano, A., Samuel, V. T., Zhang, D., Cline, G. W., Handschin, C., Lin, J., Petersen, K. F., Spiegelman, B. M., & Shulman, G. I. (2008). Paradoxical effects of increased expression of PGC-1alpha on muscle mitochondrial function and insulin-stimulated muscle glucose metabolism. Proceedings of the National Academy of Sciences of the United States of America, 105, 19926–19931.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Koves, T. R., Li, P., An, J., Akimoto, T., Slentz, D., Ilkayeva, O., Dohm, G. L., Yan, Z., Newgard, C. B., & Muoio, D. M. (2005). Peroxisome proliferator-activated receptor-gamma co-activator 1alpha-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency. The Journal of Biological Chemistry, 280, 33588–33598.PubMedCrossRefGoogle Scholar
  92. 92.
    Park, S. M., Byeon, S. K., Lee, H., Sung, H., Kim, I. Y., Seong, J. K., & Moon, M. H. (2017). Lipidomic analysis of skeletal muscle tissues of p53 knockout mice by nUPLC-ESI-MS/MS. Scientific Reports, 7, 3302.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Roberts, L. D., Hassall, D. G., Winegar, D. A., Haselden, J. N., Nicholls, A. W., & Griffin, J. L. (2009). Increased hepatic oxidative metabolism distinguishes the action of Peroxisome proliferator-activated receptor delta from Peroxisome proliferator-activated receptor gamma in the ob/ob mouse. Genome Medicine, 1, 115.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Wong, K. E., Mikus, C. R., Slentz, D. H., Seiler, S. E., DeBalsi, K. L., Ilkayeva, O. R., Crain, K. I., Kinter, M. T., Kien, C. L., Stevens, R. D., & Muoio, D. M. (2015). Muscle-specific overexpression of PGC-1alpha does not augment metabolic improvements in response to exercise and caloric restriction. Diabetes, 64, 1532–1543.PubMedCrossRefGoogle Scholar
  95. 95.
    Wu, C. L., Satomi, Y., & Walsh, K. (2017). RNA-seq and metabolomic analyses of Akt1-mediated muscle growth reveals regulation of regenerative pathways and changes in the muscle secretome. BMC Genomics, 18, 181.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    York, B., Reineke, E. L., Sagen, J. V., Nikolai, B. C., Zhou, S., Louet, J. F., Chopra, A. R., Chen, X., Reed, G., Noebels, J., Adesina, A. M., Yu, H., Wong, L. J., Tsimelzon, A., Hilsenbeck, S., Stevens, R. D., Wenner, B. R., Ilkayeva, O., Xu, J., Newgard, C. B., & O’Malley, B. W. (2012). Ablation of steroid receptor coactivator-3 resembles the human CACT metabolic myopathy. Cell Metabolism, 15, 752–763.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Koves, T. R., Ussher, J. R., Noland, R. C., Slentz, D., Mosedale, M., Ilkayeva, O., Bain, J., Stevens, R., Dyck, J. R., Newgard, C. B., Lopaschuk, G. D., & Muoio, D. M. (2008). Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metabolism, 7, 45–56.PubMedCrossRefGoogle Scholar
  98. 98.
    Dyar, K. A., Lutter, D., Artati, A., Ceglia, N. J., Liu, Y., Armenta, D., Jastroch, M., Schneider, S., de Mateo, S., Cervantes, M., Abbondante, S., Tognini, P., Orozco-Solis, R., Kinouchi, K., Wang, C., Swerdloff, R., Nadeef, S., Masri, S., Magistretti, P., Orlando, V., Borrelli, E., Uhlenhaut, N. H., Baldi, P., Adamski, J., Tschop, M. H., Eckel-Mahan, K., & Sassone-Corsi, P. (2018). Atlas of circadian metabolism reveals system-wide coordination and communication between clocks. Cell, 174, 1571–1585.e11.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Abbondante, S., Eckel-Mahan, K. L., Ceglia, N. J., Baldi, P., & Sassone-Corsi, P. (2016). Comparative circadian metabolomics reveal differential effects of nutritional challenge in the serum and liver. The Journal of Biological Chemistry, 291, 2812–2828.PubMedCrossRefGoogle Scholar
  100. 100.
