Pathology of the Cardiovascular System

  • Joshua H. DeckerEmail author
  • Radhakrishna Sura
  • Paul W. Snyder


The cardiovascular system is present throughout the body and is therefore exposed to a wide range of potential toxicants. In preclinical toxicity studies for new compounds, the toxicologic pathologist plays an important role in detecting toxicities in the heart and blood vessels. Numerous compounds are associated with cardiovascular toxicity. Adrenergic and vasodilatory compounds are one such example; dogs are very sensitive to these compounds and develop lesions such as hemorrhage and inflammation in the heart and blood vessels. Some antineoplastic medications, most notably anthracyclines, are toxic to the cardiovascular system. Certain drugs with agonism for the serotonin receptor 5-HT2B are associated with proliferative lesions affecting the heart valves. There are many other mechanisms of cardiovascular toxicity as well.

Spontaneous findings in the cardiovascular system often mimic compound-induced toxicities. The pathologist must be aware of these spontaneous findings and often must use a weight-of-evidence approach to differentiate these findings from compound-induced toxicities. In addition to examining gross and histologic specimens, the pathologist often interprets cardiovascular biomarker, organ weight, and cardiovascular safety pharmacology data to detect compound-induced toxicities and differentiate them from spontaneous lesions. Most importantly, the pathologist must communicate how the findings in a preclinical toxicity study may apply to human beings or veterinary patients for whom the compound is being developed.

Key words

Heart Blood vessel Cardiovascular toxicity Anthracyclines Catecholamines Drug-induced valvulopathy Cardiac troponins 



The authors would like to thank Gary Gintant and Karen Bodié for their review of this chapter.


  1. Adamczyk LA, Gordon K, Kholová I, Meijer-Jorna LB, Telinius N, Gallagher PJ, van der Wal AC, Baandrup U (2016) Lymph vessels: the forgotten second circulation in health and disease. Virchows Arch 469(1):3–17PubMedPubMedCentralCrossRefGoogle Scholar
  2. Albassam MA, Houston BJ, Greaves P, Barsoum N. (1989) Polyarteritis in a beagle. J Am Vet Med Assoc 194(11):1595–1597.Google Scholar
  3. Albassam MA, Metz AL, Potoczak RE, Gallagher KP, Haleen S, Hallak H, McGuire EJ (2001) Studies on coronary arteriopathy in dogs following administration of CI-1020, an endothelin A receptor antagonist. Toxicol Pathol 29(3):277–284PubMedCrossRefPubMedCentralGoogle Scholar
  4. Anderton MJ, Mellor HR, Bell A, Sadler C, Pass M, Powell S, Steele SJ, Roberts RR, Heier A (2011) Induction of heart valve lesions by small-molecule ALK5 inhibitors. Toxicol Pathol 39(6):916–924PubMedCrossRefPubMedCentralGoogle Scholar
  5. Arola OJ, Saraste A, Pulkki K, Kallajoki M, Parvinen M, Voipio-Pulkki LM (2000) Acute doxorubicin cardiotoxicity involves cardiomyocyte apoptosis. Cancer Res 60(7):1789–1792PubMedPubMedCentralGoogle Scholar
  6. Asnani A, Peterson RT (2014) The zebrafish as a tool to identify novel therapies for human cardiovascular disease. Dis Model Mech 7(7):763–767PubMedPubMedCentralCrossRefGoogle Scholar
  7. Belin V, Hodge T, Picaut P, Jordan R, Algate C, Gosselin S, Nohynek G, Cavero I (1996) The myocardial lesions produced by the potassium channel opener aprikalim in monkeys and rats are prevented by blockade of cardiac beta-adrenoceptors. Fundam Appl Toxicol 31(2):259–267PubMedCrossRefPubMedCentralGoogle Scholar
