Advertisement

A Review of Virtual Classroom Environments for Neuropsychological Assessment

  • Thomas D. ParsonsEmail author
  • Albert “Skip” Rizzo
Chapter
Part of the Virtual Reality Technologies for Health and Clinical Applications book series (VRTHCA)

Abstract

Differential diagnosis and treatment of neuropsychological disorders require assessments that can differentiate overlapping symptoms. Previous research has most often relied on paper-and-pencil as well as computerized psychometric tests of cognitive functions. Although these approaches provide highly systematic control and delivery of performance challenges, they have also been criticized as limited in the area of ecological validity. A possible answer to the problems of ecological validity in assessment of cognitive functioning in neurological populations is to immerse the participant in a virtual environment. This chapter reviews the potential of various virtual classroom environments that have been developed for neuropsychological assessment.

Keywords

Virtual reality Virtual classroom Virtual human Neuropsychology Autism Attention deficit hyperactivity disorder Brain injury 

References

  1. Abbes, Z., Bouden, A., Amado, I., Chantal Bourdel, M., Tabbane, K., & Béchir Halayem, M. (2009). Attentional impairment in children with attention deficit and hyperactivity disorder. La Tunisie Médicale, 87, 645–650.PubMedGoogle Scholar
  2. Abikoff, H., Courtney, M., Pelham, W. E., Jr., & Koplewicz, H. S. (1993). Teachers’ ratings of disruptive behaviors: The influence of halo effects. Journal of Abnormal Child Psychology, 21, 519–533.PubMedCrossRefGoogle Scholar
  3. Adams, R., Finn, P., Moes, E., Flannery, K., & Rizzo, A. S. (2009). Distractibility in attention/deficit/hyperactivity disorder (ADHD): The virtual reality classroom. Child Neuropsychology, 15, 120–135.PubMedCrossRefGoogle Scholar
  4. Adólfsdóttir, S., Sorensen, L., & Lundervold, A. J. (2008). The attention network test: A characteristic pattern of deficits in ADHD. Behavioral and Brain Function, 12, 9.CrossRefGoogle Scholar
  5. Armstrong, C., Reger, G., Edwards, J., Rizzo, A., Courtney, C., & Parsons, T. D. (2013). Validity of the Virtual Reality Stroop Task (VRST) in active duty military. Journal of Clinical and Experimental Neuropsychology, 35, 113–123.PubMedCrossRefGoogle Scholar
  6. Baddeley, A. D. (1996). Exploring the central executive. The Quarterly Journal of Experimental Psychology, 49, 5–28.CrossRefGoogle Scholar
  7. Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In G. Bower (Ed.), The psychology of learning and motivation (Vol. 8, pp. 47–90). San Diego: Academic.Google Scholar
  8. Barkley, R. A. (1997). Attention-deficit/hyperactivity disorder, self-regulation, and time: Toward a more comprehensive theory. Journal of Developmental and Behavioral Pediatrics, 18, 271–279.PubMedGoogle Scholar
  9. Barkley, R. A. (2000). Genetics of childhood disorders: xvii. ADHD, Part 1: The executive functions and ADHD. Journal of the American Academy of Child and Adolescent Psychiatry, 39, 1064–1068.PubMedCrossRefGoogle Scholar
  10. Barkley, R. A., Grodzinsky, G., & DuPaul, G. J. (1992). Frontal lobe functions in attention deficit disorder with and without hyperactivity: A review and research report. Journal of Abnormal Child Psychology, 20, 163–188.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Beck, L., Wolter, M., Mungard, N. F., Vohn, R., Staedtgen, M., Kuhlen, T., & Sturm, W. (2010). Evaluation of spatial processing in virtual reality using functional magnetic resonance imaging (FMRI). Cyberpsychology, Behavior and Social Networking, 13, 211–215.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Besnard, J., Richard, P., Banville, F., Nolin, P., Aubin, G., Le Gall, D., et al. (2016). Virtual reality and neuropsychological assessment: The reliability of a virtual kitchen to assess daily-life activities in victims of traumatic brain injury. Applied Neuropsychology: Adult, 23(3), 223–235.CrossRefGoogle Scholar
