Advertisement

Proof Verification Technology and Elementary Physics

  • Ernest DavisEmail author
Conference paper
Part of the Fields Institute Communications book series (FIC, volume 82)

Abstract

Software technology that can be used to validate the logical correctness of mathematical proofs has attained a high degree of power and sophistication; extremely difficult and complex mathematical theorems have been verified. This paper discusses the prospects of doing something comparable for elementary physics: what it would mean, the challenges that would have to be overcome; and the potential impact, both practical and theoretical.

Notes

Acknowledgements

Thanks for useful information and helpful feedback to Scott Aaronson, Alan Bundy, Ken Forbus, Tom LaGatta, Michael Strevens, David Tena Cucala, Peter Winkler, and the anonymous reviewer.

References

  1. 1.
    Appel K, Haken W (1977) The solution of the four-color-map problem. Sci Am 237(4):108–121MathSciNetCrossRefGoogle Scholar
  2. 2.
    Avigad J, Donnelly K, Gray D, Raff P (2007) A formally verified proof of the prime number theorem. ACM Trans Comput Log 9(1):1–23MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bailey DH, Borwein J (2015) Experimental computation as an ontological game changer: the impact of modern mathematical computation tools on the ontology of mathematics. In: Davis E, Davis P (eds) Mathematics, substance and surmise: views on the meaning and ontology of mathematics. Springer, ChamGoogle Scholar
  4. 4.
    Beech M (2014) the pendulum paradigm: Variations on a theme and the measure of heaven and earth. Brown Walker Press, Boca RatonGoogle Scholar
  5. 5.
    Berger M (2010) Geometry revealed: a Jacob’s ladder to modern higher geometry. Springer, BerlinCrossRefGoogle Scholar
  6. 6.
    Bhaskar R (1979) Realism in the natural sciences. In: Proceedings of the sixth international congress of logic, methodology and philosophy of scienceGoogle Scholar
  7. 7.
    Bobrow D (ed) (1985) Qualitative reasoning about physical systems. MIT Press, CambridgeGoogle Scholar
  8. 8.
    Boender J, Kammüller F, Nagarajan R (2015) Formalization of quantum protocols using Coq. In: Huenen C, Selinger P, Vicary J (eds) 12th international workshop on quantum physics and logic, pp 71–83.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bridewell W, Langley P (2010) Two kinds of knowledge in scientific discovery. Top Cogn Sci 2:36–52CrossRefGoogle Scholar
  10. 10.
    Bundy A, Byrd L, Luger G, Mellish C, Palmer M (1979) Solving mechanics problems using meta-level inference. In: IJCAI-79, pp 1017–1027Google Scholar
  11. 11.
  12. 12.
    Corry L (2004) David Hilbert and the axiomatization of physics (1898–1918): from Grundlagen der Geometrie to Grundlagen der Physik. Kluwer, DordrechtCrossRefGoogle Scholar
  13. 13.
    Davis E (1988) A logical framework for commonsense predictions of solid object behavior. AI Eng 3(3):125–140Google Scholar
  14. 14.
    Davis E (1993) The kinematics of cutting solid objects. Ann Math Artif Intell 9(3–4):253–305CrossRefGoogle Scholar
  15. 15.
    Davis PJ (1993) Visual theorems. Educ Stud Math 24(4):333–344CrossRefGoogle Scholar
  16. 16.
    Davis E (2008) Physical reasoning. In: van Harmelen F, Lifschitz V, Porter B (eds) The handbook of knowledge engineering. Elsevier, Amsterdam, pp 597–620Google Scholar
  17. 17.
    Davis E (2008) Pouring liquids: a study in commonsense physical reasoning. Artif Intell 172:1540–1578MathSciNetCrossRefGoogle Scholar
  18. 18.
    Davis E (2011) How does a box work? a study in the qualitative dynamics of solid objects. Artif Intell 175:299–345MathSciNetCrossRefGoogle Scholar
  19. 19.
    Davis E (2017) Logical formalizations of commonsense reasoning: a survey. J Artif Intell Res 59:651–723MathSciNetCrossRefGoogle Scholar
  20. 20.