  8. Berridge BR, Pettit S, Walker DB, Jaffe AS, Schultze AE, Herman E, Reagan WJ, Lipshultz SE, Apple FS, York MJ (2009) A translational approach to detecting drug-induced cardiac injury with cardiac troponins: consensus and recommendations from the Cardiac Troponins Biomarker Working Group of the Health and Environmental Sciences Institute. Am Heart J 158(1):21–29PubMedCrossRefPubMedCentralGoogle Scholar
  9. Berridge BR, Mowat V, Nagai H, Nyska A, Okazaki Y, Clements PJ, Rinke M, Snyder PW, Boyle MC, Wells MY (2016) Non-proliferative and proliferative lesions of the cardiovascular system of the rat and mouse. J Toxicol Pathol 29(3 Suppl):1S–47SPubMedPubMedCentralCrossRefGoogle Scholar
  10. Bodié K, Decker JH (2014) Incidental histopathological findings in hearts of control beagle dogs in toxicity studies. Toxicol Pathol 42(6):997–1003PubMedCrossRefPubMedCentralGoogle Scholar
  11. Boor PJ, Hysmith RM (1987) Allylamine cardiovascular toxicity. Toxicology 44(2):129–145PubMedCrossRefPubMedCentralGoogle Scholar
  12. Casartelli A, Lanzoni A, Comelli R, Crivellente F, Defazio R, Dorigatti R, Fasdelli N, Faustinelli I, Pagliarusco S, Tontodonati M, Cristofori P (2011) A novel and integrated approach for the identification and characterization of drug-induced cardiac toxicity in the dog. Toxicol Pathol 39(2):361–371PubMedCrossRefPubMedCentralGoogle Scholar
  13. Cavero I, Guillon JM (2014) Safety Pharmacology assessment of drugs with biased 5-HT(2B) receptor agonism mediating cardiac valvulopathy. J Pharmacol Toxicol Methods 69(2):150–161PubMedCrossRefPubMedCentralGoogle Scholar
  14. Chamanza R (2012) Non-human primates: cynomolgus (Macaca fascicularis) and rhesus (Macaca mulatta) macaques and the common marmoset (Callithrix jacchus). Chapter 1. In: EF MI (ed) Background lesions in laboratory animals. Saunders Elsevier, Edinburgh, pp 1–15Google Scholar
  15. Chamanza R, Parry NM, Rogerson P, Nicol JR, Bradley AE (2006) Spontaneous lesions of the cardiovascular system in purpose-bred laboratory nonhuman primates. Toxicol Pathol 34(4):357–363PubMedCrossRefPubMedCentralGoogle Scholar
  16. Chatterjee K, Zhang J, Honbo N, Karliner JS (2010) Doxorubicin cardiomyopathy. Cardiology 115(2):155–162CrossRefGoogle Scholar
  17. Chu TF, Rupnick MA, Kerkela R, Dallabrida SM, Zurakowski D, Nguyen L, Woulfe K, Pravda E, Cassiola F, Desai J, George S, Morgan JA, Harris DM, Ismail NS, Chen JH, Schoen FJ, Van den Abbeele AD, Demetri GD, Force T, Chen MH (2007) Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet 370(9604):2011–2019PubMedPubMedCentralCrossRefGoogle Scholar
  18. Clements P, Brady S, York M, Berridge B, Mikaelian I, Nicklaus R, Gandhi M, Roman I, Stamp C, Davies D, McGill P, Williams T, Pettit S, Walker D, ILSI HESI Cardiac Troponins Working Group, Turton J (2010) Time course characterization of serum cardiac troponins, heart fatty acid-binding protein, and morphologic findings with isoproterenol-induced myocardial injury in the rat. Toxicol Pathol 38(5):703–714PubMedCrossRefPubMedCentralGoogle Scholar
  19. Clements M, Millar V, Williams AS, Kalinka S (2015) Bridging functional and structural cardiotoxicity assays using human embryonic stem cell-derived cardiomyocytes for a more comprehensive risk assessment. Toxicol Sci 148(1):241–260PubMedCrossRefPubMedCentralGoogle Scholar
  20. Clemo FA, Evering WE, Snyder PW, Albassam MA (2003) Differentiating spontaneous from drug-induced vascular injury in the dog. Toxicol Pathol 31(Suppl):25–31PubMedCrossRefPubMedCentralGoogle Scholar
  21. Cooper G 4th. (1997) Basic determinants of myocardial hypertrophy: a review of molecular mechanisms. Annu Rev Med 48:13–23PubMedCrossRefPubMedCentralGoogle Scholar
  22. Cubeddu LX (2016) Drug-induced inhibition and trafficking disruption of ion channels: pathogenesis of QT abnormalities and drug-induced fatal arrhythmias. Curr Cardiol Rev 12(2):141–154PubMedPubMedCentralCrossRefGoogle Scholar