  13. Biederman, J. (2005). Attention-deficit/hyperactivity disorder: a selective overview. Biological Psychiatry, 57, 1215–1220.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bioulac, S., Lallemand, S., Rizzo, A., Philip, P., Fabrigoule, C., & Bouvard, M. P. (2012). Impact of time on task on ADHD patient’s performances in a virtual classroom. European Journal of Paediatric Neurology, 16(5), 514–521.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bohil, C. J., Alicea, B., & Biocca, F. A. (2011). Virtual reality in neuroscience research and therapy. Nature Reviews: Neuroscience, 12(12), 752.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Burgess, P. W., & Simons, J. S. (2005). Theories of frontal lobe executive function: Clinical applications. In The effectiveness of rehabilitation for cognitive deficits (p. 211). Oxford: Oxford University Press.CrossRefGoogle Scholar
  17. Chaytor, N., & Schmitter-Edgecombe, M. (2007). Fractionation of the dysexecutive syndrome in a heterogeneous neurological sample: Comparing the dysexecutive questionnaire and the brock adaptive functioning questionnaire. Brain Injury, 21, 615–621.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Chaytor, N., Schmitter-Edgecombe, M., & Burr, R. (2006). Improving the ecological validity of executive functioning assessment. Archives of Clinical Neuropsychology, 21, 217–227.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Conners, C. K. (1997). Conners’ rating scales—revised: User’s manual. North Tonawanda: Multi-Health Systems.Google Scholar
  20. Conners, C. K., Erhardt, D., & Sparrow, E. (1999). Conners’ Adult ADHD Rating Scales:(CAARS). Toronto: MHS.Google Scholar
  21. Corkum, P. V., & Siegel, L. S. (1993). Is the continuous performance task a valuable research tool for use with children with attention-deficit-hyperactivity disorder? Journal of Child Psychology and Psychiatry, 34, 1217–1239.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Denmark, T., Fish, J., Jansari, A., Tailor, J., Ashkan, K., & Morris, R. (2017). Using virtual reality to investigate multitasking ability in individuals with frontal lobe lesions. Neuropsychological Rehabilitation, 1–22.Google Scholar
  23. Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–168.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Dodrill, C. B. (1999). Myths of neuropsychology: Further considerations. The Clinical Neuropsychologist, 13, 562–572.PubMedCrossRefPubMedCentralGoogle Scholar
  25. DuPaul, G. J., Anastopoulos, A. D., Power, T. J., Reid, R., Ikeda, M. J., & McGoey, K. E. (1998). Parent ratings of attention-deficit/hyperactivity disorder symptoms: Factor structure and normative data. Journal of Psychopathology and Behavioral Assessment, 20, 83–102.CrossRefGoogle Scholar
  26. Eliason, M. J., & Richman, L. C. (1987). The continuous performance test in learning disabled and nondisabled children. Journal of Learning Disabilities, 20, 614–619.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16(1), 143–149.CrossRefGoogle Scholar
  28. Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14, 340–347.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Fan, J., Bernardi, S., Van Dam, N. T., Anagnostou, E., Gu, X., Martin, L., Park, Y., Liu, X., Kolevzon, A., Soorya, L., Groberg, D., & Hollander, E. (2012). Functional deficits of the attentional networks in autism. Brain and Behavior, 2, 647–660.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Farias, S. T., Harrell, E., Neumann, C., & Houtz, A. (2003). The relationship between neuropsychological performance and daily functioning in individuals with Alzheimer’s disease: Ecological validity of neuropsychological tests. Archives of Clinical Neuropsychology, 18, 655–672.