Yeasts in Botrytized Wine Making

  • Matthias Sipiczki


The fungus Botrytis cinerea attacks ripening grapes in humid conditions and usually causes devastating grey rot. If humidity fluctuates (e.g. humid nights alternate with dry sunny days), the infected grapes develop a different type of rot, the benevolent “noble rot” (“pourriture noble”, Edelfäule”). Proper humidity fluctuation requires specific microclimatic conditions that are characteristic of terroirs of specific geographical locations. Many of the world’s greatest sweet wines, the so-called botrytized or Botrytis-affected wines are crafted from shriveled, mold-covered nobly rotten grapes. Upon Botrytis invasion, the berries are usually co-colonized by bacteria and yeasts whose activities modify the chemical composition of the grape juice. These microorganisms commence fermentation within the berries before harvest. The pre-harvest grape microbiota is particularly rich in non-Saccharomyces yeasts. These yeasts form then the starting microflora of the fermenting must but are gradually overgrown by strains of S. cerevisiae and S. uvarum. Some of them can persist throughout the fermentation-vinification process up to the aging phase and thus can have significant impact on the quality of the wine.


  1. Akau, H. L., Miller, K. M., Sabeh, N. C., Allen, R. G., Block, D. E., & Vander Gheynst, J. S. (2004). Production of Botrytis cinerea for potential introduction into a vineyard. Bioresource Technology, 92, 41–48.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Aleu, J., & Collado, G. I. (2001). Biotransformations by Botrytis species. Journal of Molecular Catalysis B: Enzymatic, 13, 77–93.CrossRefGoogle Scholar
  3. Alexandre, H., & Charpentier, C. (1998). Biochemical aspects of stuck and sluggish fermentation in grape must. Journal of Industrial Microbiology & Biotechnology, 21, 20–27.CrossRefGoogle Scholar
  4. Allen, H. W. (1928). The romance of tokay. London: Berry Bross.Google Scholar
  5. Andorra, I., Berradre, M., Rozes, N., Mas, A., Guillamo’n, J. M., & Esteve-Zarzoso, B. (2010). Effect of pure and mixed cultures of the main wine yeast species on grape must fermentations. European Food Research and Technology, 231, 215–224.CrossRefGoogle Scholar
  6. Antunovics, Z., Csoma, H., & Sipiczki, M. (2003). Molecular and genetic analysis of the yeast flora of botrytized Tokaj wines. Bulletin de l’OIV (Office International de la Vigne et du Vin Paris) 76: 380–397.Google Scholar
  7. Antunovics, Z., Irinyi, L., & Sipiczki, M. (2005a). Combined application of methods to taxonomic identification of Saccharomyces strains in fermenting botrytized grape must. Journal of Applied Microbiology, 98, 971–979.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Antunovics, Z., Nguyen, H.-V., Gaillardin, C., & Sipiczki, M. (2005b). Gradual genome stabilisation by progressive reduction of the S. uvarum genome in an interspecific hybrid with S. cerevisiae. FEMS Yeast Research, 5, 1141–1150.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Azzolini, M., Tosi, E., Faccio, S., Lorenzini, M., Torriani, S., & Zapparoli, G. (2013). Selection of Botrytis cinerea and Saccharomyces cerevisiae strains for the improvement and valorization of Italian passito style wines. FEMS Yeast Research, 13, 540–552.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Barata, A., Malfeito-Ferreira, M., & Loureiro, V. (2012). The microbial ecology of wine grape berries. International Journal of Food Microbiology, 153, 243–259.PubMedPubMedCentralGoogle Scholar
  11. Barbe, J.-C., de Revel, G., Joyeux, A., Bertrand, A., & Lonvaud-Funel, A. (2001). Role of botrytized grape microorganisms in SO2 binding phenomena. Journal of Applied Microbiology, 90, 34–42.PubMedCrossRefGoogle Scholar
  12. Bataillon, M., Rico, A., Sablayrolles, J. M., Salmon, J. M., & Barre, P. (1996). Early thiamine assimilation by yeasts under enological conditions: Impact on alcoholic fermentation kinetics. Journal of Fermentation and Bioengineering, 82, 145–150.CrossRefGoogle Scholar
  13. Bely, M., Rinaldi, A., & Dubourdieu, D. (2003). Influence of asssimilable nitrogen on volatile acidity production by Saccharomyces cerevisiae during high sugar fermentation. Journal of Bioscience and Bioengineering, 96, 507–512.CrossRefGoogle Scholar
  14. Bely, M., Masneuf-Pomerede, I., & Dubourdieu, D. (2005). Influence of physiological state of inoculum on volatile acidity production by Saccharomyces cerevisiae during high sugar fermentation. Journal International des sciences de la vigne et du vin, 39, 191–197.Google Scholar
  15. Bely, M., Stoeckle, P., Masneuf-Pomarede, I., & Dubourdieu, D. (2008). Impact of mixed Torulaspora delbrueckiiSaccharomyces cerevisiae culture on high-sugar fermentation. International Journal of Food Microbiology, 122, 312–320.CrossRefGoogle Scholar
  16. Benda, I. (1988). Untersuchungen zur Frage der Fruktofilie und Osmotoleranz bei der Hefeart Candida stellata (syn. Torulopsis stellata). Mitt Klosterneuburg, 38, 60–65.Google Scholar
  17. Bene, Z., & Magyar, I. (2002). Study of the yeast and mould biota of the botrytized grapes in Tokaj region in two years. International Journal of Horticultural Science, 8, 61–65.CrossRefGoogle Scholar
  18. Bene, Z., & Magyar, I. (2004). Characterization of yeast and mould biota of botrytized grapes in Tokaj wine region in the years 2000 and 2001. Acta Alimentaria, 33, 259–267.CrossRefGoogle Scholar
  19. Berthels, N. J., Cordero Otero, R. R., Bauer, F. F., Thevelein, J. M., & Pretorius, I. S. (2004). Discrepancy in glucose and fructose utilisation during fermentation by Saccharomyces cerevisiae wine yeast strains. FEMS Yeast Research, 4, 683–689.PubMedCrossRefGoogle Scholar