  23. Donnelly KB (2008) Cardiac valvular pathology: comparative pathology and animal models of acquired cardiac valvular diseases. Toxicol Pathol 36(2):204–217PubMedCrossRefPubMedCentralGoogle Scholar
  24. Elangbam CS (2010) Drug-induced valvulopathy: an update. Toxicol Pathol 38(6):837–848PubMedCrossRefPubMedCentralGoogle Scholar
  25. Engelhardt JA, Fant P, Guionaud S, Henry SP, Leach MW, Louden C, Scicchitano MS, Weaver JL, Zabka TS, Frazier KS, Society of Toxicologic Pathology Vascular Injury Working Group (2015) Scientific and Regulatory Policy Committee Points-to-consider paper: drug-induced vascular injury associated with nonsmall molecule therapeutics in preclinical development: Part 2. Antisense oligonucleotides. Toxicol Pathol 43(7):935–944PubMedCrossRefPubMedCentralGoogle Scholar
  26. Engle SK, Watson DE (2016) Natriuretic peptides as cardiovascular safety biomarkers in rats: comparison with blood pressure, heart rate, and heart weight. Toxicol Sci 149(2):458–472PubMedCrossRefPubMedCentralGoogle Scholar
  27. Engle SK, Solter PF, Credille KM, Bull CM, Adams S, Berna MJ, Schultze AE, Rothstein EC, Cockman MD, Pritt ML, Liu H, Lu Y, Chiang AY, Watson DE (2010) Detection of left ventricular hypertrophy in rats administered a peroxisome proliferator-activated receptor alpha/gamma dual agonist using natriuretic peptides and imaging. Toxicol Sci 114(2):183–192PubMedCrossRefPubMedCentralGoogle Scholar
  28. Ettlin RA, Kuroda J, Plassmann S, Hayashi M, Prentice DE (2010) Successful drug development despite adverse preclinical findings part 2: examples. J Toxicol Pathol 23(4):213–234PubMedPubMedCentralCrossRefGoogle Scholar
  29. Fang H, Howroyd PC, Fletcher AM, Diters RW, Woicke J, Sasseville VG, Bregman CL, Freebern WJ, Durham SK, Mense MG (2007) Atrioventricular valvular angiectasis in Sprague-Dawley rats. Vet Pathol 44(3):407–410PubMedCrossRefPubMedCentralGoogle Scholar
  30. Food and Drug Administration Center for Drug Evaluation and Research (1998) Review and evaluation of pharmacology and toxicology data – Viagra tablets (sildenafil citrate). NDA #20-895Google Scholar
  31. Food and Drug Administration Center for Drug Evaluation and Research (2003a) Pharmacology review – Cialis (tadalafil). Application number 21-368Google Scholar
  32. Food and Drug Administration Center for Drug Evaluation and Research (2003b) Pharmacology review(s) – Levitra (vardenafil). Application number 21-400Google Scholar
  33. Food and Drug Administration Center for Drug Evaluation and Research (2014) Pharmacology/toxicology NDA review and evaluation – Otezla (apremilast) tablets. Application number 206088Google Scholar
  34. Frazier KS, Engelhardt JA, Fant P, Guionaud S, Henry SP, Leach MW, Louden C, Scicchitano MS, Weaver JL, Zabka TS, Society of Toxicologic Pathology Vascular Injury Working Group (2015) Scientific and Regulatory Policy Committee Points-to-consider paper: drug-induced vascular injury associated with nonsmall molecule therapeutics in preclinical development: Part I. Biotherapeutics. Toxicol Pathol 43(7):915–934PubMedCrossRefPubMedCentralGoogle Scholar
  35. French KJ, Coatney RW, Renninger JP, Hu CX, Gales TL, Zhao S, Storck LM, Davis CB, McSurdy-Freed J, Chen E, Frazier KS (2010) Differences in effects on myocardium and mitochondria by angiogenic inhibitors suggest separate mechanisms of cardiotoxicity. Toxicol Pathol 38(5):691–702PubMedCrossRefPubMedCentralGoogle Scholar
  36. Glineur SF, De Ron P, Hanon E, Valentin JP, Dremier S, Nogueira da Costa A (2016) Paving the Route to Plasma miR-208a-3p as an acute cardiac injury biomarker: preclinical rat data supports its use in drug safety assessment. Toxicol Sci 149(1):89–97PubMedCrossRefPubMedCentralGoogle Scholar
