How to Generate All Possible Rational Wilf-Zeilberger Pairs?
Conference paper
First Online:
Abstract
A Wilf–Zeilberger pair (F, G) in the discrete case satisfies the equation We present a structural description of all possible rational Wilf–Zeilberger pairs and their continuous and mixed analogues.
$$\displaystyle F(n+1, k) - F(n, k) = G(n, k+1) - G(n, k). $$
Notes
Acknowledgements
I would like to thank Prof. Victor J.W. Guo and Prof. Zhi-Wei Sun for many discussions on series for special constants, (super)-congruences and their q-analogues that can be proved using the WZ method. I am also very grateful to Ruyong Feng and Rong-Hua Wang for many constructive comments on the earlier version of this paper. I also thank the anonymous reviewers for their constructive and detailed comments.This work was supported by the NSFC grants 11501552, 11688101 and by the Frontier Key Project (QYZDJ-SSW-SYS022) and the Fund of the Youth Innovation Promotion Association, CAS.
References
- 1.Abramov SA (1975) The rational component of the solution of a first order linear recurrence relation with rational right hand side. Ž Vyčisl Mat i Mat Fiz 15(4):1035–1039, 1090Google Scholar
- 2.Abramov SA (1995) Indefinite sums of rational functions. In: ISSAC ’95: proceedings of the 1995 international symposium on symbolic and algebraic computation. ACM, New York, NY, pp 303–308Google Scholar
- 3.Abramov SA (2003) When does Zeilberger’s algorithm succeed? Adv Appl Math 30(3):424–441MathSciNetzbMATHGoogle Scholar
- 4.Abramov SA, Petkovšek M (2002) On the structure of multivariate hypergeometric terms. Adv Appl Math 29(3):386–411MathSciNetzbMATHGoogle Scholar
- 5.Amdeberhan T (1996) Faster and faster convergent series for ζ(3). Electron J Combin 3(1):Research Paper 13, approx. 2Google Scholar
- 6.Bailey DH, Borwein JM, Bradley DM (2006) Experimental determination of Apéry-like identities for ζ(2n + 2). Exp Math 15(3):281–289zbMATHGoogle Scholar
- 7.Baruah ND, Berndt BC, Chan HH (2009) Ramanujan’s series for 1∕π: a survey. Am Math Mon 116(7):567–587MathSciNetzbMATHGoogle Scholar
- 8.Bauer GC (1859) Von den Coefficienten der Reihen von Kugelfunctionen einer Variablen. J Reine Angew Math 56:101–121MathSciNetGoogle Scholar
- 9.Borwein J, Bailey D, Girgensohn R (2004) Experimentation in mathematics: computational paths to discovery. A K Peters/CRC Press, Natick, MA/Boca Raton, FLzbMATHGoogle Scholar
- 10.Bostan A, Kauers M (2010) The complete generating function for Gessel walks is algebraic. Proc Am Math Soc 138(9):3063–3078MathSciNetzbMATHGoogle Scholar
- 11.Bronstein M (2005) Symbolic integration I: transcendental functions, 2nd edn. Springer, BerlinzbMATHGoogle Scholar
- 12.Chen S (2011) Some applications of differential-difference algebra to creative telescoping. PhD Thesis, Ecole Polytechnique LIXGoogle Scholar
- 13.Chen S, Singer MF (2012) Residues and telescopers for bivariate rational functions. Adv Appl Math 49(2):111–133MathSciNetzbMATHGoogle Scholar
- 14.Chen S, Singer MF (2014) On the summability of bivariate rational functions. J Algebra 409:320–343MathSciNetzbMATHGoogle Scholar
- 15.Chen WYC, Hou Q-H, Mu Y-P (2005) Applicability of the q-analogue of Zeilberger’s algorithm. J Symb Comput 39(2):155–170MathSciNetzbMATHGoogle Scholar
- 16.Chen S, Feng R, Fu G, Kang J (2012) Multiplicative decompositions of multivariate q-hypergeometric terms. J Syst Sci Math Sci 32(8):1019–1032MathSciNetzbMATHGoogle Scholar
- 17.Chen S, Chyzak F, Feng R, Fu G, Li Z (2015) On the existence of telescopers for mixed hypergeometric terms. J Symb Comput 68(part 1):1–26MathSciNetzbMATHGoogle Scholar
- 18.Chen WYC, Hou Q-H, Zeilberger D (2016) Automated discovery and proof of congruence theorems for partial sums of combinatorial sequences. J Differ Equ Appl 22(6):780–788MathSciNetzbMATHGoogle Scholar