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Foerster, R. M., Poth, C. H., Behler, C., Botsch, M., & Schneider, W. X. (2016). Using the virtual reality device Oculus Rift for neuropsychological assessment of visual processing capabilities. Scientific Reports, 6, 37016.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Gaggioli, A., Keshner, E. A., Weiss, P. L., & Riva, G. (2009). Advanced technologies in rehabilitation – Empowering cognitive, physical, social and communicative skills through virtual reality, robots, wearable systems and brain-computer interfaces. Amsterdam: IOS Press.Google Scholar
  33. Gilboa, Y., Rosenblum, S., Fattal-Valevski, A., Toledano-Alhadef, H., & Josman, N. (2011). Using a Virtual Classroom environment to describe the attention deficits profile of children with Neurofibromatosis type 1. Research in developmental disabilities, 32(6), 2608–2613.Google Scholar
  34. Gilboa, Y., Kerrouche, B., Longaud-Vales, A., Kieffer, V., Tiberghien, A., Aligon, D., et al. (2015). Describing the attention profile of children and adolescents with acquired brain injury using the virtual classroom. Brain Injury, 29, 1691–1700.  https://doi.org/10.3109/02699052.2015.1075148.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gioia, G. A., & Isquith, P. K. (2004). Ecological assessment of executive function in traumatic brain injury. Developmental Neuropsychology, 25, 135–158.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Goodrich-Hunsaker, N. J., & Hopkins, R. O. (2010). Spatial memory deficits in a virtual radial arm maze in amnesic participants with hippocampal damage. Behavioral Neuroscience, 124, 405–413.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Gorini, A., Gaggioli, A., Vigna, C., & Riva, G. (2008). A second life for eHealth: prospects for the use of 3-D virtual worlds in clinical psychology. Journal of Medical Internet Research, 10, 1–21.CrossRefGoogle Scholar
  38. Grodzinsky, G. M., & Barkley, R. A. (1999). Predictive power of frontal lobe tests in the diagnosis of attention deficit hyperactivity disorder. The Clinical Neuropsychologist, 13(1), 12–21.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Grodzinsky, G. M., & Diamond, R. (1992). Frontal lobe functioning in boys with attention-deficit hyperactivity disorder. Developmental Neuropsychology, 8, 427–445.CrossRefGoogle Scholar
  40. Johnson, K. A., Robertson, I. H., Barry, E., Mulligan, A., Dáibhis, A., Daly, M., Watchorn, A., Gill, M., & Bellgrove, M. A. (2008). Impaired conflict resolution and alerting in children with ADHD: Evidence from the Attention Network Task (ANT). Journal of Child Psychology and Psychiatry, 49, 1339–1347.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Jovanovski, D., Zakzanis, K., Campbell, Z., Erb, S., & Nussbaum, D. (2012a). Development of a novel, ecologically oriented virtual reality measure of executive function: The multitasking in the city test. Applied Neuropsychology: Adult, 19(3), 171–182.CrossRefGoogle Scholar
  42. Jovanovski, D., Zakzanis, K., Ruttan, L., Campbell, Z., Erb, S., & Nussbaum, D. (2012b). Ecologically valid assessment of executive dysfunction using a novel virtual reality task in patients with acquired brain injury. Applied Neuropsychology: Adult, 19(3), 207–220.CrossRefGoogle Scholar
  43. Keyhan, N., Minden, D., & Ickowicz, A. (2006). Clinical case rounds in child and adolescent psychiatry: Neurofibromatosis type 1, cognitive impairment, and attention deficit hyperactivity disorder. Journal of the Canadian Academy of Child an Adolescent Psychiatry, 15, 87–89.Google Scholar
  44. Knight, R. G., & Titov, N. (2009). Use of virtual reality tasks to assess prospective memory: Applicability and evidence. Brain Impairment, 10, 3–13.CrossRefGoogle Scholar