  37. Gopinath C (1992) Susceptibility of the cardiovascular system to toxic substances. In: Mohr U, Dungworth DL, Capen CC (eds) Pathology of the aging rat, vol 1. ILSI Press, Washington, DC, pp 319–327Google Scholar
  38. Greaves P (2012) Cardiovascular system. Chapter 7. In: Histopathology of preclinical toxicity studies, 4th edn. Elsevier, Amsterdam, pp 263–324CrossRefGoogle Scholar
  39. Grossman W, Jones D, McLaurin LP (1975) Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest 56(1):56–64PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hahn VS, Lenihan DJ, Ky B (2014) Cancer therapy-induced cardiotoxicity: basic mechanisms and potential cardioprotective therapies. J Am Heart Assoc 3(2):e000665PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hailey JR, Maleeff BE, Thomas HC, Pearse G, Klapwijk JC, Cristofori PG, Berridge B, Kimbrough CL, Parker GA, Morton D, Elmore S, Hardisty JF, Dybdal NO, Rehagen DA, Fikes JD, Lamb M, Biddle K, Buetow BS, Carreira V, Nyska A, Tripathi NK, Workman HC, Bienvenu JG, Brees I, Turk JR, Adler RR (2017) A diagnostic approach for rodent progressive cardiomyopathy and like lesions in toxicology studies up to 28 days in the Sprague Dawley rat (Part 1 of 2). Toxicol Pathol 45(8):1043–1054PubMedCrossRefPubMedCentralGoogle Scholar
  42. Hardisty JF, Elwell MR, Ernst H, Greaves P, Kolenda-Roberts H, Malarkey DE, Mann PC, Tellier PA (2007) Histopathology of hemangiosarcomas in mice and hamsters and liposarcomas/fibrosarcomas in rats associated with PPAR agonists. Toxicol Pathol 35(7):928–941PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hartman HA (1989) Spontaneous extramural coronary arteritis in dogs. Toxicol Pathol 17(1 Part 2):138–144PubMedCrossRefPubMedCentralGoogle Scholar
  44. He H, Tao H, Xiong H, Duan SZ, McGowan FX Jr, Mortensen RM, Balschi JA (2014) Rosiglitazone causes cardiotoxicity via peroxisome proliferator-activated receptor γ-independent mitochondrial oxidative stress in mouse hearts. Toxicol Sci 138(2):468–481PubMedPubMedCentralCrossRefGoogle Scholar
  45. Herman EH, Ferrans VJ, Young RS, Balazs T (1989) A comparative study of minoxidil-induced myocardial lesions in beagle dogs and miniature swine. Toxicol Pathol 17(1 Pt 2):182–192PubMedCrossRefPubMedCentralGoogle Scholar
  46. Huang H, Pugsley MK, Fermini B, Curtis MJ, Koerner J, Accardi M, Authier S (2017) Cardiac voltage-gated ion channels in safety pharmacology: review of the landscape leading to the CiPA initiative. J Pharmacol Toxicol Methods 87:11–23PubMedCrossRefPubMedCentralGoogle Scholar
  47. Hutcheson JD, Setola V, Roth BL, Merryman WD (2011) Serotonin receptors and heart valve disease--it was meant 2B. Pharmacol Ther 132(2):146–157PubMedPubMedCentralCrossRefGoogle Scholar
  48. Ji X, Takahashi R, Hiura Y, Hirokawa G, Fukushima Y, Iwai N (2009) Plasma miR-208 as a biomarker of myocardial injury. Clin Chem 55(11):1944–1949PubMedCrossRefPubMedCentralGoogle Scholar
  49. Jokinen MP, Lieuallen WG, Boyle MC, Johnson CL, Malarkey DE, Nyska A (2011) Morphologic aspects of rodent cardiotoxicity in a retrospective evaluation of National Toxicology Program studies. Toxicol Pathol 39(5):850–860PubMedCrossRefPubMedCentralGoogle Scholar
  50. Jones HB, Björkman JA, Schofield J (2013) Coronary and systemic arterial physiology and immunohistochemical markers related to early coronary arterial lesions in beagle dogs given the potassium channel opener, ZD6169, or the endothelin receptor antagonist, ZD1611. Toxicol Pathol 41(5):722–735PubMedCrossRefPubMedCentralGoogle Scholar
  51. Keenan C, Vidal JD (2006) Standard morphologic evaluation of the heart in the laboratory dog and monkey. Toxicol Pathol 34(1):67–74PubMedCrossRefPubMedCentralGoogle Scholar