  20. Bisson, L. F. (1999). Stuck and sluggish fermentations. American Journal of Enology and Viticulture, 50, 107–119.Google Scholar
  21. Bisson, L. F., & Joseph, C. M. L. (2009). Yeasts. In H. König, G. Unden, & J. Fröhlich (Eds.), Biology of microorganisms on grapes, in must and in wine (pp. 45–60). Berlin: Springer-Verlag.Google Scholar
  22. Blanco-Ulate, B., Amrine, K. C., Collins, T. S., Rivero, R. M., Vicente, A. R., Morales-Cruz, A., Doyle, C. L., Ye, Z., Allen, G., Heymann, H., Ebeler, S. E., & Cantu, D. (2015). Developmental and metabolic plasticity of white-skinned grape berries in response to Botrytis cinerea during noble rot. Plant Physiology, 169, 2422–2443.PubMedPubMedCentralGoogle Scholar
  23. Bokulich, N. A., Hwang, C. F., Liu, S., Boundy-Mills, K. L., & Mills, D. A. (2012a). Profiling the yeast communities of wine fermentations using terminal restriction fragment length polymorphism analysis. American Journal of Enology and Viticulture, 63, 185–194.CrossRefGoogle Scholar
  24. Bokulich, N. A., Joseph, C. M., Allen, G., Benson, A. K., & Mills, D. A. (2012b). Next-generation sequencing reveals significant bacterial diversity of botrytized wine. PLoS One, 7, e36357.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Börlin, M., Venet, P., Claisse, O., Salin, F., Legras, J. L., & Masneuf-Pomarede, I. (2016). Cellar-associated Saccharomyces cerevisiae population structure revealed high-level diversity and perennial persistence at sauternes wine estates. Applied and Environmental Microbiology, 82, 2909–2918.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Brysch-Herzberg, M., & Seidel, M. (2015). Yeast diversity on grapes in two German wine growing regions. International Journal of Food Microbiology, 214, 137–144.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Cabral, S., Prista, C., Loureiro-Dias, M. C., & Leandro, M. J. (2015). Occurrence of FFZ genes in yeasts and correlation with fructophilic behaviour. Microbiology, 161, 2008–2018.PubMedCrossRefGoogle Scholar
  28. Charoenchai, C., Fleet, G. H., & Henschke, P. A. (1998). Effects of temperature, pH, and sugar concentration on the growth rates and cell biomass of wine yeasts. American Journal of Enology and Viticulture, 49, 283–288.Google Scholar
  29. Ciani, M., Comitini, F., Mannazzu, I., & Domizio, P. (2010). Controlled mixed culture fermentation: A new perspective on the use of non-Saccharomyces yeasts in winemaking. FEMS Yeast Research, 10, 123–133.PubMedCrossRefGoogle Scholar
  30. Cocolin, L., & Mills, D. A. (2003). Wine yeast inhibition by Sulphur dioxide: A comparison of culture-dependent and independent methods. American Journal of Enology and Viticulture, 54, 125–130.Google Scholar
  31. Cocolin, L., Heisy, A., & Mills, D. A. (2001). Direct identification of the indigenous yeasts in commercial wine fermentations. American Journal of Enology and Viticulture, 52, 49–53.Google Scholar
  32. Combina, M., Elia, A., Mercado, L., Catania, C., Ganga, A., & Martinez, C. (2005). Dynamics of indigenous yeast populations during spontaneous fermentation of wines from Mendoza, Argentina. International Journal of Food Microbiology, 99, 237–243.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Cordero-Bueso, G., Arroyo, T., Serrano, A., Tello, J., Aporta, I., Velez, M. D., & Valero, E. (2011). Influence of the farming system and vine variety on yeast communities associated with grape berries. International Journal of Food Microbiology, 145, 132–139.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Csoma, H., & Sipiczki, M. (2003). Investigation of the yeast microflora of “Tokaj essence” 1st FEMS Congress of European Microbiologists, Ljubljana, Abstract Book p. 213.Google Scholar
  35. Csoma, H., & Sipiczki, M. (2007). Taxonomic investigation of the yeast biota of botrytized crapes and “Essence” in the Tokaj wine region. 8th International Enology Symposium, Bordeaux, Book of Abstracts, p.: 174.Google Scholar
  36. Csoma, H., & Sipiczki, M. (2008). Taxonomic reclassification of Candida stellata strains reveals frequent occurrence of Candida zemplinina in wine fermentation. FEMS Yeast Research, 8, 328–336.PubMedCrossRefGoogle Scholar
  37. Csoma, H., Acs-Szabo, L., Papp, L. A., & Sipiczki, M. (2018). Application of different markers and data-analysis tools to the examination of biodiversity can lead to different results: A case study with Starmerella bacillaris (synonym Candida zemplinina) strains. FEMS Yeast Research (in press), 18.Google Scholar
  38. Cuevas, O., & Hanson, J. R. (1977). Norbotryal acetate, a norsesquiterpenoid aldehyde from Botrytis cinerea. Phytochemistry, 16, 1061–1062.CrossRefGoogle Scholar
  39. Daniel, H. M., Lachance, M. A., & Kurtzman, C. P. (2014). On reclassification of species assigned to Candida and other anamorphic ascomycetous yeast genera based on phylogenetic circumscription. Antonie Van Leeuwenhoek, 106, 67–84.PubMedCrossRefGoogle Scholar
  40. Di Maio, S., Genna, G., Gandolfo, V., Amore, G., Ciaccio, M., & Oliva, D. (2012). Presence of Candida zemplinina in Sicilian musts and selection of a strain for wine mixed fermentations. South African Journal of Enology and Viticulture, 33, 80–87.Google Scholar
  41. Dittrich, H. H., Sponholz, W. R., & Kast, W. (1974). Vergleichende Untersuchungen von Mosten und Weinen aus gesunden und aus Botrytis-infizierten Traubenbeeren. I. Säurestoffwechsel, Zuckerstoffwechselprodukte, Leucoanthocyangehalte. Vitis, 13, 36–49.Google Scholar