  45. Lahey, B. B., Pelham, W. E., Chronis, A., Massetti, G., Kipp, H., Ehrhardt, A., & Lee, S. S. (2006). Predictive validity of ICD-10 hyperkinetic disorder relative to DSM-IV attention-deficit/hyperactivity disorder among younger children. Journal of Child Psychology and Psychiatry, 47, 472–479.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Lalonde, G., Henry, M., Drouin-Germain, A., Nolin, P., & Beauchamp, M. H. (2013). Assessment of executive function in adolescence: A comparison of traditional and virtual reality tools. Journal of Neuroscience Methods, 219(1), 76–82.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Law, A. S., Logie, R. H., & Pearson, D. G. (2006). The impact of secondary tasks on multitasking in a virtual environment. Acta Psychologica, 122, 27–44.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Lundervold, A. J., Adolfsdottir, S., Halleland, H., Halmoy, A., Plessen, K., & Haavik, J. (2007). Attention network test in adults with ADHD—the impact of affective fluctuations. Behavioral and Brain Function, 27, 27.Google Scholar
  49. Neguţ, A., Matu, S. A., Sava, F. A., & David, D. (2016a). Virtual reality measures in neuropsychological assessment: A meta-analytic review. The Clinical Neuropsychologist, 30(2), 165–184.PubMedCrossRefGoogle Scholar
  50. Neguţ, A., Matu, S. A., Sava, F. A., & David, D. (2016b). Task difficulty of virtual reality-based assessment tools compared to classical paper-and-pencil or computerized measures: A meta-analytic approach. Computers in Human Behavior, 54, 414–424.CrossRefGoogle Scholar
  51. Nichols, S. L., & Waschbusch, D. A. (2004). A review of the validity of laboratory cognitive tasks used to assess symptoms of ADHD. Child Psychiatry and Human Development, 34, 297–315.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Nigg, J. T. (1999). The ADHD response-inhibition deficit as measured by the stop task: Replication with DSM–IV combined type, extension, and qualification. Journal of Abnormal Child Psychology, 27, 393–402.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Nolin, P., Martin, C., & Bouchard, S. (2009). Assessment of inhibition deficits with the virtual classroom in children with traumatic brain injury: A pilot-study. Studies in Health Technology and Informatics, 144, 240–242.PubMedPubMedCentralGoogle Scholar
  54. Nolin, P., Stipanicic, A., Henry, M., Joyal, C. C., & Allain, P. (2012). Virtual reality as a screening tool for sports concussion in adolescents. Brain Injury, 26, 1564–1573.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Norman, D. A., & Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In R. J. Davidson, G. E. Schwartz, & D. Shapiro (Eds.), Consciousness and self regulation: Advances in research and theory (Vol. 4, pp. 1–18). New York: Plenum.Google Scholar
  56. Oberlin, B. G., Alford, J. L., & Marrocco, R. T. (2005). Normal attention orienting but abnormal stimulus alerting and conflict effect in combined subtype ADHD. Behavioral Brain Research, 165, 1–11.CrossRefGoogle Scholar
  57. Odhuba, R. A., Broek, M., & Johns, L. C. (2005). Ecological validity of measures of executive functioning. British Journal of Clinical Psychology, 44, 269–278.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Parsey, C. M., & Schmitter-Edgecombe, M. (2013). Applications of technology in neuropsychological assessment. The Clinical Neuropsychologist, 27(8), 1328–1361.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Parsons, T. D. (2014). Virtual teacher and classroom for assessment of neurodevelopmental disorders. In S. Brahnam & L. C. Jain (Eds.), Serious games, alternative realities, and play therapy (pp. 121–137). Germany: Springer.Google Scholar
  60. Parsons, T. D. (2015). Virtual reality for enhanced ecological validity and experimental control in the clinical, affective, and social neurosciences. Frontiers in Human Neuroscience, 9, 1–19.CrossRefGoogle Scholar