    Adamovich, Y., Rousso-Noori, L., Zwighaft, Z., Neufeld-Cohen, A., Golik, M., Kraut-Cohen, J., Wang, M., Han, X., & Asher, G. (2014). Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides. Cell Metabolism, 19, 319–330.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Aviram, R., Manella, G., Kopelman, N., Neufeld-Cohen, A., Zwighaft, Z., Elimelech, M., Adamovich, Y., Golik, M., Wang, C., Han, X., & Asher, G. (2016). Lipidomics analyses reveal temporal and spatial lipid organization and uncover daily oscillations in intracellular organelles. Molecular Cell, 62, 636–648.PubMedCrossRefGoogle Scholar
  102. 102.
    Dyar, K. A., & Eckel-Mahan, K. L. (2017). Circadian metabolomics in time and space. Frontiers in Neuroscience, 11, 369.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Eckel-Mahan, K. L., Patel, V. R., de Mateo, S., Orozco-Solis, R., Ceglia, N. J., Sahar, S., Dilag-Penilla, S. A., Dyar, K. A., Baldi, P., & Sassone-Corsi, P. (2013). Reprogramming of the circadian clock by nutritional challenge. Cell, 155, 1464–1478.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Eckel-Mahan, K. L., Patel, V. R., Mohney, R. P., Vignola, K. S., Baldi, P., & Sassone-Corsi, P. (2012). Coordination of the transcriptome and metabolome by the circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 109, 5541–5546.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Gooley, J. J., & Chua, E. C. (2014). Diurnal regulation of lipid metabolism and applications of circadian lipidomics. Journal of Genetics and Genomics, 41, 231–250.PubMedCrossRefGoogle Scholar
  106. 106.
    Krishnaiah, S. Y., Wu, G., Altman, B. J., Growe, J., Rhoades, S. D., Coldren, F., Venkataraman, A., Olarerin-George, A. O., Francey, L. J., Mukherjee, S., Girish, S., Selby, C. P., Cal, S., Er, U., Sianati, B., Sengupta, A., Anafi, R. C., Kavakli, I. H., Sancar, A., Baur, J. A., Dang, C. V., Hogenesch, J. B., & Weljie, A. M. (2017). Clock regulation of metabolites reveals coupling between transcription and metabolism. Cell Metabolism, 25, 961–974.e4.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Sato, S., Basse, A. L., Schonke, M., Chen, S., Samad, M., Altintas, A., Laker, R. C., Dalbram, E., Barres, R., Baldi, P., Treebak, J. T., Zierath, J. R., & Sassone-Corsi, P. (2019). Time of exercise specifies the impact on muscle metabolic pathways and systemic energy homeostasis. Cell Metabolism, 30(1), 92–110.e4.PubMedCrossRefGoogle Scholar
  108. 108.
    Loizides-Mangold, U., Perrin, L., Vandereycken, B., Betts, J. A., Walhin, J. P., Templeman, I., Chanon, S., Weger, B. D., Durand, C., Robert, M., Paz Montoya, J., Moniatte, M., Karagounis, L. G., Johnston, J. D., Gachon, F., Lefai, E., Riezman, H., & Dibner, C. (2017). Lipidomics reveals diurnal lipid oscillations in human skeletal muscle persisting in cellular myotubes cultured in vitro. Proceedings of the National Academy of Sciences of the United States of America, 114, E8565–E8574.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Dyar, K. A., Ciciliot, S., Wright, L. E., Bienso, R. S., Tagliazucchi, G. M., Patel, V. R., Forcato, M., Paz, M. I., Gudiksen, A., Solagna, F., Albiero, M., Moretti, I., Eckel-Mahan, K. L., Baldi, P., Sassone-Corsi, P., Rizzuto, R., Bicciato, S., Pilegaard, H., Blaauw, B., & Schiaffino, S. (2014). Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock. Molecular Metabolism, 3, 29–41.PubMedCrossRefGoogle Scholar
  110. 110.