  42. Dittrich, H. H., Sponholz, W. R., & Göbel, H. G. (1975). Vergleichende Untersuchungen von Mosten und Weinen aus gesunden und aus Botrytis-infizierten Traubenbeeren. II. Modelversuche zur Veränderungen des Mostes durch Botrytis-Infection und ihre Konsequenzen für die Nebenproduktbildung bei der Gärung. Vitis, 13, 336–347.Google Scholar
  43. Divol, B., & Lonvaud-Funel, A. (2005). Evidence for viable but nonculturable yeasts in Botrytis-affected wine. Journal of Applied Microbiology, 99, 85–93.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Divol, B., Strehaiano, P., & Lonvaud-Funel, A. (2005). Effectiveness of dimethyldicarbonate to stop alcoholic fermentation in wine. Food Microbiology, 22, 169–178.CrossRefGoogle Scholar
  45. Divol, B., Miot-Sertier, C., & Lonvaud-Funel, A. (2006). Genetic characterization of strains of Saccharomyces cerevisiae responsible for “refermentation” in Botrytis-affected wines. Journal of Applied Microbiology, 100, 516–526.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Doneche, B. J. (1993). Botrytized wines. In G. H. Fleet (Ed.), Wine microbiology and biotechnology (pp. 327–351). Philadelphia: Harwood Academic Publishers.Google Scholar
  47. Drysdale, G. S., & Fleet, G. H. (1989). The effect of acetic acid bacteria upon the growth and metabolism of yeast during the fermentation of grape juice. The Journal of Applied Bacteriology, 67, 471–481.CrossRefGoogle Scholar
  48. du Plessis, H. W., du Toit, M., Hoff, J. W., Hart, R. S., Ndimba, B. K., & Jolly, N. P. (2017). Characterisation of non-Saccharomyces yeasts using different methodologies and evaluation of their compatibility with malolactic fermentation. South African Journal of Enology and Viticulture, 38, 45–63.CrossRefGoogle Scholar
  49. Duarte, F. L., Pimentel, N. H., Teixeira, A., & Fonseca, A. (2012). Saccharomyces bacillaris is not a synonym of Candida stellata: Reinstatement as Starmerella bacillaris comb. nov. Antonie Van Leeuwenhoek, 102, 653–658.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Dubourdieu, D. (1999). La vinification des vins liquoreux de pourriture noble. Rev Fr Oenologie, 176, 32–35.Google Scholar
  51. Duhail, C., Rousseau, S., l’Hyvernay, A., & Doneche, B. (1999). Nouvelles acquisitions concernant l’obtention d’une pourriture de qualité et la vinification de vendanges botrytisées. Revue Française d’Œnologie, 176, 28–31.Google Scholar
  52. Elad, Y., Williamson, B., Tudzynski, P., & Delen, N. (2004). Botrytis: biology, pathology and control. Bordrecht: Kluyver Academic Publisher.Google Scholar
  53. Englezos, V., Rantsiou, K., Torchio, F., Rolle, L., Gerbi, V., & Cocolin, L. (2015). Exploitation of the non-Saccharomyces yeast Starmerella bacillaris (synonym Candida zemplinina) in wine fermentation: Physiological and molecular characterizations. International Journal of Food Microbiology, 199, 33–40.CrossRefGoogle Scholar
  54. Fehlaber, H. W., Geipel, R., Mercker, H. J., Tschesche, R., & Welmar, K. (1974). Botrydial, ein Antibiotikum aus der Nährlösung des Pilzes Botrytis cinerea. Chemische Berichte, 107, 1720–1724.CrossRefGoogle Scholar
  55. Fleet, G. H. (1990). Which yeast species really conducts the fermentation? In P. J. Williams, D. M. Davidson, & T. H. Lee (Eds.), Proc 7th Aust Wine Ind Tech Conf Adelaide (pp. 153–156).Google Scholar
  56. Fleet, G. H., Lafon-Lafourcade, S., & Ribéreau-Gayon, P. (1984). Evolution of yeasts and lactic acid bacteria during fermentation and storage of Bordeaux wines. Applied and Environmental Microbiology, 48, 1034–1038.PubMedPubMedCentralGoogle Scholar
  57. Fleet, G. H., Prakitchaiwattana, C., Beh, A. L., & Heard, G. (2002). The yeast ecology of wine grapes. In M. Ciani (Ed.), Biodiversity and biotechnology of wine yeasts (pp. 1–17). Kerala: Research Signpost.Google Scholar
  58. Francesca, N., Canale, D. E., Settanni, L., & Moschetti, G. (2012). Dissemination of wine-related yeasts by migratory birds. Environmental Microbiology Reports, 4, 105–112.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Frezier, V., & Dubourdieu, D. (1992). Ecology of yeast strains Saccharomyces cerevisiae during spontaneous fermentation in Bordeaux winery. American Journal of Enology and Viticulture, 43, 375–380.Google Scholar
  60. Fugelsang, K. C. (1997). Wine microbiology. New York: Chapman and Hall.CrossRefGoogle Scholar
  61. Gafner, J., & Schütz, M. (1996). Impact of glucose-fructose ratio on stuck fermentations: Practical experiences to restart stuck fermentations. Wine-Wissenschaft, 51, 214–218.Google Scholar
  62. Gafner, J., Hoffmann-Boller, P., Porret, N. A., & Pulver, D. (2000). Restarting sluggish and stuck fermentations (2nd ed.). Cape Town: International Viticulture and Enology Congress.Google Scholar
  63. Gangl, H., Leitner, G., Tiefenbrunner, W., & Redl, H. (2004). Die Induktion der Edelfäule (Botrytis cinerea Pers.) mittels einer Sporensuspension im Freiland. Mitt Klosterneuburg, 54, 214–222.Google Scholar
  64. Gao, C., & Fleet, G. H. (1988). The effects of temperature and pH on ethanol tolerance of the wine yeasts Saccharomyces cerevisiae, Candida stellata and Kloeckera apiculata. The Journal of Applied Bacteriology, 65, 405–409.CrossRefGoogle Scholar
  65. Gottschalk, A. (1946). The mechanism of selective fermentation of D-fructose from invert sugar by sauternes yeast. The Biochemical Journal, 40, 621–626.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Greger, M. (1881). Notes on the pure or natural wines of Hungary, their properties and uses. London: Max Gregor, Ltd.Google Scholar