  61. Parsons, T. D., & Carlew, A. R. (2016). Bimodal virtual reality stroop for assessing distractor inhibition in autism spectrum disorders. Journal of Autism and Developmental Disorders, 46(4), 1255–1267.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Parsons, T. D., & Courtney, C. (2014). An initial validation of the virtual reality paced auditory serial addition test in a college sample. Journal of Neuroscience Methods, 222, 15–23.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Parsons, T. D., & Phillips, A. (2016). Virtual reality for psychological assessment in clinical practice. Practice Innovations, 1, 197–217.CrossRefGoogle Scholar
  64. Parsons, T. D., & Rizzo, A. A. (2008b). Initial validation of a virtual environment for assessment of memory functioning: Virtual reality cognitive performance assessment test. CyberPsychology and Behavior, 11, 17–25.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Parsons, T. D., & Rizzo, A. A. (2008a). Affective outcomes of virtual reality exposure therapy for anxiety and specific phobias: A meta-analysis. Journal of Behavior Therapy and Experimental Psychiatry, 39, 250–261.PubMedCrossRefPubMedCentralGoogle Scholar
  66. Parsons, T. D., Bowerly, T., Buckwalter, J. G., & Rizzo, A. A. (2007). A controlled clinical comparison of attention performance in children with ADHD in a virtual reality classroom compared to standard neuropsychological methods. Child Neuropsychology, 13, 363–381.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Parsons, T. D., Rizzo, A. A., Rogers, S. A., & York, P. (2009). Virtual reality in pediatric rehabilitation: A review. Developmental Neurorehabilitation, 12, 224–238.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Parsons, T. D., Courtney, C., & Dawson, M. (2013). Virtual reality stroop task for assessment of supervisory attentional processing. Journal of Clinical and Experimental Neuropsychology, 35, 812–826.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Parsons, T. D., McMahan, T., & Kane, R. (2018). Practice parameters facilitating adoption of advanced technologies for enhancing neuropsychological assessment paradigms. The Clinical Neuropsychologist, 32(1), 16–41.Google Scholar
  70. Pineda, D., Ardila, A., Rosselli, M. N., Cadavid, C., Mancheno, S., & Mejia, S. (1998). Executive dysfunctions in children with attention deficit hyperactivity disorder. International Journal of Neuroscience, 96, 177–196.PubMedCrossRefGoogle Scholar
  71. Plancher, G., Gyselinck, V., Nicolas, S., & Piolino, P. (2010). Age effect on components of episodic memory and feature binding: A virtual reality study. Neuropsychology, 24(3), 379–390.PubMedCrossRefGoogle Scholar
  72. Plancher, G., Tirard, A., Gyselinck, V., Nicolas, S., & Piolino, P. (2012). Using virtual reality to characterize episodic memory profiles in amnestic mild cognitive impairment and Alzheimer’s disease: Influence of active and passive encoding. Neuropsychologia, 50(5), 592–602.PubMedCrossRefGoogle Scholar
  73. Plancher, G., Barra, J., Orriols, E., & Piolino, P. (2013). The influence of action on episodic memory: A virtual reality study. The Quarterly Journal of Experimental Psychology, 66(5), 895–909.PubMedCrossRefGoogle Scholar
  74. Plehn, K., Marcopulos, B. A., & McLain, C. A. (2004). The relationship between neuropsychological test performance, social functioning, and instrumental activities of daily living in a sample of rural older adults. The Clinical Neuropsychologist, 18, 101–113.PubMedCrossRefGoogle Scholar