  52. Kerns W, Schwartz L, Blanchard K, Burchiel S, Essayan D, Fung E, Johnson R, Lawton M, Louden C, MacGregor J, Miller F, Nagarkatti P, Robertson D, Snyder P, Thomas H, Wagner B, Ward A, Zhang J, Expert Working Group on Drug-Induced Vascular Injury (2005) Drug-induced vascular injury--a quest for biomarkers. Toxicol Appl Pharmacol 203(1):62–87PubMedCrossRefPubMedCentralGoogle Scholar
  53. Kikuchi K, Poss KD (2012) Cardiac regenerative capacity and mechanisms. Annu Rev Cell Dev Biol 28:719–741PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kim K, Chini N, Fairchild DG, Engle SK, Reagan WJ, Summers SD, Mirsalis JC, Cardiac Hypertrophy Working Group of the Predictive Safety Testing Consortium (2016) Evaluation of cardiac toxicity biomarkers in rats from different laboratories. Toxicol Pathol 44(8):1072–1083PubMedPubMedCentralCrossRefGoogle Scholar
  55. Lester RM, Olbertz J (2016) Early drug development: assessment of proarrhythmic risk and cardiovascular safety. Expert Rev Clin Pharmacol 9(12):1611–1618PubMedCrossRefPubMedCentralGoogle Scholar
  56. Lewis W, Simpson JF, Meyer RR (1994) Cardiac mitochondrial DNA polymerase-gamma is inhibited competitively and noncompetitively by phosphorylated zidovudine. Circ Res 74(2):344–348PubMedCrossRefPubMedCentralGoogle Scholar
  57. Liang P, Lan F, Lee AS, Gong T, Sanchez-Freire V, Wang Y, Diecke S, Sallam K, Knowles JW, Wang PJ, Nguyen PK, Bers DM, Robbins RC, Wu JC (2013) Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation 127(16):1677–1691PubMedCrossRefPubMedCentralGoogle Scholar
  58. Liang J, Jin W, Li H, Liu H, Huang Y, Shan X, Li C, Shan L, Efferth T (2016) In vivo cardiotoxicity induced by sodium aescinate in zebrafish larvae. Molecules 21(3):190PubMedPubMedCentralCrossRefGoogle Scholar
  59. Liaudet L, Calderari B, Pacher P (2014) Pathophysiological mechanisms of catecholamine and cocaine-mediated cardiotoxicity. Heart Fail Rev 19(6):815–824PubMedCrossRefPubMedCentralGoogle Scholar
  60. Lilbert J, Burnett R (2003) Main vascular changes seen in the saline controls of continuous infusion studies in the cynomolgus monkey over an eight-year period. Toxicol Pathol 31(3):273–280PubMedCrossRefPubMedCentralGoogle Scholar
  61. Louden C, Brott D (2013) Cardiovascular system. Chapter 16. In: Sahota PS, Popp JA, Hardisty JF, Gopinath C (eds) Toxicologic pathology: nonclinical safety assessment. CRC Press, Boca Raton, pp 589–653CrossRefGoogle Scholar
  62. Louden CS, Nambi P, Pullen MA, Thomas RA, Tierney LA, Solleveld HA, Schwartz LW (2000) Endothelin receptor subtype distribution predisposes coronary arteries to damage. Am J Pathol 157(1):123–134PubMedPubMedCentralCrossRefGoogle Scholar
  63. Louden C, Brott D, Katein A, Kelly T, Gould S, Jones H, Betton G, Valetin JP, Richardson RJ (2006) Biomarkers and mechanisms of drug-induced vascular injury in non-rodents. Toxicol Pathol 34(1):19–26PubMedCrossRefPubMedCentralGoogle Scholar
  64. McAllister HA Jr, Ferrans VJ, Hall RJ, Strickman NE, Bossart MI (1987) Chloroquine-induced cardiomyopathy. Arch Pathol Lab Med 111(10):953–956PubMedPubMedCentralGoogle Scholar
  65. McGowan JV, Chung R, Maulik A, Piotrowska I, Walker JM, Yellon DM (2017) Anthracycline chemotherapy and cardiotoxicity. Cardiovasc Drugs Ther 31(1):63–75PubMedPubMedCentralCrossRefGoogle Scholar
  66. McInnes EF (2012a) Minipigs. Chapter 6. In: EF MI (ed) Background lesions in laboratory animals. Saunders Elsevier, Edinburgh, pp 81–85CrossRefGoogle Scholar
  67. McInnes EF (2012b) Wistar and Sprague-Dawley rats. Chapter 2. In: EF MI (ed) Background lesions in laboratory animals. Saunders Elsevier, Edinburgh, pp 17–36CrossRefGoogle Scholar