  67. Guijo, S., Millan, C., & Ortega, J. M. (1986). Fermentative features of vinification and maturation yeast isolated in the Montilla-Moriles region of Southern Spain. Food Microbiology, 3, 133–142.CrossRefGoogle Scholar
  68. Holloway, P., Subden, R. E. (1991). Volatile metabolites produced in a Riesling must by wild yeasts. Canadian Institute of Food Science and Technology Journal, 24, 57–59.CrossRefGoogle Scholar
  69. Hong, Y. S., Cilindre, C., Liger-Belair, G., Jeandet, P., Hertkorn, N., & Schmitt-Kopplin, P. (2011). Metabolic influence of Botrytis cinerea infection in champagne base wine. Journal of Agricultural and Food Chemistry, 59, 7237–7245.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Ingledew, W. M., & Kunkee, R. E. (1985). Factors influencing sluggish fermentations of grape juice. American Journal of Enology and Viticulture, 36, 65–75.Google Scholar
  71. Jackson, R. S. (2000). Wine science: Principle, practice, perception. San Diego: Academic.Google Scholar
  72. Jolly, N. P., Augustyn, O. P. H., & Pretorius, I. S. (2003). The effect of non-Saccharomyces yeasts on fermentation and wine quality. South African Journal of Enology and Viticulture, 24, 55–62.Google Scholar
  73. Jolly, N. P., Augustyn, O. P. H., & Pretorius, I. S. (2006). The role and use of non-Saccharomyces yeasts in wine production. South African Journal of Enology and Viticulture, 27, 15–39.Google Scholar
  74. Joyeux, A., Lafon-Lafourcade, S., & Ribereau-Gayon, P. (1984). Evolution of acetic acid bacteria during fermentation and storage of wine. Applied and Environmental Microbiology, 48, 153–156.PubMedPubMedCentralGoogle Scholar
  75. Kalmar, Z. P., Miklosy, E., Polos, V., & Kerenyi, Y. (1999). Les effets de la qualité des grains et les différents modes de vinification sur la constitution des vins d’aszu de Tokajhegyalja. Œnologie 99, 6e Symposium international d’œnologie. Proceedings, pp. 191–195.Google Scholar
  76. Karanyicz, E., Antunovics, Z., Kallai, Z., & Sipiczki, M. (2017). Non-introgressive genome chimerisation by malsegregation in autodiploidised allotetraploids during meiosis of Saccharomyces kudriavzevii x Saccharomyces uvarum hybrids. Applied Microbiology and Biotechnology, 101, 4617–4633.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Kroemer, K., & Krumbholz, G. (1931). Untersuchungen über osmophile Sprosspilze. Archiv für Mikrobiologie, 2, 352–410.CrossRefGoogle Scholar
  78. Kurtzman, C. P., & Droby, S. (2001). Metschnikowia fructicola, a new ascosporic yeast with potential for biocontrol of postharvest fruit rots. Systematic and Applied Microbiology, 24, 395–399.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Ky, I., Lorrain, B., Jourdes, M., Pasquier, G., & Fermau, M. (2012). Assessment of grey mould (Botrytis cinerea) impact on phenolic and sensory quality of Bordeaux grapes, musts and wines for two consecutive vintages. Australian Journal of Grape and Wine Research, 18, 215–226.CrossRefGoogle Scholar
  80. Lachance, M. A. (2011). Metschnikowia Kamienski (1899). In C. P. Kurtzman, J. W. Fell, & T. Boekhout (Eds.), The yeasts, a taxonomic study (pp. 575–619). San Diego: Elsevier.CrossRefGoogle Scholar
  81. Laffon-Lafourcade, S., Lucmaret, V., Joyeux, A., & Ribéreau-Gayon, P. (1981). Utilisation de levains mixtes dans l’élaboration des vins de pourriture noble, en vue de réduire l’acidité volatile. Comptes Rendus de l’Académie d’Agriculture de France 67: 616–622.Google Scholar
  82. Lafon-Lafourcade, S., Larue, F., & Ribereau-Gayon, P. (1979). Evidence for the existence of “Survival Factors” as an explanation for some peculiarities of yeast growth, especially in grape must of high sugar concentration. Applied and Environmental Microbiology, 38, 1069–1073.PubMedPubMedCentralGoogle Scholar
  83. Lafon-Lafourcade, S., Geneix, C., & Ribéreau-Gayon, P. (1984). Inhibition of alcoholic fermentation of grape must by fatty acids produced by yeasts and their elimination by yeast ghosts. Applied and Environmental Microbiology, 47, 1246–1249.PubMedPubMedCentralGoogle Scholar
  84. Lam, S. S., & Howell, K. S. (2015). Drosophila-associated yeast species in vineyard ecosystems. FEMS Microbiology Letters, 362, fnv170.PubMedCrossRefGoogle Scholar
  85. Le Roux, G., Eschenbruch, R., & De Bruin, S. I. (1973). The microbiology of South African wine making. Part VIII – The microflora of healthy and Botrytis cinerea infected grapes. Phytophylactica, 5, 51–54.Google Scholar
  86. Lemos, W. J., Jr., Bovo, B., Nadai, C., Crosato, G., Carlot, M., Favaron, F., Giacomini, A., & Corich, V. (2016). Biocontrol ability and action mechanism of Starmerella bacillaris (Synonym Candida zemplinina) isolated from wine musts against gray mold disease agent Botrytis cinerea on grape and their effects on alcoholic fermentation. Frontiers in Microbiology, 7, 1249.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Llaurado, J., Rozes, N., Bobet, R., Mas, A., & Constanti, M. (2002). Low temperature alcoholic fermentations in high sugar concentration grape musts. Journal of Food Science, 67, 268–273.CrossRefGoogle Scholar
  88. Lopandic, K., Pfliegler, W. P., Tiefenbrunner, W., Gangl, H., Sipiczki, M., & Sterflinger, K. (2016). Genotypic and phenotypic evolution of yeast interspecies hybrids during high-sugar fermentation. Applied Microbiology and Biotechnology, 100, 6331–6343.PubMedCrossRefGoogle Scholar
  89. Lorenzini, M., Azzolini, M., Tosi, E., & Zapparoli, G. (2013). Postharvest grape infection of Botrytis cinerea and its interactions with other moulds under withering conditions to produce noble-rotten grapes. Journal of Applied Microbiology, 114, 762–770.PubMedCrossRefGoogle Scholar