    Davis E (in preparation) The logic of coal, iron, air, and water: representing common sense and elementary scienceGoogle Scholar
  21. 21.
    Davis E, Marcus G (2014) The scope and limits of simulation in cognition. https://arxiv.org/abs/1506.04956
  22. 22.
    Davis E, Marcus G (2016) The scope and limits of simulation in automated reasoning. Artif Intell 233:60–72MathSciNetCrossRefGoogle Scholar
  23. 23.
    Davis E, Marcus G, Frazier-Logue N (2017) Commonsense reasoning about containers using radically incomplete information. Artif Intell 248:46–84MathSciNetCrossRefGoogle Scholar
  24. 24.
    Dehaene S (1997) The number sense: how the mind creates mathematics. Oxford University Press, OxfordzbMATHGoogle Scholar
  25. 25.
    de Kleer J, Brown JS (1985) A qualitative physics based on confluences. In: Bobrow D (ed) Qualitative reasoning about physical systems. MIT Press, CambridgeGoogle Scholar
  26. 26.
    Domingos P (2015) The master algorithm: how the quest for the ultimate learning machine will remake our world. Basic Books, New YorkGoogle Scholar
  27. 27.
    Dwyer J, Uman MA (2013) The physics of lightning. Phys Rep 534:147–241. https://doi.org/10.1016/j.physrep.2013.09.004 MathSciNetCrossRefGoogle Scholar
  28. 28.
    Feynman R, Leighton RB, Sands M (1964) The Feynman lectures on physics. Addison-Wesley, BostonCrossRefGoogle Scholar
  29. 29.
    Friedman S, Forbus K, Sherin B (2017) Representing, running, and revising mental models: a computational model. Cogn Sci 42(2):1–36Google Scholar
  30. 30.
    Gonthier G et al (2013) A machine-checked proof of the odd order theorem. In: International conference on interactive theorem proving (Lecture notes in computer science), vol 7998. Springer, Berlin, pp 163–179.CrossRefGoogle Scholar
  31. 31.
    Gopnik A (2012) Scientific thinking in young children: theoretical advances, empirical research, and policy implications. Science 337(6102):1623–1627CrossRefGoogle Scholar
  32. 32.
    Gunning D et al (2010) Project Halo update—progress toward Digital Aristotle. AI Mag 31(3):33–58CrossRefGoogle Scholar
  33. 33.
    Gutierrez TD (1999) Standard model lagrangian. http://nuclear.ucdavis.edu/~tgutierr/files/stmL1.html
  34. 34.
    Hales T et al (2015) A formal proof of the Kepler conjecture. http://arxiv.org/abs/1501.02155
  35. 35.
    Hamel GKW (1912) Elementare Mechanik. Teubner, LeipzigzbMATHGoogle Scholar
  36. 36.
    Hamel GKW (1921) Grundbegriffe der Mechanik. Teubner, LeipzigzbMATHGoogle Scholar
  37. 37.
    Harrison J (2006) Formal verification of floating point trigonometric functions. In: International conference on formal methods in computer-aided design, pp 254–270Google Scholar
  38. 38.
    Harrison J (2009) Formalizing an analytic proof of the prime number theorem. J Autom Reason 43(3):243–261MathSciNetCrossRefGoogle Scholar
  39. 39.
    Hayes P (1979) The naïve physics manifesto. In: Michie D (ed) Expert systems in the micro-electronic age. Edinburgh University Press, EdinburghGoogle Scholar
  40. 40.
    Hayes P (1985) Ontology for liquids. In: Hobbs J, Moore R (eds) Formal theories of the commonsense world. Ablex Publishing, New YorkGoogle Scholar
  41. 41.
    Hendry RF (1999) Chemistry and the completeness of physics. In: Symons J, van Dalen D, Davidson D (eds) Philosophical dimensions of logic and science: selected contributed papers from the 11th international congress of logic, methodology, and philosophy of science, Kraków, pp 165–178Google Scholar
  42. 42.
    Henkin L, Suppes P, Tarski A (1958) The axiomatic method with special reference to geometry and physics. North-Holland, AmsterdamzbMATHGoogle Scholar
  43. 43.
    Hertz H (1894) Die Prinzipien der Mechanik. Johann Ambrosius Barth, LeipzigzbMATHGoogle Scholar
  44. 44.
    Hornby GS, Globus A, Linden DS, Lohn JD (2006) Automated antenna design with evolutionary algorithms. In: AIAA space, pp 19–21Google Scholar
  45. 45.