    Dyar, K. A., Hubert, M. J., Mir, A. A., Ciciliot, S., Lutter, D., Greulich, F., Quagliarini, F., Kleinert, M., Fischer, K., Eichmann, T. O., Wright, L. E., Pena Paz, M. I., Casarin, A., Pertegato, V., Romanello, V., Albiero, M., Mazzucco, S., Rizzuto, R., Salviati, L., Biolo, G., Blaauw, B., Schiaffino, S., & Uhlenhaut, N. H. (2018). Transcriptional programming of lipid and amino acid metabolism by the skeletal muscle circadian clock. PLoS Biology, 16, e2005886.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    DeFronzo, R. A., & Tripathy, D. (2009). Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care, 32(Suppl 2), S157–S163.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Kiens, B. (2006). Skeletal muscle lipid metabolism in exercise and insulin resistance. Physiological Reviews, 86, 205–243.PubMedCrossRefGoogle Scholar
  113. 113.
    Wolfe, R. R. (2006). The underappreciated role of muscle in health and disease. The American Journal of Clinical Nutrition, 84, 475–482.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Wagenmakers, A. J. (1998). Muscle amino acid metabolism at rest and during exercise: role in human physiology and metabolism. Exercise and Sport Sciences Reviews, 26, 287–314.PubMedCrossRefGoogle Scholar
  115. 115.
    Felig, P. (1975). Amino acid metabolism in man. Annual Review of Biochemistry, 44, 933–955.PubMedCrossRefGoogle Scholar
  116. 116.
    Argiles, J. M., Campos, N., Lopez-Pedrosa, J. M., Rueda, R., & Rodriguez-Manas, L. (2016). Skeletal muscle regulates metabolism via interorgan crosstalk: Roles in health and disease. Journal of the American Medical Directors Association, 17, 789–796.PubMedCrossRefGoogle Scholar
  117. 117.
    Pedersen, B. K., & Febbraio, M. A. (2012). Muscles, exercise and obesity: Skeletal muscle as a secretory organ. Nature Reviews Endocrinology, 8, 457–465.PubMedCrossRefGoogle Scholar
  118. 118.
    Isherwood, C. M., Van der Veen, D. R., Johnston, J. D., & Skene, D. J. (2017). Twenty-four-hour rhythmicity of circulating metabolites: Effect of body mass and type 2 diabetes. The FASEB Journal, 31, 5557–5567.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Jang, C., Chen, L., & Rabinowitz, J. D. (2018). Metabolomics and isotope tracing. Cell, 173, 822–837.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Trivedi, D. K., Hollywood, K. A., & Goodacre, R. (2017). Metabolomics for the masses: The future of metabolomics in a personalized world. New Horizons in Translational Medicine, 3, 294–305.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Kennedy, A. D., Wittmann, B. M., Evans, A. M., Miller, L. A. D., Toal, D. R., Lonergan, S., Elsea, S. H., & Pappan, K. L. (2018). Metabolomics in the clinic: A review of the shared and unique features of untargeted metabolomics for clinical research and clinical testing. Journal of Mass Spectrometry, 53, 1143–1154.PubMedCrossRefGoogle Scholar
  122. 122.
    Beger, R. D., Dunn, W., Schmidt, M. A., Gross, S. S., Kirwan, J. A., Cascante, M., Brennan, L., Wishart, D. S., Oresic, M., Hankemeier, T., Broadhurst, D. I., Lane, A. N., Suhre, K., Kastenmuller, G., Sumner, S. J., Thiele, I., Fiehn, O., Kaddurah-Daouk, R., & for “Precision Medicine, and Pharmacometabolomics Task Group”-Metabolomics Society Initiative. (2016). Metabolomics enables precision medicine: “A White Paper, Community Perspective”. Metabolomics, 12, 149.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Hood, L. (2013). Systems biology and p4 medicine: Past, present, and future. Rambam Maimonides Medical Journal, 4, e0012.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    UN. (2017). World population prospects: The 2017 revision, key findings and advance tables, edited by United Nations DoEaSA, Population division. New York: United Nations.Google Scholar
  125. 125.