  90. Loureiro, V., & Malfeito-Ferreira, M. (2003). Spoilage yeasts in the wine industry (review). International Journal of Food Microbiology, 86, 23–50.PubMedCrossRefGoogle Scholar
  91. Magyar, I. (1996). Study of the yeast flora of Tokaj wine district. 11th International oenological symposium, Sopron, Hungary proceedings, pp 30–40.Google Scholar
  92. Magyar, I. (2011). Botrytized wines. Advances in Food and Nutrition Research, 63, 147–206.PubMedCrossRefPubMedCentralGoogle Scholar
  93. Magyar, I., & Bene, Z. (2006). Morphological and taxonomic study on mycobiota of noble rotted grapes in the Tokaj wine district. Acta Alimentaria, 35, 237–246.CrossRefGoogle Scholar
  94. Magyar, I., & Soos, J. (2016). Botrytized wines – Current perspectives. International Journal of Wine Research, 8, 29–39.CrossRefGoogle Scholar
  95. Magyar, I., & Tóth, T. (2011). Comparative evaluation of some oenological properties in wine strains of Candida stellata, Candida zemplinina, Saccharomyces uvarum and Saccharomyces cerevisiae. Food Microbiology, 28, 94–100.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Magyar, I., Toth, T., & Pomazi, A. (2008). Oenological characterization of indigenous yeasts involved in fermentation of Tokaji aszu. Bulletin de l’OIV, 81, 35–43.Google Scholar
  97. Magyar, D., Kallai, Z., Sipiczki, M., Dobolyi, C., Sebok, F., Beregszaszi, T., Bihari, Z., Kredics, L., & Oros, G. (2017). Survey of viable airborne fungi in wine cellars of Tokaj, Hungary. Aerobiologia (in press).Google Scholar
  98. Marsit, S., & Dequin, S. (2015). Diversity and adaptive evolution of Saccharomyces wine yeast: A review. FEMS Yeast Research, 15, fov067.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Martinez, P., Valcarcel, M., Perez, L., & Benitez, T. (1998). Metabolism of Saccharomyces cerevisiae flor yeasts during fermentation and biological aging of fino sherry: By-products and aroma compounds. American Journal of Enology and Viticulture, 49, 240–250.Google Scholar
  100. Masneuf, I., & Dubourdieu, D. (2000). Rôle de la souche de levures sur les combinaisons du dioxyde de soufre des vins issus de raisins botrytisés et passerillés. Journal International des Sciences de la vigne et du vin International Journal of Vine and Wine Sciences, 34, 27–32.Google Scholar
  101. Masneuf-Pomarede, I., Le Jeune, C., Durrens, P., Lollier, M., Aigle, M., & Dubourdieu, D. (2007). Molecular typing of wine strains Saccharomyces bayanus var. uvarum using microsatellite markers. Systematic and Applied Microbiology, 30, 75–82.PubMedCrossRefGoogle Scholar
  102. Masneuf-Pomarede, I., Bely, M., Marullo, P., Lonvaud-Funel, A., & Dubourdieu, D. (2010). Reassessment of phenotypic traits for Saccharomyces bayanus var. uvarum wine yeast strains. International Journal of Food Microbiology, 139, 79–86.PubMedCrossRefGoogle Scholar
  103. Masneuf-Pomarede, I., Juquin, E., Miot-Sertier, C., Renault, P., Laizet, Y., Salin, F., Alexandre, H., Capozzi, V., Cocolin, L., Colonna-Ceccaldi, B., Englezos, V., Girard, P., Gonzalez, B., Lucas, P., Mas, A., Nisiotou, A., Sipiczki, M., Spano, G., Tassou, C., Bely, M., & Albertin, W. (2015). The yeast Starmerella bacillaris (synonym Candida zemplinina) shows high genetic diversity in winemaking environments. FEMS Yeast Research, 15, fov045.PubMedCrossRefGoogle Scholar
  104. Masneuf-Pomarede, I., Salin, F., Borlin, M., Coton, E., Coton, M., Le Jeure, C., & Legras, J.-L. (2016). Microsatellite analysis of Saccharomyces uvarum diversity. FEMS Yeast Research, 16, fov002.CrossRefGoogle Scholar
  105. Miki, T., Ito, Y., Kuroha, K., Izawa, S., & Shinohara, T. (2008). Potential of yeasts isolated in botrytized grape juice to be new wine yeasts. Food Science and Technology Research, 14, 345–350.CrossRefGoogle Scholar
  106. Miklos, I., Sipiczki, M., & Benko, Z. (1994). Osmotolerant yeasts isolated from Tokaj wines. Journal of Basic Microbiology, 34(6), 379–385.PubMedCrossRefGoogle Scholar
  107. Mills, D. A., Johannsen, E. A., & Cocolin, L. (2002). Yeast diversity and persistence in Botrytis-affected wine fermentations. Applied and Environmental Microbiology, 68, 4884–4893.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Minarik, E. (1965). Ecology of natural species of wine yeasts in Czechoslovakia. Mikrobiologija (Beograd), 20, 29–37.Google Scholar
  109. Minarik, E. (1969). Zur Ökologie von Hefen und hefeartigen Mikroorganismen sekundärer Standorte im Tokayer Weinbaugebiet. Mitt Klosterneuburg, 19, 40–45.Google Scholar
  110. Minarik, E. (1983). Zur Aktivierung der alkoholischen Gärung zuckerreicher Moste. Wein-Wissenschaft, 38, 202–209.Google Scholar
  111. Minarik, E. (1986). Zur Aktivierung der alkoholischen Gärung schwer vergärbarer Moste durch Hefezellwände. Mitt Klosterneuburg, 36, 194–197.Google Scholar
  112. Minarik, E., & Laho, L. (1962). Die Hefen des Tokayer Weinbaugebietes. Mitt Klosterneuburg, 12A, 7–10.Google Scholar
  113. Minarik, E., & Nagyova, M. (1964). Microflora of sweet tokay wines. Kvasny Prum, 10, 40–42.CrossRefGoogle Scholar
  114. Minárik, E., Emeriaud, M., & Jungova, O. (1977). Importance of preferential glucose and fructose fermentation by wine yeast for natural sweet wines. Kvasny Prum, 23, 281–284.CrossRefGoogle Scholar
  115. Minarik, E., Jungova, E., & Emeriaud, M. (1978). Fruktophile Hefen und deren Einfluss auf süsse Naturweine. Wein-Wissenschaft, 33, 42–47.Google Scholar
  116. Moore, K. J., Johnson, M. G., & Morris, J. R. (1988). Indigenous yeast microflora on Arkansas white Riesling (Vitis vinifera) grapes and in model systems. Journal of Food Science, 53, 1725–1728.CrossRefGoogle Scholar