    Hossenfelder S (2018) Lost in math: how beauty leads physics astray. Basic Books, New YorkzbMATHGoogle Scholar
  46. 46.
    Howson C, Urbach P (2006) Scientific reasoning: the Bayesian approach. Open Court Publishing, ChicagoGoogle Scholar
  47. 47.
    Jaynes ET (2003) Probability theory: the logic of science. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  48. 48.
    Jeannin JB et al (2015) A formally verified hybrid system for safe advisories in the next-generation airborne collision avoidance system. Int J Softw Tools Technol Transfer 19(6):717–741CrossRefGoogle Scholar
  49. 49.
    Kemp C, Tenenbaum J (2009) The discovery of structural form. Proc Natl Acad Sci 105(31):10687–10692CrossRefGoogle Scholar
  50. 50.
    Khashabi D, Khot T, Sabharwal A, Roth D (2018) Question answering as global reasoning over semantic abstractions. In: AAAI-18Google Scholar
  51. 51.
    Khot T, Sabharwal A, Clark P (2018) SciTail: a textual entailment dataset from science question answering. In: AAAI-18Google Scholar
  52. 52.
    Krenn M et al (2016) Automated search for new quantum experiments. Phys Rev Lett 116(9):090405CrossRefGoogle Scholar
  53. 53.
    Kushman N, Artzi Y, Zettlemoyer L, Barzilay R (2014) Learning to automatically solve algebra word problems. In: ACL-2014Google Scholar
  54. 54.
    Langley P, Bradshaw GL, Simon HA (1981) BACON.5: The discovery of conservation laws. IJCAI-81, pp 121–126Google Scholar
  55. 55.
    Langley P, Bradshaw GL, Simon HA (1983) Rediscovering chemistry with the BACON system. In: Michalski RA et al (eds) Machine learning. Springer, BerlinGoogle Scholar
  56. 56.
    Laughlin R, Pines D (2000) The theory of everything. Proc Natl Acad Sci 97(1):28–31MathSciNetCrossRefGoogle Scholar
  57. 57.
    Lehmann J, Chan M, Bundy A (2013) A higher-order approach to ontology evolution in physics. J Data Semant 2:163–187CrossRefGoogle Scholar
  58. 58.
    Ludwig G (1985) An axiomatic basis for quantum mechanics: volume 1, derivation of Hilbert space structure. Springer, BerlinCrossRefGoogle Scholar
  59. 59.
    Ludwig G (1987) An axiomatic basis for quantum mechanics: volume 2, quantum mechanics and Macrosystems. Springer, BerlinCrossRefGoogle Scholar
  60. 60.
    Ludwig G (1989) An axiomatic basis as a desired form of a physical theory. In: Proceedings of the 1987 international congress for logic, methodology, and the philosophy of science. North Holland, AmsterdamGoogle Scholar
  61. 61.
    Martin U, Pease A (2015) Hardy, Littlewood, and polymath. In: Davis E, Davis P (eds) Mathematics, substance and surmise: views on the meaning and ontology of mathematics. Springer, BerlinGoogle Scholar
  62. 62.
    MathOverflow (2016) Is it possible to have a research career while checking the proof of every theorem you cite? https://mathoverflow.net/questions/237987/is-it-possible-to-have-a-research-career-while-checking-the-proof-of-every-theor
  63. 63.
    McCarthy J (1968) Programs with common sense. In: Minsky M (ed) Semantic information processing. MIT Press, CambridgeGoogle Scholar
  64. 64.
    McCune W (1997) Solution of the Robbins problem. J Autom Reason 193, 264–276MathSciNetzbMATHGoogle Scholar
  65. 65.
    McKinsey JCC, Sugar AC, Suppes P (1953) Axiomatic foundations of classical particle mechanics. J Ration Mech Anal 2:253–272MathSciNetzbMATHGoogle Scholar
  66. 66.
    Mehlberg H (1965) Space, time, relativity. In: Proceedings of the 1964 international congress for logic, methodology, and the philosophy of science. North Holland, AmsterdamGoogle Scholar
  67. 67.
    Melnikov A et al (2018) Active learning machine learns to create new quantum experiments. PNAS 115(6):1221–1226CrossRefGoogle Scholar
  68. 68.
    Montague R (1974) Deterministic theories. In: Thomason R (ed) Formal philosophy: selected papers of Richard Montague. Yale University Press, New HavenGoogle Scholar