  68. Mesfin GM (1990) Spontaneous epicardial fibrous fronds on the atria of beagle dogs. Vet Pathol 27(6):458–461PubMedCrossRefPubMedCentralGoogle Scholar
  69. Mesfin GM, Robinson FG, Higgins MJ, Zhong WZ, DuCharme DW (1995) The pharmacologic basis of the cardiovascular toxicity of minoxidil in the dog. Toxicol Pathol 23(4):498–506PubMedCrossRefPubMedCentralGoogle Scholar
  70. Mikaelian I, Coluccio D, Hirkaler GM, Downing JC, Rasmussen E, Todd J, Estis J, Lu QA, Nicklaus R (2009) Assessment of the toxicity of hydralazine in the rat using an ultrasensitive flow-based cardiac troponin I immunoassay. Toxicol Pathol 37(7):878–881PubMedCrossRefPubMedCentralGoogle Scholar
  71. Mikaelian I, Buness A, de Vera-Mudry MC, Kanwal C, Coluccio D, Rasmussen E, Char HW, Carvajal V, Hilton H, Funk J, Hoflack JC, Fielden M, Herting F, Dunn M, Suter-Dick L (2010) Primary endothelial damage is the mechanism of ardiotoxicity of tubulin-binding drugs. Toxicol Sci 117(1):144–151PubMedCrossRefPubMedCentralGoogle Scholar
  72. Mikaelian I, Cameron M, Dalmas DA, Enerson BE, Gonzalez RJ, Guionaud S, Hoffmann PK, King NM, Lawton MP, Scicchitano MS, Smith HW, Thomas RA, Weaver JL, Zabka TS, Vascular Injury Working Group of the Predictive Safety Consortium (2014) Nonclinical safety biomarkers of drug-induced vascular injury: current status and blueprint for the future. Toxicol Pathol 42(4):635–657PubMedCrossRefPubMedCentralGoogle Scholar
  73. Moodley I (2008) Review of the cardiovascular safety of COXIBs compared to NSAIDS. Cardiovasc J Afr 19(2):102–107PubMedPubMedCentralGoogle Scholar
  74. Morawietz G, Ruehl-Fehlert C, Kittel B, Bube A, Keane K, Halm S, Heuser A, Hellmann J, RITA Group; NACAD Group (2004) Revised guides for organ sampling and trimming in rats and mice--Part 3. A joint publication of the RITA and NACAD groups. Exp Toxicol Pathol 55(6):433–449PubMedCrossRefPubMedCentralGoogle Scholar
  75. Mythili S, Malathi N (2015) Diagnostic markers of acute myocardial infarction. Biomed Rep 3(6):743–748PubMedPubMedCentralCrossRefGoogle Scholar
  76. Newsholme SJ, Thudium DT, Gossett KA, Watson ES, Schwartz LW (2000) Evaluation of plasma von Willebrand factor as a biomarker for acute arterial damage in rats. Toxicol Pathol 28(5):688–693PubMedCrossRefPubMedCentralGoogle Scholar
  77. O’Brien PJ (2008) Cardiac troponin is the most effective translational safety biomarker for myocardial injury in cardiotoxicity. Toxicology 245(3):206–218PubMedCrossRefPubMedCentralGoogle Scholar
  78. Papoian T, Jagadeesh G, Saulnier M, Simpson N, Ravindran A, Yang B, Laniyonu AA, Khan I, Szarfman A (2017) Regulatory forum review∗: utility of in vitro secondary pharmacology data to assess risk of drug-induced valvular heart disease in humans: regulatory considerations. Toxicol Pathol 45(3):381–388PubMedCrossRefPubMedCentralGoogle Scholar
  79. Peraza MA, Burdick AD, Marin HE, Gonzalez FJ, Peters JM (2006) The toxicology of ligands for peroxisome proliferator-activated receptors (PPAR). Toxicol Sci 90(2):269–295PubMedCrossRefPubMedCentralGoogle Scholar
  80. Pollard CE, Abi Gerges N, Bridgland-Taylor MH, Easter A, Hammond TG, Valentin JP (2010) An introduction to QT interval prolongation and non-clinical approaches to assessing and reducing risk. Br J Pharmacol 159(1):12–21PubMedPubMedCentralCrossRefGoogle Scholar
  81. Pondé NF, Lambertini M, de Azambuja E (2016) Twenty years of anti-HER2 therapy-associated cardiotoxicity. ESMO Open 1(4):e000073PubMedPubMedCentralCrossRefGoogle Scholar
  82. Ramot Y, Manno RA, Okazaki Y, Krakovsky M, Lamensdorf I, Meiron M, Toren A, Zehavi-Goldstein E, Vezzali E, Nyska A (2009) Spontaneous aortitis in the Balb/c mouse. Toxicol Pathol 37(5):667–671PubMedCrossRefPubMedCentralGoogle Scholar