  117. Morales, L., & Dujon, B. (2012). Evolutionary role of interspecies hybridisation and genetic exchange in yeasts. Microbiology and Molecular Biology Reviews, 76, 721–739.PubMedCrossRefPubMedCentralGoogle Scholar
  118. Mortimer, R., & Polsinelli, M. (1999). On the origin of wine yeast. Research in Microbiology, 150, 199–204.PubMedCrossRefPubMedCentralGoogle Scholar
  119. Müller-Thurgau, H. (1888). Die Edelfäule der Trauben. Landw Jbr, 17, 83–90.Google Scholar
  120. Naumov, G.I. (1996) Genetic identification of biological species in the Saccharomyces sensu stricto complex. Journal of Industrial Microbiology, 17, 295–302.CrossRefGoogle Scholar
  121. Naumov, G. I. (2000). Saccharomyces bayanus var. uvarum comb. nov., a new variety established by genetic analysis. Microbiologiya, 69, 410–414.Google Scholar
  122. Naumov, G. I., Masneuf, I., Naumova, E. S., Aigle, M., & Dubourdieu, D. (2000). Association of Saccharomyces bayanus var. uvarum with some French wines: Genetic analysis of yeast populations. Research in Microbiology, 151, 683–691.PubMedCrossRefGoogle Scholar
  123. Naumov, G. I., Naumova, E. S., Antunovics, Z., & Sipiczki, M. (2002). Saccharomyces bayanus var. uvarum in Tokaj wine-making of Slovakia and Hungary. Applied Microbiology and Biotechnology, 59, 727–730.PubMedCrossRefGoogle Scholar
  124. Naumov, G. I., Naumova, E. S., Martynenko, N. N., & Masneuf-Pomarede, I. (2011). Taxonomy, ecology, and genetics of the yeast Saccharomyces bayanus: A new object for science and practice. Microbiology, 80, 735–742.CrossRefGoogle Scholar
  125. Naumova, E. S., Naumov, G. I., Barrio, E., & Querol, A. (2010). Mitochondrial DNA polymorphism of the yeast Saccharomyces bayanus var. Uvarum. Mikrobiologiya, 79, 543–550.Google Scholar
  126. Negri, S., Lovato, A., Boscaini, F., Salvetti, E., Torriani, S., Commisso, M., Danzi, R., Ugliano, M., Polverari, A., Tornielli, G. B., & Guzzo, F. (2017). The induction of noble rot (Botrytis cinerea) infection during postharvest withering changes the metabolome of grapevine berries (Vitis vinifera L., cv. Garganega). Frontiers in Plant Science, 8, 1002.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Nelson, K. E., & Amerine, M. A. (1956). Use of Botrytis cinerea for the production of sweet table wines. American Journal of Enology and Viticulture, 7, 131–136.Google Scholar
  128. Nelson, K. E., & Amerine, M. A. (1957). The use of Botrytis cinerea Pers. in the production of sweet table wines. Hilgardia, 26, 521–563.CrossRefGoogle Scholar
  129. Nguyen, H. V., Lepingle, A., & Gaillardin, C. (2000). Molecular typing demonstrates homogeneity of Saccharomyces uvarum strains and reveals the existence of hybrids between S. uvarum and S. cerevisiae, including the S. bayanus type strain CBS380. Systematic and Applied Microbiology, 23, 71–85.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Nisiotou, A. A., Spiropoulos, A. E., & Nychas, G. J. E. (2007). Yeast community structures and dynamics in healthy and Botrytis-affected grape must fermentations. Applied and Environmental Microbiology, 73, 6705–6713.PubMedPubMedCentralCrossRefGoogle Scholar
  131. Pérez-Través, L., Lopes, C. A., Barrio, E., & Querol, A. (2014). Stabilization process in Saccharomyces intra and interspecific hybrids in fermentative conditions. International Microbiology, 17, 213–224.PubMedGoogle Scholar
  132. Pfliegler, W. P., & Sipiczki, M. (2016). Does fingerprinting truly represent the diversity of wine yeasts? A case study with interdelta genotyping of Saccharomyces cerevisiae strains. Letters in Applied Microbiology, 63, 406–411.PubMedCrossRefGoogle Scholar
  133. Pfliegler, W. P., Antunovics, Z., & Sipiczki, M. (2012). Double sterility barrier between Saccharomyces species and its breakdown in allopolyploid hybrids by chromosome loss. FEMS Yeast Research, 12, 703–718.PubMedCrossRefGoogle Scholar
  134. Pfliegler, W. P., Horvath, E., Kallai, Z., & Sipiczki, M. (2014). Diversity of Candida zemplinina isolates inferred from RAPD, micro/minisatellite and physiological analysis. Microbiological Research, 169, 402–410.PubMedCrossRefGoogle Scholar
  135. Preobrazhenskii, A. A. (1947). Methods of artificial inoculation of grapes with Botrytis cinerea for the production of Shato-Ikem wine. Akademiya Nauk, Biokhemiya Vinodeliya, 1, 77–97.Google Scholar
  136. Pucheu-Planté, B., & Mercier, M. (1983). Étude ultrastructurale de l’interrelation hôte-parasite entre le raisin et le champignon Botrytis cinerea: Example de la pourriture noble en Sauternais. Canadian Journal of Botany, 61, 1785–1797.CrossRefGoogle Scholar
  137. Pulvirenti, A., Nguyen, H. V., Caggia, C., Guidici, P., Rainieri, S., & Zambonelli, C. (2000). Saccharomyces uvarum, a proper species within Saccharomyces sensu stricto. FEMS Microbiology Letters, 192, 191–196.PubMedCrossRefGoogle Scholar
  138. Rantsiou, K., Dolci, P., Giacosa, S., Torchio, F., Tofalo, R., Torriani, S., Suzzi, G., Rolle, L., & Cocolin, L. (2012). Candida zemplinina can reduce acetic acid produced by Saccharomyces cerevisiae in sweet wine fermentations. Applied and Environmental Microbiology, 78, 1987–1994.PubMedPubMedCentralCrossRefGoogle Scholar
  139. Rapp, A., & Reuther, K. H. (1971). Der Gehalt an freien Aminosäuren in Traubenmosten von gesunden und edelfaulen Beeren verschiedener Rebesorten. Vitis, 10, 51–58.Google Scholar
  140. Reed, G., & Nagodawithana, T. W. (1988). Technology of yeast usage in winemaking. American Journal of Enology and Viticulture, 39, 83–90.Google Scholar
  141. Rementeria, A., Rodriguez, J. A., Cadaval, A., Amenabar, R., Muguruza, J. R., Hernendo, F. L., et al. (2003). Yeast associated with spontaneous fermentations of white wines from the “Txakoli de Bizkaia” region (Basque Country, North Spain). International Journal of Food Microbiology, 86, 201–207.PubMedCrossRefPubMedCentralGoogle Scholar
  142. Ribéreau-Gayon, P., Lafon-Lafourcade, S., Dubourdieu, D., Lucmaret, V., & Larue, F. (1979). Métabolisme de Saccharomyces cerevisiae dans les moûts de raisins parasites par Botrytis cinerea. Inhibition de la fermentation: formation d’acide acétique et de glycerol. Comptes Rendus de l'Académie des Sciences, 289, 441–444.Google Scholar
  143. Ribéreau-Gayon, P., Dubourdieu, D., Donéche, B., & Lonvoud, A. (2000). Handbook of enology. In The microbiology of wine and vinifications (Vol. 1). Chichester: Wiley.Google Scholar
  144. Romano, P. (2002). Role of apiculate yeasts on organoleptic characteristics of wine. In M. Ciani (Ed.), Biodiversity and biotechnology of wine yeasts (pp. 99–109). Kerala: Research Signpost.Google Scholar
  145. Romano, P., & Suzzi, G. (1993). Potential use of Zygosaccharomyces species in winemaking. Journal of Wine Research, 4, 87–94.CrossRefGoogle Scholar
  146. Romano, P., Suzzi, G., Domizio, P., & Fatichenti, F. (1997). Secondary products formation as a tool for discriminating non-Saccharomyces wine strains. Antonie Van Leeuwenhoek, 71, 239–242.PubMedCrossRefPubMedCentralGoogle Scholar
  147. Romboli, Y., Mangani, S., Buscioni, G., Granchi, L., & Vincenzini, M. (2015). Effect of Saccharomyces cerevisiae and Candida zemplinina on quercetin, vitisin a and hydroxytyrosol contents in Sangiovese wines. World Journal of Microbiology and Biotechnology, 31, 1137–1145.PubMedCrossRefGoogle Scholar
  148. Rosini, G., Federici, F., & Martini, A. (1982). Yeast flora of grape berries during ripening. Microbial Ecology, 8, 83–89.PubMedCrossRefPubMedCentralGoogle Scholar
  149. Sadoudi, M., Tourdot-Maréchal, R., Rousseaux, S., Steyer, D., Gallardo-Chacon, J. J., Ballester, J., Vichi, S., Guerin-Schneider, R., Caixach, J., & Alexandre, H. (2012). Yeast-yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts. Food Microbiology, 32, 243–253.PubMedCrossRefPubMedCentralGoogle Scholar
  150. Salvetti, E., Campanaro, S., Campedelli, I., Fracchetti, F., Gobbi, A., Tornielli, G. B., Torriani, S., & Felis, G. E. (2016). Whole-metagenome-sequencing-based community profiles of Vitis vinifera L. cv. Corvina berries withered in two post-harvest conditions. Frontiers in Microbiology, 7, 937.PubMedPubMedCentralCrossRefGoogle Scholar
  151. Schütz, M., & Gafner, J. (1995). Lower fructose uptake capacity of genetically characterized strains of Saccharomyces bayanus compared to strains of Saccharomyces cerevisiae: A likely cause of reduced alcoholic fermentation activity. American Journal of Enology and Viticulture, 46, 175–180.Google Scholar
  152. Shimizu, Y., & Watanabe, M. (1981). Effects of yeast strains and environmental conditions on formation of organic acids in must during fermentation. Journal of Fermentation Technology, 59, 27–32.Google Scholar
  153. Sipiczki, M. (2001). Characterisation of Candida stellata strains isolated from botrytized grapes and wines in Tokaj. 21st international specialized symposium on yeasts. Lviv. Book of Abstracts p. 61.Google Scholar
  154. Sipiczki, M. (2002). Taxonomic and physiological diversity of Saccharomyces bayanus. In M. Cian (Ed.), Biodiversity and biotechnology of wine yeasts (pp. 53–69). Kerala: Research Signpost.Google Scholar
  155. Sipiczki, M. (2003). Candida zemplinina sp. nov., an osmotolerant and psychrotolerant yeast that ferments sweet botrytized wines. International Journal of Systematic and Evolutionary Microbiology, 53, 2079–2083.PubMedCrossRefPubMedCentralGoogle Scholar
  156. Sipiczki, M. (2004). Species identification and comparative molecular and physiological analysis of Candida zemplinina and Candida stellata. Journal of Basic Microbiology, 44, 471–479.PubMedCrossRefPubMedCentralGoogle Scholar
  157. Sipiczki, M. (2006). Metschnikowia strains isolated from botrytized grapes antagonize fungal and bacterial growth by iron depletion. Applied and Environmental Microbiology, 72, 6716–6724.PubMedPubMedCentralCrossRefGoogle Scholar
  158. Sipiczki, M. (2008). Interspecies hybridisation and recombination in Saccharomyces wine yeasts. FEMS Yeast Research, 8, 996–1007.PubMedCrossRefGoogle Scholar
  159. Sipiczki, M. (2016). Overwintering of vineyard yeasts: Survival of interacting yeast communities in grapes mummified on vines. Frontiers in Microbiology, 7, 212.PubMedPubMedCentralCrossRefGoogle Scholar
  160. Sipiczki, M., & Csoma, H. (2002). An investigation into the yeast flora of botrytized grapes in Tokaj. 22nd international specialized symposium on yeasts. Pilanesberg, Programme and abstracts, p. 106.Google Scholar
  161. Sipiczki, M., Romano, P., Lipani, G., Miklos, I., & Antunovics, Z. (2001). Analysis of yeasts derived from natural fermentation in a Tokaj winery. Antonie Van Leeuwenhoek, 79, 97–105.CrossRefGoogle Scholar
  162. Sipiczki, M., Ciani, M., & Csoma, H. (2005). Taxonomic reclassification of Candida stellata DBVPG 3827. Folia Microbiologica, 50, 494–498.PubMedCrossRefGoogle Scholar
  163. Sipiczki, M., Csoma, H., & Antunovics, Z. (2006). Biodiversity of yeast microbiota of botrytized Tokaj grapes and wines. ECCO XXV. The role of culture collections at the beginning of the XXIst century. Budapest, Proceedings pp. 55–65.Google Scholar
  164. Sipiczki, M., Csoma, H., Antunovics, Z., & Pfliegler, W. (2010). Biodiversity in yeast populations associated with botrytised wine making. Mitt Klosterneuburg, 60, 387–394.Google Scholar
  165. Sipiczki, M., Pfliegler, W. P., & Holb, I. J. (2013). Species share a pool of diverse rRNA genes differing in regions that determine hairpin-loop structures and evolve by reticulation. PLoS One, 8, e67384.PubMedPubMedCentralCrossRefGoogle Scholar
  166. Sobotka, H., & Reiner, M. (1930). CII. Selective fermentation. I. Alcoholic fermentation of glucose, fructose and mannose mixtures. The Biochemical Journal, 24, 926–931.PubMedPubMedCentralCrossRefGoogle Scholar
  167. Soden, A., Francis, I. L., Oakey, H., & Henschke, P. A. (2000). Effects of co-fermentation with Candida stellata and Saccharomyces cerevisiae on the aroma and composition of Chardonnay wine. Australian Journal of Grape and Wine Research, 6, 21–30.CrossRefGoogle Scholar
  168. Sols, A. (1956). Selective fermentation and phosphorylation of sugars by sauternes yeast. Biochimica et Biophysica Acta, 20, 62–68.PubMedCrossRefGoogle Scholar
  169. Soos, I., & Asvany, A. (1950). Morphological and physiological investigation of the Hungarian wine yeast collection. Yearbook of the Research Institute for Ampelology, 10, 255–290.Google Scholar
  170. Sponholz, W. R. (1991). Nitrogen compounds in grapes, must, and wine. In J. Rantz (Ed.), International symposium on nitrogen in grapes and wine (pp. 67–77). Davis: American Society for Enology and Viticulture.Google Scholar
  171. Sponholz, W. R., & Dittrich, H. H. (1974). Die Bildung von SO2 bindenden Gärungsnebenprodukten, höheren Alkoholen und Estern bei einigen Reinzuchthefestämmen und bei einigen für die Weinbereitung wichtigen “wilden” Hefen. Wein-Wissenschaft, 29, 301–314.Google Scholar
  172. Sponholz, W. R., & Dittrich, H. H. (1984). Über das vorkommen von Galacturon- und Glucuronsäure in Weinen, Sherries, Obst- und Dessertweinen. Vitis, 23, 214–224.Google Scholar
  173. Sponholz, W. R., Dittrich, H. H., & Linssen, U. (1987). Die Veränderungen von Most-Inhaltsstoffen durch Botrytis cinerea in edelfaulen Traubenbeeren definierter Auslese-Stadien. Wein-Wissenschaft, 42, 266–284.Google Scholar
  174. Stefanini, I., Dapporto, L., Legras, J. L., Calabretta, A., Di Paola, M., De Filippo, C., Viola, R., Capretti, P., Polsinelly, M., Turillazi, S., & Cavalieri, D. (2012). Role of social wasps in Saccharomyces cerevisiae ecology and evolution. Proceedings of the National Academy of Sciences of the United States of America, 109, 13398–13403.PubMedPubMedCentralCrossRefGoogle Scholar
  175. Sütterlin, K. A., Hoffman-Boller, P., & Gafner, J. (2004). Kurieren von Gährstockungen mit der fructophilen Wienhefe Zygosaccharomyces bailii. 7th International symposium on innovations in enology, Intervitis Interfructa 2004, Stuttgart-Killesberg.Google Scholar
  176. Suzzi, G., Schirone, M., Sergi, M., Marianella, R. M., Fasoli, G., Aguzzi, I., & Tofalo, R. (2012). Multistarter from organic viticulture for red wine Montepulciano d’Abruzzo production. Frontiers in Microbiology, 3, 135.PubMedPubMedCentralGoogle Scholar
  177. Tofalo, R., Schirone, M., Torriani, S., Rantsiou, K., Cocolin, L., Perpetuini, G., & Suzzi, G. (2012). Diversity of Candida zemplinina strains from grapes and Italian wines. Food Microbiology, 29, 18–26.PubMedCrossRefGoogle Scholar
  178. Torriani, S., Zapparoli, G., & Suzzi, G. (1999). Genetic and phenotypic diversity of Saccharomyces sensu stricto strains isolated from Amarone wine. Antonie Van Leeuwenhoek, 75, 207–215.PubMedCrossRefGoogle Scholar
  179. Tosi, E., Azzolini, M., Lorenzini, M., Torriani, S., Fedrizzi, B., Finato, F., Cipriani, M., & Zapparoli, G. (2013). Induction of grape botrytization during withering affects volatile composition of Recioto di Soave, a “passito”-style wine. European Food Research and Technology, 236, 853–862.CrossRefGoogle Scholar
  180. Usseglio-Tomasset, L., Bosia, P. D., Delfini, C., & Ciolfi, G. (1980). I vini Recioto e Amarone della Valpolicella. Vini d’Italia, 22, 85–97.Google Scholar
  181. van Rensburg, P., Zyl, W. H., & Pretorius, I. S. (1997). Over-expression of the Saccharomyces cerevisiae exo-β-1, 3-glucanase gene together with the Bacillus subtilis endo-β-1, 3-1, 4-glucanase gene and the Butyrivibrio fibrisolvens endo-β-1, 4-glucanase gene in yeast. Journal of Biotechnology, 55, 43–53.PubMedCrossRefGoogle Scholar
  182. Vannini, A., & Chilosi, G. (2013). Botrytis infection: Grey mould and noble rot. In F. Mencarelli & P. Tonutti (Eds.), Sweet, reinforced and fortified wines: Grape biochemistry, technology and vinification (pp. 159–169). Oxford: Wiley.CrossRefGoogle Scholar
  183. Wang, X. J., Tao, Y. S., Wu, Y., An, R. Y., & Yue, Z. Y. (2017). Aroma compounds and characteristics of noble-rot wines of chardonnay grapes artificially botrytized in the vineyard. Food Chemistry, 226, 41–50.PubMedCrossRefGoogle Scholar
  184. Watanabe, M., & Shimizu, Y. (1980). Effect of yeasts on botrytized wine making: Application of Botrytis cinerea in wine making (III). Journal of Fermentation Technology, 58, 227–235.Google Scholar
  185. Weimar, K., Tschesche, R., & Breitmaler, E. (1979). Botrylacton, ein neuer Wirkstoff aus der Nährlösung des Pilzes Botrytis cinerea. Chemische Berichte, 112, 3598–3602.CrossRefGoogle Scholar
  186. Zott, K., Miot-Sertier, C., Claisse, O., Lonvaud-Funel, A., Masneuf-Pomarede, I. (2008). Dynamics and diversity of non-Saccharomyces yeasts during the early stages in winemaking. International Journal of Food Microbiology, 125, 197–203.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Matthias Sipiczki
    • 1
  1. 1.Department of Genetics and Appled MicobiologyUniversity of DebrecenDebrecenHungary

Personalised recommendations