    Friedrich, M. J. (2017). Global obesity epidemic worsening. JAMA, 318, 603.PubMedGoogle Scholar
  126. 126.
    Schiaffino, S., & Reggiani, C. (2011). Fiber types in mammalian skeletal muscles. Physiological Reviews, 91, 1447–1531.PubMedCrossRefGoogle Scholar
  127. 127.
    Murgia, M., Nagaraj, N., Deshmukh, A. S., Zeiler, M., Cancellara, P., Moretti, I., Reggiani, C., Schiaffino, S., & Mann, M. (2015). Single muscle fiber proteomics reveals unexpected mitochondrial specialization. EMBO Reports, 16, 387–395.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Schiaffino, S., Reggiani, C., Kostrominova, T. Y., Mann, M., & Murgia, M. (2015). Mitochondrial specialization revealed by single muscle fiber proteomics: Focus on the Krebs cycle. Scandinavian Journal of Medicine and Science in Sports, 25(Suppl 4), 41–48.PubMedCrossRefGoogle Scholar
  129. 129.
    Duncan, K. D., Fyrestam, J., & Lanekoff, I. (2019). Advances in mass spectrometry based single-cell metabolomics. Analyst, 144, 782–793.PubMedCrossRefGoogle Scholar
  130. 130.
    Kim, J., & Hoppel, C. L. (2013). Comprehensive approach to the quantitative analysis of mitochondrial phospholipids by HPLC-MS. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 912, 105–114.PubMedCrossRefGoogle Scholar
  131. 131.
    Furuichi, Y., Goto-Inoue, N., Manabe, Y., Setou, M., Masuda, K., & Fujii, N. L. (2014). Imaging mass spectrometry reveals fiber-specific distribution of acetylcarnitine and contraction-induced carnitine dynamics in rat skeletal muscles. Biochimica et Biophysica Acta, 1837, 1699–1706.PubMedCrossRefGoogle Scholar
  132. 132.
    Goto-Inoue, N., Manabe, Y., Miyatake, S., Ogino, S., Morishita, A., Hayasaka, T., Masaki, N., Setou, M., & Fujii, N. L. (2012). Visualization of dynamic change in contraction-induced lipid composition in mouse skeletal muscle by matrix-assisted laser desorption/ionization imaging mass spectrometry. Analytical and Bioanalytical Chemistry, 403, 1863–1871.PubMedCrossRefGoogle Scholar
  133. 133.
    Goto-Inoue, N., Morisasa, M., Machida, K., Furuichi, Y., Fujii, N. L., Miura, S., & Mori, T. (2019). Characterization of myofiber-type-specific molecules using mass spectrometry imaging. Rapid Communications in Mass Spectrometry, 33, 185–192.PubMedCrossRefGoogle Scholar
  134. 134.
    Tsai, Y. H., Garrett, T. J., Carter, C. S., & Yost, R. A. (2015). Metabolomic analysis of oxidative and glycolytic skeletal muscles by matrix-assisted laser desorption/ionizationmass spectrometric imaging (MALDI MSI). Journal of the American Society for Mass Spectrometry, 26, 915–923.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The American Physiological Society 2019

Authors and Affiliations

  • Kenneth Allen Dyar
    • 1
    • 2
    Email author
  • Anna Artati
    • 3
  • Alexander Cecil
    • 3
  • Jerzy Adamski
    • 2
    • 3
    • 4
    • 5
  1. 1.Division of Molecular Endocrinology, Institute for Diabetes and CancerHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH)NeuherbergGermany
  2. 2.German Center for Diabetes Research (DZD)NeuherbergGermany
  3. 3.Research Unit Molecular Endocrinology and MetabolismHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH)NeuherbergGermany
  4. 4.Lehrstuhl für Experimentelle GenetikTechnische Universität MünchenFreising-WeihenstephanGermany
  5. 5.Department of BiochemistryYong Loo Lin School of MedicineNational University of SingaporeSingapore

Personalised recommendations