  83. Reagan WJ (2010) Troponin as a biomarker of cardiac toxicity: past, present, and future. Toxicol Pathol 38(7):1134–1137PubMedCrossRefPubMedCentralGoogle Scholar
  84. Reagan WJ, Barnes R, Harris P, Summers S, Lopes S, Stubbs M, Blackwell D, Steidl-Nichols J (2017) Assessment of cardiac troponin I responses in nonhuman primates during restraint, blood collection, and dosing in preclinical safety studies. Toxicol Pathol 45(2):335–343PubMedCrossRefPubMedCentralGoogle Scholar
  85. Redfern WS, Carlsson L, Davis AS, Lynch WG, MacKenzie I, Palethorpe S, Siegl PK, Strang I, Sullivan AT, Wallis R, Camm AJ, Hammond TG (2003) Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc Res 58(1):32–45PubMedCrossRefPubMedCentralGoogle Scholar
  86. Resendez JC, Rehagen D (2017) Infusion toxicology and techniques. Chapter 21. In: Faqi AS (ed) A comprehensive guide to toxicology in nonclinical drug development, 2nd edn. Elsevier, Amsterdam, pp 555–614CrossRefGoogle Scholar
  87. Rojko JL, Evans MG, Price SA, Han B, Waine G, DeWitte M, Haynes J, Freimark B, Martin P, Raymond JT, Evering W, Rebelatto MC, Schenck E, Horvath C (2014) Formation, clearance, deposition, pathogenicity, and identification of biopharmaceutical-related immune complexes: review and case studies. Toxicol Pathol 42(4):725–764PubMedCrossRefPubMedCentralGoogle Scholar
  88. Ruben Z, Arceo RJ, Bishop SP, Elwell MR, Kerns WD, Mesfin GM, Sandusky GE, Van Vleet JF (2000) Non-proliferative lesions of the heart and vasculature in rats. In: Guides for toxicologic pathology. STP/ARP/AFIP, Washington, DC, pp 1–10Google Scholar
  89. Ruehl-Fehlert C, Kittel B, Morawietz G, Deslex P, Keenan C, Mahrt CR, Nolte T, Robinson M, Stuart BP, Deschl U, RITA Group; NACAD Group (2003) Revised guides for organ sampling and trimming in rats and mice--part 1. Exp Toxicol Pathol 55(2–3):91–106PubMedCrossRefGoogle Scholar
  90. Ryffel B, Mihatsch MJ (1986) Cyclosporine nephrotoxicity. Toxicol Pathol 14(1):73–82PubMedCrossRefPubMedCentralGoogle Scholar
  91. Schmidt M, Lamberts M, Olsen AM, Fosbøll E, Niessner A, Tamargo J, Rosano G, Agewall S, Kaski JC, Kjeldsen K, Lewis BS, Torp-Pedersen C (2016) Cardiovascular safety of non-aspirin non-steroidal anti-inflammatory drugs: review and position paper by the working group for Cardiovascular Pharmacotherapy of the European Society of Cardiology. Eur Heart J 37(13):1015–1023PubMedCrossRefPubMedCentralGoogle Scholar
  92. Sellers RS, Morton D, Michael B, Roome N, Johnson JK, Yano BL, Perry R, Schafer K (2007) Society of Toxicologic Pathology position paper: organ weight recommendations for toxicology studies. Toxicol Pathol 35(5):751–755PubMedCrossRefPubMedCentralGoogle Scholar
  93. Snyder PW, Kazacos EA, Scott-Moncrieff JC, HogenEsch H, Carlton WW, Glickman LT, Felsburg PJ (1995) Pathologic features of naturally occurring juvenile polyarteritis in beagle dogs. Vet Pathol 32(4):337–345PubMedCrossRefPubMedCentralGoogle Scholar
  94. Sobota JT (1989) Review of cardiovascular findings in humans treated with minoxidil. Toxicol Pathol 17(1 Pt 2):193–202PubMedCrossRefPubMedCentralGoogle Scholar
  95. Stevens JL, Baker TK (2009) The future of drug safety testing: expanding the view and narrowing the focus. Drug Discov Today 14(3–4):162–167PubMedCrossRefPubMedCentralGoogle Scholar
  96. Sun H, Xia M, Shahane SA, Jadhav A, Austin CP, Huang R (2013) Are hERG channel blockers also phospholipidosis inducers? Bioorg Med Chem Lett 23(16):4587–4590PubMedPubMedCentralCrossRefGoogle Scholar
  97. Taylor I (2012) Mouse. Chapter 4. In: EF MI (ed) Background lesions in laboratory animals. Saunders Elsevier, Edinburgh, pp 45–72CrossRefGoogle Scholar