  69. 69.
    Newell A (1982) The knowledge level. Artif Intell 18(1):87–127MathSciNetCrossRefGoogle Scholar
  70. 70.
    Nipkow T, Paulson LC, Wenzel M (2002) Isabelle/HOL: a proof assistant for higher-order logic. Lecture notes in computer science, vol 2283. Springer, BerlinzbMATHGoogle Scholar
  71. 71.
    Paleo BW (2012) Physics and proof theory. Appl Math Comput 219:45–53MathSciNetzbMATHGoogle Scholar
  72. 72.
    Rosenkrantz R (1977) Inference, method, and decision: towards a bayesian philosophy of science. Springer, BerlinCrossRefGoogle Scholar
  73. 73.
    Russell B (1903) The principles of mathematics. Cambridge University Press, CambridgezbMATHGoogle Scholar
  74. 74.
    Sant’Anna A (1999) An axiomatic framework for classical particle mechanics without space-time. Philos Nat 36:307–319MathSciNetGoogle Scholar
  75. 75.
    Schwartz J (1960) The pernicious influence of mathematics on science. In: Proceedings of the 1960 international congress for logic, methodology, and the philosophy of science. North Holland, AmsterdamGoogle Scholar
  76. 76.
    Sigmund K (2017) Exact thinking in demented times: the Vienna circle and the epic quest for the foundations of science. Basic Books, New YorkzbMATHGoogle Scholar
  77. 77.
    Slemrod M (2013) From Boltzmann to Euler: Hilbert’s 6th problem revisited. Comput Math Appl 65(10):1497–1501MathSciNetCrossRefGoogle Scholar
  78. 78.
    Smith KA, Battaglia P, Vul E (2013) Consistent physics underlying ballistic motion prediction. In: Cognitive scienceGoogle Scholar
  79. 79.
    Sober E (2002): Bayesianism—its scope and limits. Proc British Acad 113:21–38MathSciNetGoogle Scholar
  80. 80.
    Souyris J, Wiels V, Delmas D, Delseny H (2009) Formal verification of avionics software products. In: International symposium on formal methods, pp 532–546Google Scholar
  81. 81.
    Strevens M (2005) The Bayesian approach in the philosophy of science. In: Borchet DM (ed) Encyclopedia of philosophy, 2nd ed. Macmillan, DetroitzbMATHGoogle Scholar
  82. 82.
    Strevens M (2013) Tychomancy: inferring probability from causal structure. Harvard University Press, CambridgeCrossRefGoogle Scholar
  83. 83.
    Suppes P, Luce RD, Krantz D, Tversky A (1974) Foundations of measurement. Dover Publications, MineolazbMATHGoogle Scholar
  84. 84.
    Tegmark M (2009) The multiverse hierarchy. ArXiv preprint arXiv:0905.1283Google Scholar
  85. 85.
    Tenenbaum JB, Kemp C, Griffiths TL, Goodman ND (2011). How to grow a mind: Statistics, structure, and abstraction. Science 331(6022):1279–1285MathSciNetCrossRefGoogle Scholar
  86. 86.
    van Harmelen F, Lifschitz V, Porter B (eds) (2008) Handbook of knowledge representation. Elsevier, AmsterdamzbMATHGoogle Scholar
  87. 87.
    Vogt A (1997) Review of an axiomatic basis for quantum mechanics: vol 1, derivation of hilbert space structure by Günther Ludwig, SIAM Rev 29(3):499–501CrossRefGoogle Scholar
  88. 88.
    Wallace D (to appear) The logic of the past hypothesis. In: Loewer B, Weslake B, Winsberg E (eds) Time’s arrows and the probability structure of the world Harvard University Press, CambridgeGoogle Scholar
  89. 89.
    Weidenbach C, Dimova D, Fietzke A, Kumar R, Suda M, Wischnewski C (2009) Spass Version 3.5. In: International conference on automated deduction (CADE) (Lecture Notes in Computer Science), vol 5563. pp 140–145CrossRefGoogle Scholar
  90. 90.
    Whitehead AN, Russell B (1910) Principia Mathematica. Cambridge University Press, CambridgezbMATHGoogle Scholar
  91. 91.
    Wittgenstein L (1922) Tractatus Logico-Philosophicus. Harcourt, Brace, and Company, San DiegoGoogle Scholar
  92. 92.
    Yandell BH (2002) The honors class: Hilbert’s problems and their solvers. A.K. Peters. Taylor & Francis, Milton ParkzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceNew York UniversityNew YorkUSA

Personalised recommendations