  75. Pollak, Y., Weiss, P. L., Rizzo, A. A., Weizer, M., Shriki, L., Shalev, R. S., & Gross-Tsur, V. (2009). The utility of a continuous performance test embedded in virtual reality in measuring ADHD-related deficits. Journal of Developmental and Behavioral Pediatrics, 30, 2–6.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Pollak, Y., Shomaly, H. B., Weiss, P. L., Rizzo, A. A., & Gross-Tsur, V. (2010). Methylphenidate effect in children with ADHD can be measured by an ecologically valid continuous performance test embedded in virtual reality. CNS Spectrums: The International Journal of Neuropsychiatric Medicine, 15.Google Scholar
  77. Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 3–25.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25–42.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Posner, M. I., & Rothbart, M. K. (2007). Research on attention networks as a model for the integration of psychological science. Annual Review of Psychology, 58, 1–23.PubMedCrossRefPubMedCentralGoogle Scholar
  80. Powers, M. B., & Emmelkamp, P. M. (2008). Virtual reality exposure therapy for anxiety disorders: A meta-analysis. Journal of Anxiety Disorders, 22, 561–569.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Rapport, M. D., Chung, K. M., Shore, G., Denney, C. B., & Isaacs, P. (2000). Upgrading the science and technology of assessment and diagnosis: Laboratory and clinic-based assessment of children with ADHD. Journal of Clinical Child Psychology, 29(4), 555–568.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Raz, A., & Buhle, J. (2006). Typologies of attentional networks. Nature Reviews Neuroscience, 7, 367–379.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Ready, R. E., Stierman, L., & Paulsen, J. S. (2001). Ecological validity of neuropsychological and personality measures of executive functions. The Clinical Neuropsychologist, 15, 314–323.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Renison, B., Ponsford, J., Testa, R., Richardson, B., & Brownfield, K. (2012). The ecological and construct validity of a newly developed measure of executive function: The virtual library task. Journal of the International Neuropsychological Society, 18(3), 440–450.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Rizzo, A. (2005, March). Virtual reality technology for behavioral/cognitive/neuropsychologicai assessment and intervention: Applications and issues. In Virtual reality. Proceedings. VR 2005. IEEE (pp. 309–309).Google Scholar
  86. Rizzo, A. A., & Buckwalter, J. G. (1997a). The status of virtual reality for the cognitive rehabilitation of persons with neurological disorders and acquired brain injury. Studies in Health Technology and Informatics, 39, 22.PubMedPubMedCentralGoogle Scholar
  87. Rizzo, A. A., & Buckwalter, J. G. (1997b). Virtual reality and cognitive assessment. Virtual Reality in Neuro-Psycho-Physiology: Cognitive, Clinical and Methodological Issues in Assessment and Rehabilitation, 44, 123.Google Scholar
  88. Rizzo, A., & Kim, G. J. (2005). A SWOT analysis of the field of virtual reality rehabilitation and therapy. Presence: Teleoperators & Virtual Environments, 13(2), 119–146.CrossRefGoogle Scholar
  89. Rizzo, A. A., & Schultheis, M. T. (2002). Expanding the boundaries of psychology: The application of virtual reality. Psychological Inquiry, 13(2), 134–140.Google Scholar
  90. Rizzo, A. A., Buckwalter, J. G., & Neumann, U. (1997). Virtual reality and cognitive rehabilitation: A brief review of the future. The Journal of Head Trauma Rehabilitation, 12(6), 1–15.CrossRefGoogle Scholar
  91. Rizzo, A. A., Wiederhold, B., Riva, G., & Van Der Zaag, C. (1998a). General reviews of virtual reality and neuropsychology. CyberPsychology and Behavior, 1(4), 413–426.CrossRefGoogle Scholar
  92. Rizzo, A. A., Wiederhold, M. D., & Buckwalter, J. G. (1998b). Basic issues in the use of virtual environments for mental health applications. Studies in Health Technology and Informatics, 21–42.Google Scholar
  93. Rizzo, A. A., Schultheis, M., Kerns, K. A., & Mateer, C. (2004). Analysis of assets for virtual reality applications in neuropsychology. Neuropsychological Rehabilitation, 14(1–2), 207–239.CrossRefGoogle Scholar