- 19.Christopher C (1999) Liouvillian first integrals of second order polynomial differential equations. Electron J Differ Equ 49:1–7MathSciNetzbMATHGoogle Scholar
- 20.Dreyfus T, Hardouin C, Roques J, Singer MF (2018) On the nature of the generating series of walks in the quarter plane. Invent Math 213(1):139–203. https://doi.org/10.1007/s00222-018-0787-z MathSciNetzbMATHGoogle Scholar
- 21.Ekhad SB, Zeilberger D (1994) A WZ proof of Ramanujan’s formula for π. In: Geometry, Analysis and Mechanics. World Scientific Publishing, River Edge, NJ, pp 107–108zbMATHGoogle Scholar
- 22.Gessel IM (1995) Finding identities with the WZ method. J. Symb. Comput. 20(5–6):537–566MathSciNetzbMATHGoogle Scholar
- 23.Guillera J (2002) Some binomial series obtained by the WZ-method. Adv Appl Math 29(4):599–603MathSciNetzbMATHGoogle Scholar
- 24.Guillera J (2006) Generators of some Ramanujan formulas. Ramanujan J 11(1):41–48MathSciNetzbMATHGoogle Scholar
- 25.Guillera J (2008) Hypergeometric identities for 10 extended Ramanujan-type series. Ramanujan J 15(2):219–234MathSciNetzbMATHGoogle Scholar
- 26.Guillera J (2010) On WZ-pairs which prove Ramanujan series. Ramanujan J 22(3):249–259MathSciNetzbMATHGoogle Scholar
- 27.Guillera J (2013) WZ-proofs of “divergent” Ramanujan-type series. In: Advances in combinatorics. Springer, Heidelberg, pp 187–195Google Scholar
- 28.Guo VJW (2017) Some generalizations of a supercongruence of van Hamme. Integr Transforms Spec Funct (1):1–12MathSciNetzbMATHGoogle Scholar
- 29.Guo VJW (2018) A q-analogue of a Ramanujan-type supercongruence involving central binomial coefficients. J Math Anal Appl 458(1):590–600MathSciNetzbMATHGoogle Scholar
- 30.Guo VJW (2018) A q-analogues of the (J.2) supercongruence of van Hamme. J Math Anal Appl 466(1):776–788MathSciNetzbMATHGoogle Scholar
- 31.Guo VJW, Liu J-C (2018) q-analogues of two Ramanujan-type formulas for 1∕π. J Differ Equ Appl 24(8):1368–1373MathSciNetzbMATHGoogle Scholar
- 32.Guo VJW, Zudilin W (2018) Ramanujan-type formulae for 1∕π: q-analogues. Integral Transforms Spec Funct 29(7):505–513. https://doi.org/10.1080/10652469.2018.1454448 MathSciNetzbMATHGoogle Scholar
- 33.Hermite C (1872) Sur l’intégration des fractions rationnelles. Ann Sci École Norm Sup (2) 1:215–218MathSciNetzbMATHGoogle Scholar
- 34.Hou Q-H, Wang R-H (2015) An algorithm for deciding the summability of bivariate rational functions. Adv Appl Math 64:31–49MathSciNetzbMATHGoogle Scholar
- 35.Hou Q-H, Krattenthaler C, Sun Z-W (2018) On q-analogues of some series for π and π 2. Proceedings of the American Mathematical Society. https://doi.org/10.1090/proc/14374 Google Scholar
- 36.Kauers M, Koutschan C, Zeilberger D (2009) Proof of Ira Gessel’s lattice path conjecture. Proc Natl Acad Sci U S A 106(28):11502–11505MathSciNetzbMATHGoogle Scholar
- 37.Kondratieva M, Sadov S (2005) Markov’s transformation of series and the WZ method. Adv Appl Math 34(2):393–407MathSciNetzbMATHGoogle Scholar
- 38.Koutschan C, Kauers M, Zeilberger D (2011) Proof of George Andrews’s and David Robbins’s q-TSPP conjecture. Proc Natl Acad Sci U S A 108(6):2196–2199MathSciNetzbMATHGoogle Scholar
- 39.Liu Z-G (2012) Gauss summation and Ramanujan-type series for 1∕π. Int J Number Theory 08(02):289–297MathSciNetzbMATHGoogle Scholar
- 40.Liu Z-G (2015) A q-extension of a partial differential equation and the Hahn polynomials. Ramanujan J 38(3):481–501MathSciNetzbMATHGoogle Scholar
- 41.Long L (2011) Hypergeometric evaluation identities and supercongruences. Pac J Math 249(2):405–418MathSciNetzbMATHGoogle Scholar
- 42.Pilehrood KH, Pilehrood TH (2008a) Simultaneous generation for zeta values by the Markov-WZ method. Discrete Math Theor Comput Sci 10(3):115–123MathSciNetzbMATHGoogle Scholar
- 43.Pilehrood KH, Pilehrood TH (2008b) Generating function identities for ζ(2n + 2), ζ(2n + 3) via the WZ method. Electron J Combin 15(1):Research Paper 35, 9Google Scholar
- 44.Pilehrood KH, Pilehrood TH (2011) A q-analogue of the Bailey-Borwein-Bradley identity. J Symb Comput 46(6):699–711MathSciNetzbMATHGoogle Scholar
- 45.Mohammed M (2005) The q-Markov-WZ method. Ann Comb 9(2): 205–221MathSciNetzbMATHGoogle Scholar
- 46.Mohammed M, Zeilberger D (2004) The Markov-WZ method. Electron J Combin 11(1): 205–221MathSciNetzbMATHGoogle Scholar
- 47.Mortenson E (2008) A p-adic supercongruence conjecture of van Hamme. Proc Am Math Soc 136(12):4321–4328MathSciNetzbMATHGoogle Scholar
- 48.Ore O (1930) Sur la forme des fonctions hypergéométriques de plusieurs variables. J Math Pures Appl (9) 9(4):311–326zbMATHGoogle Scholar
- 49.Ostrogradskiı̆ MV (1845) De l’intégration des fractions rationnelles. Bull de la classe physico-mathématique de l’Acad Impériale des Sciences de Saint-Pétersbourg 4:145–167, 286–300Google Scholar
- 50.Petkovšek M, Wilf HS, Zeilberger D (1996) A = B. A K Peters Ltd., Wellesley, MA. With a foreword by Donald E. KnuthGoogle Scholar
- 51.Riordan J (1968) Combinatorial identities. Wiley, Hoboken, NJzbMATHGoogle Scholar
- 52.Sato M (1990) Theory of prehomogeneous vector spaces (algebraic part)—the English translation of Sato’s lecture from Shintani’s note. Nagoya Math J 120:1–34. Notes by Takuro Shintani. Translated from the Japanese by Masakazu MuroMathSciNetzbMATHGoogle Scholar
- 53.Sun Z-W (2011) Super congruences and Euler numbers. Sci China Math 54(12):2509–2535MathSciNetzbMATHGoogle Scholar
- 54.Sun X (2012) Some discussions on three kinds of WZ-equations. Master thesis, Soochow University, April 2012. Supervised by Xinrong MaGoogle Scholar
- 55.Sun Z-W (2012) A refinement of a congruence result by van Hamme and Mortenson. Ill J Math 56(3):967–979MathSciNetzbMATHGoogle Scholar
- 56.Sun Z-W (2013) Conjectures involving arithmetical sequences. In: Kanemitsu S, Li H, Liu J (eds) Number theory: arithmetic in Shangri-La, Proceedings of the 6th China-Japan Seminar (Shanghai, August 15–17, 2011). World Scientific Publishing, Singapore, pp 244–258Google Scholar
- 57.Sun Z-W (2013) Products and sums divisible by central binomial coefficients. Electron J Combin 20(1):91–109(19)MathSciNetGoogle Scholar
- 58.Sun Z-W (2018) Two q-analogues of Euler’s formula ζ(2) = π 2∕6. Preprint. arXiv:arXiv:1802.01473Google Scholar
- 59.Tefera A (2010) What is … a Wilf-Zeilberger pair? Not Am Math Soc 57(4):508–509MathSciNetzbMATHGoogle Scholar
- 60.van Hamme L (1997) Some conjectures concerning partial sums of generalized hypergeometric series. In: p-adic functional analysis (Nijmegen, 1996). Lecture notes in pure and applied mathematics, vol 192. Dekker, New York, pp 223–236Google Scholar
- 61.Wilf HS, Zeilberger D (1992a) An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities. Invent Math 108(3):575–633MathSciNetzbMATHGoogle Scholar
- 62.Wilf HS, Zeilberger D (1992b) Rational function certification of multisum/integral/“q” identities. Bull Am Math Soc (N.S.) 27(1):148–153Google Scholar
- 63.Zeilberger D (1993) Closed form (pun intended!). In: A tribute to Emil Grosswald: number theory and related analysis. Contemporary mathematics, vol 143. American Mathematical Society, Providence, RI, pp 579–607Google Scholar
- 64.Zoladek H (1998) The extended monodromy group and Liouvillian first integrals. J Dynam Control Syst 4(1):1–28MathSciNetzbMATHGoogle Scholar
- 65.Zudilin W (2007) More Ramanujan-type formulas for 1∕π 2. Russ Math Surv 62(3):634–636MathSciNetzbMATHGoogle Scholar
- 66.Zudilin W (2009) Ramanujan-type supercongruences. J Number Theory 129(8):1848–1857MathSciNetzbMATHGoogle Scholar
- 67.Zudilin W (2011) Arithmetic hypergeometric series. Russ Math Surv 66(2):369–420MathSciNetzbMATHGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC, part of Springer Nature 2019