  98. Thorball N, Olsen F (1974) Ultrastructural pathological changes in intestinal submucosal arterioles in angiotensin-induced acute hypertension in rats. Acta Pathol Microbiol Scand A 82(6):703–713PubMedPubMedCentralGoogle Scholar
  99. Van Vleet JF, Ferrans VJ (1986) Myocardial diseases of animals. Am J Pathol 124(1):98–178PubMedPubMedCentralGoogle Scholar
  100. Varga ZV, Ferdinandy P, Liaudet L, Pacher P (2015) Drug-induced mitochondrial dysfunction and cardiotoxicity. Am J Physiol Heart Circ Physiol 309(9):H1453–H1467PubMedPubMedCentralCrossRefGoogle Scholar
  101. Varga Z, Sabzwari SRA, Vargova V (2017) Cardiovascular risk of nonsteroidal anti-inflammatory drugs: an under-recognized public health issue. Cureus 9(4):e1144PubMedPubMedCentralGoogle Scholar
  102. Vasti C, Hertig CM (2014) Neuregulin-1/erbB activities with focus on the susceptibility of the heart to anthracyclines. World J Cardiol 6(7):653–662PubMedPubMedCentralCrossRefGoogle Scholar
  103. Vidal JD, Drobatz LS, Holliday DF, Geiger LE, Thomas HC (2010) Spontaneous findings in the heart of Mauritian-origin cynomolgus macaques (Macaca fascicularis). Toxicol Pathol 38(2):297–302PubMedCrossRefPubMedCentralGoogle Scholar
  104. Walker DB (2006) Serum chemical biomarkers of cardiac injury for nonclinical safety testing. Toxicol Pathol 34(1):94–104PubMedCrossRefPubMedCentralGoogle Scholar
  105. Wallace KB, Hausner E, Herman E, Holt GD, MacGregor JT, Metz AL, Murphy E, Rosenblum IY, Sistare FD, York MJ (2004) Serum troponins as biomarkers of drug-induced cardiac toxicity. Toxicol Pathol 32(1):106–121PubMedCrossRefPubMedCentralGoogle Scholar
  106. Weber K, Mowat V, Hartmann E, Razinger T, Chevalier HJ, Blumbach K, Green OP, Kaiser S, Corney S, Jackson A, Casadesus A (2011) Pathology in continuous infusion studies in rodents and non-rodents and ITO (infusion technology organisation)-recommended protocol for tissue sampling and terminology for procedure-related lesions. J Toxicol Pathol 24(2):113–124PubMedPubMedCentralCrossRefGoogle Scholar
  107. Wouters KA, Kremer LC, Miller TL, Herman EH, Lipshultz SE (2005) Protecting against anthracycline-induced myocardial damage: a review of the most promising strategies. Br J Haematol 131(5):561–578PubMedCrossRefGoogle Scholar
  108. Yoshizawa K, Kissling GE, Johnson JA, Clayton NP, Flagler ND, Nyska A (2005) Chemical-induced atrial thrombosis in NTP rodent studies. Toxicol Pathol 33(5):517–532PubMedCrossRefGoogle Scholar
  109. Yuan Y, Bai X, Luo C, Wang K, Zhang H (2015) The virtual heart as a platform for screening drug cardiotoxicity. Br J Pharmacol 172(23):5531–5547PubMedPubMedCentralCrossRefGoogle Scholar
  110. Zabka TS, Irwin M, Albassam MA (2009) Spontaneous cardiomyopathy in cynomolgus monkeys (Macaca fascicularis). Toxicol Pathol 37(6):814–818PubMedCrossRefPubMedCentralGoogle Scholar
  111. Zhang J, Knapton A, Lipshultz SE, Weaver JL, Herman EH (2008) Isoproterenol-induced cardiotoxicity in Sprague-Dawley rats: correlation of reversible and irreversible myocardial injury with release of cardiac troponin T and roles of iNOS in myocardial injury. Toxicol Pathol 36(2):277–278PubMedCrossRefPubMedCentralGoogle Scholar
  112. Zhang YS, Aleman J, Arneri A, Bersini S, Piraino F, Shin SR, Dokmeci MR, Khademhosseini A (2015) From cardiac tissue engineering to heart-on-a-chip: beating challenges. Biomed Mater 10(3):034006PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Joshua H. Decker
    • 1
    Email author
  • Radhakrishna Sura
    • 2
  • Paul W. Snyder
    • 3
  1. 1.Charles River Laboratories, Inc.MattawanUSA
  2. 2.AbbVie Inc.North ChicagoUSA
  3. 3.Experimental Pathology Laboratories, Inc.West LafayetteUSA

Personalised recommendations