  94. Rizzo, A., Bowerly, T., Buckwalter, J., Klimchuk, D., Mitura, R., & Parsons, T. D. (2006). A virtual reality scenario for all seasons: The virtual classroom. CNS Spectrums, 11(1), 35–44.PubMedCrossRefPubMedCentralGoogle Scholar
  95. Rizzo, A., Parsons, T. D., Kenny, P., & Buckwalter, J. G. (2012). Using virtual reality for clinical assessment and intervention. In Handbook of technology in psychology, psychiatry, and neurology: Theory, research, and practice (pp. 277–318). Hauppauge: Nova Science Publishers.Google Scholar
  96. Rose, F. D., Brooks, B. M., & Rizzo, A. A. (2005). Virtual reality in brain damage rehabilitation: Review. CyberPsychology and Behavior, 8, 241–262.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Rothbart, M. K., & Bates, J. E. (2006). Temperament. In W. Damon, R. Lerner, & N. Eisenberg (Eds.), Handbook of child psychology. Hoboken: Wiley.Google Scholar
  98. Sayal, K., & Taylor, E. (2005). Parent ratings of school behaviour in children at risk of attention deficit/hyperactivity disorder. Acta Psychiatrica Scandinavica, 111, 460–465.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Schachar, R., Mota, V. L., Logan, G. D., Tannock, R., & Klim, P. (2000). Confirmation of an inhibitory control deficit in attention-deficit/hyperactivity disorder. Journal of Abnormal Child Psychology, 28, 227–235.PubMedCrossRefPubMedCentralGoogle Scholar
  100. Schatz, P., & Browndyke, J. (2002). Applications of computer-based neuropsychological assessment. Journal of Head Trauma Rehabilitation, 17, 395–410.PubMedCrossRefPubMedCentralGoogle Scholar
  101. Scheres, A., Oosterlaan, J., Geurts, H., Morein-Zamir, S., Meiran, N., Schut, H., et al. (2004). Executive functioning in boys with ADHD: Primarily an inhibition deficit? Archives of Clinical Neuropsychology, 19(4), 569–594.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Schultheis, M. T., & Rizzo, A. A. (2001). The application of virtual reality technology in rehabilitation. Rehabilitation Psychology, 46(3), 296–311.CrossRefGoogle Scholar
  103. Schultheis, M. T., Himelstein, J., & Rizzo, A. A. (2002). Virtual reality and neuropsychology: Upgrading the current tools. The Journal of Head Trauma Rehabilitation, 17(5), 378–394.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Scotti, J. R., Morris, T. L., McNeil, C. B., & Hawkins, R. P. (1996). DSM–IV and disorders of childhood and adolescence: Can structural criteria be functional? Journal of Consulting and Clinical Psychology, 64, 1177.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Silver, C. H. (2000). Ecological validity of neuropsychological assessment in childhood traumatic brain injury. The Journal of Head Trauma Rehabilitation, 15(4), 973–988.PubMedCrossRefPubMedCentralGoogle Scholar
  106. Wilson, B. A. (1993). Ecological validity of neuropsychological assessment: Do neuropsychological indexes predict performance in everyday activities? Applied and Preventive Psychology, 2, 209–215.CrossRefGoogle Scholar
  107. Wilson, B. A., Evans, J. J., Emslie, H., Alderman, N., & Burgess, P. (1998). The development of an ecologically valid test for assessing patients with a dysexecutive syndrome. Neuropsychological Rehabilitation, 8, 213–228.CrossRefGoogle Scholar
  108. Zakzanis, K. K., Quintin, G., Graham, S. J., & Mraz, R. (2009). Age and dementia related differences in spatial navigation within an immersive virtual environment. Medical Science Monitor, 15(4), CR140–CR150.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Computational Neuropsychology and Simulation (CNS) LaboratoryUniversity of North TexasDentonUSA
  2. 2.Department of PsychologyUniversity of North TexasDentonUSA
  3. 3.Institute for Creative TechnologiesUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations