• Amar SafdarEmail author
  • Donald Armstrong


In the general population, cytomegalovirus (CMV) is a common infection that is frequently acquired at a young age; one in three children in the United States are infected with CMV. In patients undergoing transplantation, CMV most frequently presents as reactivation of a remotely acquired infection, whereas primary CMV infection in seronegative (−) recipients transmitted via allografts harvested from CMV-seropositive (+) donors poses the greatest threat of infection and viral end-organ disease. Naturally acquired CMV infection or infection via unscreened blood and blood products are seldom seen in this population. It is also important to note that in patients undergoing stem cell allograft transplantation, donor CMV (+) status is regarded as a more important prognosticator for complications and unfavorable outcome than transplantation with lesser human leukocyte antigen (HLA-C, HLA-DQ, or HLA-D) mismatch allografts or existence of acute or chronic graft-versus-host disease (GVHD). Similarly, in solid organ allograft recipients, CMV donor/recipient serologic discordance (D+/R−) has been the single most important determinant for post-transplant CMV viremia, CMV disease and survival of the allograft. Compared to other donor prognostic factors such as advance age or blood group type, graft from CMV (−) donor is preferable. HSCT after myeloablative conditioning, major HLA antigen mismatched and/or T cell-depleted grafts, and patients given cord blood stem cells with GVHD have higher susceptibility for CMV infection. Furthermore, CMV infections play an increasingly recognizable role in the incidence of GVHD, risk for invasive fungal disease, recurrence of malignancy, and non-cancer relapse mortality following allograft stem cell transplantation; even in the era of universal antiviral prophylaxis and/or preemptive therapy. Treatment with high-dose antirejection or anti-GVHD therapy with calcineurin inhibitors, corticosteroids, cytotoxic drugs, biologics like anti-CD52, anti-IL2, to a lesser extent, other anti-B cell antibodies that target CD20 and CD19 cell surface antigens are known to deplete hosts’ effective anti-CMV immune surveillance. Strategies to mitigate CMV risk in this population include identifying high-risk cohort prior to transplantation, antiviral drug and immunoprophylaxis for infection prevention, continued effective surveillance for sustained and rising viremia, and institution of preemptive therapy when appropriate. An overview of CMV risk and infection prevention, hosts' immunity -pathogen interaction, spectrum of clinical illness, diagnosis and management of CMV infection with an emphasis on new antiviral drugs, emerging strategies to modify patients' immune-inflammatory response to cytomegalovirus infection, ongoing research in vaccine development, and adaptive cellular immunotherapy are the focus of discussion in this chapter.


Cytomegalovirus HLA-mismatched transplant CMV-seropositive donor CMV-seronegative recipient Cord blood stem cell transplants CMV pneumonitis Encephalitis Enterocolitis Viral hepatitis Graft-versus-host disease Allograft rejection Heart transplant Lung transplant Liver transplant Kidney transplant Abdominal visceral transplant Face and limb transplant CMV antiviral drugs 


  1. 1.
    CDC. Accessed 1 Dec 2017.
  2. 2.
    Safdar A, Armstrong D. Infectious morbidity in critically ill patients with cancer. Crit Care Clin. 2001;17(3):531–70, vii–viiiPubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Safdar A, Armstrong D. Infections in patients with hematologic neoplasms and hematopoietic stem cell transplantation: neutropenia, humoral, and splenic defects. Clin Infect Dis. 2011;53(8):798–806.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Merigan TC, Resta S. Cytomegalovirus: where have we been and where are we going? Rev Infect Dis. 1990;12(Suppl 7):S693–700.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Fishman JA. Infection in solid-organ transplant recipients. N Engl J Med. 2007;357(25):2601–14.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Lönnqvist B, Ringdén O, Wahren B, et al. Cytomegalovirus infection associated with and preceding chronic graft-versus-host disease. Transplantation. 1984;38(5):465–8.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Boeckh M, Fries B, Nichols WG. Recent advances in the prevention of CMV infection and disease after hematopoietic stem cell transplantation. Pediatr Transplant. 2004;8(Suppl 5):19–27.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Murphy E, Yu D, Grimwood J, et al. Coding potential of laboratory and clinical strains of human cytomegalovirus. Proc Natl Acad Sci U S A. 2003;100(25):14976–81.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Sinzger C, Digel M, Jahn G. Cytomegalovirus cell tropism. Curr Top Microbiol Immunol. 2008;325:63–83.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Bolovan-Fritts CA, Mocarski ES, Wiedeman JA. Peripheral blood CD14(+) cells from healthy subjects carry a circular conformation of latent cytomegalovirus genome. Blood. 1999;93(1):394–8.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Taylor-Wiedeman J, Sissons JG, Borysiewicz LK, Sinclair JH. Monocytes are a major site of persistence of human cytomegalovirus in peripheral blood mononuclear cells. J Gen Virol. 1991;72(9):2059–64.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Wussow F, Chiuppesi F, Contreras H, et al. Neutralization of human cytomegalovirus entry into fibroblasts and epithelial cells. Vaccines (Basel). 2017;5(4):pii: E39.CrossRefGoogle Scholar
  13. 13.
    Boehme KW, Guerrero M, Compton T. Human cytomegalovirus envelope glycoproteins B and H are necessary for TLR2 activation in permissive cells. J Immunol. 2006;177(10):7094–102.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Compton T, Kurt-Jones EA, Boehme KW, et al. Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J Virol. 2003;77(8):4588–96.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Kijpittayarit S, Eid AJ, Brown RA, Paya CV, Razonable RR. Relationship between Toll-like receptor 2 polymorphism and cytomegalovirus disease after liver transplantation. Clin Infect Dis. 2007;44(10):1315–20.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Tabeta K, Georgel P, Janssen E, et al. Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc Natl Acad Sci U S A. 2004;101(10):3516–21.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Delale T, Paquin A, Asselin-Paturel C, et al. MyD88-dependent and -independent murine cytomegalovirus sensing for IFN-alpha release and initiation of immune responses in vivo. J Immunol. 2005;175(10):6723–32.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Biron CA, Byron KS, Sullivan JL. Severe herpesvirus infections in an adolescent without natural killer cells. N Engl J Med. 1989;320(26):1731–5.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Orange JS. Natural killer cell deficiency. J Allergy Clin Immunol. 2013;132(3):515–25.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Chen C, Busson M, Rocha V, et al. Activating KIR genes are associated with CMV reactivation and survival after non-T-cell depleted HLA-identical sibling bone marrow transplantation for malignant disorders. Bone Marrow Transplant. 2006;38(6):437–44.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Cook M, Briggs D, Craddock C, et al. Donor KIR genotype has a major influence on the rate of cytomegalovirus reactivation following T-cell replete stem cell transplantation. Blood. 2006;107(3):1230–2.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Zaia JA, Sun JY, Gallez-Hawkins GM, et al. The effect of single and combined activating killer immunoglobulin-like receptor genotypes on cytomegalovirus infection and immunity after hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2009;15(3):315–25.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Waggoner SN, Cornberg M, Selin LK, Welsh RM. Natural killer cells act as rheostats modulating antiviral T cells. Nature. 2012;481:394–8.CrossRefGoogle Scholar
  24. 24.
    Andrews DM, Estcourt MJ, Andoniou CE, et al. Innate immunity defines the capacity of antiviral T cells to limit persistent infection. J Exp Med. 2010;207:1333–43.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Boeckh M, Murphy WJ, Peggs KS. Recent advances in cytomegalovirus: an update on pharmacologic and cellular therapies. Biol Blood Marrow Transplant. 2015;21(1):24–9.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Sun JC, Beilke JN, Lanier LL. Adaptive immune features of natural killer cells. Nature. 2009;457:557–61.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Loeffler J, Steffens M, Arlt EM, et al. Polymorphisms in the genes encoding chemokine receptor 5, interleukin-10, and monocyte chemoattractant protein 1 contribute to cytomegalovirus reactivation and disease after allogeneic stem cell transplantation. J Clin Microbiol. 2006;44(5):1847–50.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Khan N, Cobbold M, Keenan R, Moss PA. Comparative analysis of CD8+ T cell responses against human cytomegalovirus proteins pp65 and immediate early 1 shows similarities in precursor frequency, oligoclonality, and phenotype. J Infect Dis. 2002;185(8):1025–34.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Kern F, Bunde T, Faulhaber N, et al. Cytomegalovirus (CMV) phosphoprotein 65 makes a large contribution to shaping the T cell repertoire in CMV-exposed individuals. J Infect Dis. 2002;185(12):1709–16.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Khan N, Best D, Bruton R, Nayak L, Rickinson AB, Moss PA. T cell recognition patterns of immunodominant cytomegalovirus antigens in primary and persistent infection. J Immunol. 2007;178(7):4455–65.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Sylwester AW, Mitchell BL, Edgar JB, et al. Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med. 2005;202(5):673–85.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Quinnan GV Jr, Kirmani N, Rook AH, et al. Cytotoxic t cells in cytomegalovirus infection: HLA-restricted T-lymphocyte and non-T-lymphocyte cytotoxic responses correlate with recovery from cytomegalovirus infection in bone-marrow-transplant recipients. N Engl J Med. 1982;307(1):7–13.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Reusser P, Cathomas G, Attenhofer R, Tamm M, Thiel G. Cytomegalovirus (CMV)-specific T cell immunity after renal transplantation mediates protection from CMV disease by limiting the systemic virus load. J Infect Dis. 1999;180(2):247–53.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Reusser P, Riddell SR, Meyers JD, Greenberg PD. Cytotoxic T-lymphocyte response to cytomegalovirus after human allogeneic bone marrow transplantation: pattern of recovery and correlation with cytomegalovirus infection and disease. Blood. 1991;78(5):1373–80.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Hebart H, Daginik S, Stevanovic S, et al. Sensitive detection of human cytomegalovirus peptide-specific cytotoxic T-lymphocyte responses by interferon-gamma-enzyme-linked immunospot assay and flow cytometry in healthy individuals and in patients after allogeneic stem cell transplantation. Blood. 2002;99(10):3830–7.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Ljungman P, Aschan J, Azinge JN, et al. Cytomegalovirus viraemia and specific T-helper cell responses as predictors of disease after allogeneic marrow transplantation. Br J Haematol. 1993;83(1):118–24.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Ciáurriz M, Beloki L, Zabalza A, et al. Functional specific-T-cell expansion after first cytomegalovirus reactivation predicts viremia control in allogeneic hematopoietic stem cell transplant recipients. Transpl Infect Dis. 2017;19(6)CrossRefGoogle Scholar
  38. 38.
    Boeckh M, Leisenring W, Riddell SR, et al. Late cytomegalovirus disease and mortality in recipients of allogeneic hematopoietic stem cell transplants: importance of viral load and T-cell immunity. Blood. 2003;101(2):407–14.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Marshall GS, Rabalais GP, Stout GG, Waldeyer SL. Antibodies to recombinant-derived glycoprotein B after natural human cytomegalovirus infection correlate with neutralizing activity. J Infect Dis. 1992;165(2):381–4.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Rasmussen L, Matkin C, Spaete R, Pachl C, Merigan TC. Antibody response to human cytomegalovirus glycoproteins gB and gH after natural infection in humans. J Infect Dis. 1991;164(5):835–42.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Goldmacher VS, Bartle LM, Skaletskaya A, et al. A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2. Proc Natl Acad Sci U S A. 1999;96(22):12536–41.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Basta S, Bennink JR. A survival game of hide and seek: cytomegaloviruses and MHC class I antigen presentation pathways. Viral Immunol. 2003;16(3):231–42.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Abate DA, Watanabe S, Mocarski ES. Major human cytomegalovirus structural protein pp65 (ppUL83) prevents interferon response factor 3 activation in the interferon response. J Virol. 2004;78(20):10995–1006.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Child SJ, Hakki M, De Niro KL, Geballe AP. Evasion of cellular antiviral responses by human cytomegalovirus TRS1 and IRS1. J Virol. 2004;78(1):197–205.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Taylor RT, Bresnahan WA. Human cytomegalovirus immediate-early 2 gene expression blocks virus-induced beta interferon production. J Virol. 2005;79(6):3873–7.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Chapman TL, Heikeman AP, Bjorkman PJ. The inhibitory receptor LIR-1 uses a common binding interaction to recognize class I MHC molecules and the viral homolog UL18. Immunity. 1999;11(5):603–13.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Kotenko SV, Saccani S, Izotova LS, Mirochnitchenko OV, Pestka S. Human cytomegalovirus harbors its own unique IL-10 homolog (cmvIL-10). Proc Natl Acad Sci U S A. 2000;97(4):1695–700.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Benedict CA, Butrovich KD, Lurain NS, et al. Cutting edge: a novel viral TNF receptor superfamily member in virulent strains of human cytomegalovirus. J Immunol. 1999;162(12):6967–70.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Penfold ME, Dairaghi DJ, Duke GM, et al. Cytomegalovirus encodes a potent alpha chemokine. Proc Natl Acad Sci U S A. 1999;96(17):9839–44.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Taylor RT, Bresnahan WA. Human cytomegalovirus immediate-early 2 protein IE86 blocks virus-induced chemokine expression. J Virol. 2006;80(2):920–8.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Gao JL, Murphy PM. Human cytomegalovirus open reading frame US28 encodes a functional beta chemokine receptor. J Biol Chem. 1994;269(46):28539–42.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Lisnic VJ, Krmpotic A, Jonjic S. Modulation of natural killer cell activity by viruses. Curr Opin Microbiol. 2010;13:530–9.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Marcenaro E, Notarangelo LD, Orange JS, et al. Editorial: NK cell subsets in health and disease: new developments. Front Immunol. 2017;8:1363.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Torok-Storb B, Simmons P, Khaira D, et al. Cytomegalovirus and marrow function. Ann Hematol. 1992;64(Suppl):A128–31.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Reddehase MJ, Dreher-Stumpp L, Angele P, et al. Hematopoietic stem cell deficiency resulting from cytomegalovirus infection of bone marrow stroma. Ann Hematol. 1992;64(Suppl):A125–7.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Simmons P, Kaushansky K, Torok-Storb B. Mechanisms of cytomegalovirus-mediated myelosuppression: perturbation of stromal cell function versus direct infection of myeloid cells. Proc Natl Acad Sci U S A. 1990;87(4):1386–90.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Meyers JD, Ljungman P, Fisher LD. Cytomegalovirus excretion as a predictor of cytomegalovirus disease after marrow transplantation: importance of cytomegalovirus viremia. J Infect Dis. 1990;162(2):373–80.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Boeckh M, Boivin G. Quantitation of cytomegalovirus: methodologic aspects and clinical applications. Clin Microbiol Rev. 1998;11(3):533–54.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Einsele H, Ehninger G, Hebart H, et al. Polymerase chain reaction monitoring reduces the incidence of cytomegalovirus disease and the duration and side effects of antiviral therapy after bone marrow transplantation. Blood. 1995;86(7):2815–20.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Nichols WG, Corey L, Gooley T, et al. Rising pp65 antigenemia during preemptive anticytomegalovirus therapy after allogeneic hematopoietic stem cell transplantation: risk factors, correlation with DNA load, and outcomes. Blood. 2001;97(4):867–74.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Boeckh M, Gooley TA, Myerson D, et al. Cytomegalovirus pp65 antigenemia-guided early treatment with ganciclovir versus ganciclovir at engraftment after allogeneic marrow transplantation: a randomized double-blind study. Blood. 1996;88(10):4063–71.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Gor D, Sabin C, Prentice HG, et al. Longitudinal fluctuations in cytomegalovirus load in bone marrow transplant patients: relationship between peak virus load, donor/recipient serostatus, acute GVHD and CMV disease. Bone Marrow Transplant. 1998;21(6):597–605.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Cathomas G, Morris P, Pekle K, et al. Rapid diagnosis of cytomegalovirus pneumonia in marrow transplant recipients by bronchoalveolar lavage using the polymerase chain reaction, virus culture, and the direct immunostaining of alveolar cells. Blood. 1993;81(7):1909–14.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Gerna G, Lilleri D, Baldanti F, et al. Human cytomegalovirus immediate-early mRNAemia versus pp65 antigenemia for guiding pre-emptive therapy in children and young adults undergoing hematopoietic stem cell transplantation: a prospective, randomized, open-label trial. Blood. 2003;101(12):5053–60.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Chan ST, Logan AC. The clinical impact of cytomegalovirus infection following allogeneic hematopoietic cell transplantation: why the quest for meaningful prophylaxis still matters. Blood Rev. 2017;31(3):173–83.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Nichols WG, Corey L, Gooley T, et al. High risk of death due to bacterial and fungal infection among cytomegalovirus (CMV)-seronegative recipients of stem cell transplants from seropositive donors: evidence for indirect effects of primary CMV infection. J Infect Dis. 2002;185(3):273–82.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Manuel O, Pang XL, Humar A, et al. An assessment of donor-to-recipient transmission patterns of human cytomegalovirus by analysis of viral genomic variants. J Infect Dis. 2009;199(11):1621–8.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Boeckh M. Current antiviral strategies for controlling cytomegalovirus in hematopoietic stem cell transplant recipients: prevention and therapy. Transpl Infect Dis. 1999;1(3):165–78.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Broers AE, van Der Holt R, van Esser JW, et al. Increased transplant-related morbidity and mortality in CMV- seropositive patients despite highly effective prevention of CMV disease after allogeneic T-cell-depleted stem cell transplantation. Blood. 2000;95(7):2240–5.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Craddock C, Szydlo RM, Dazzi F, et al. Cytomegalovirus seropositivity adversely influences outcome after T- depleted unrelated donor transplant in patients with chronic myeloid leukaemia: the case for tailored graft-versus-host disease prophylaxis. Br J Haematol. 2001;112(1):228–36.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Boeckh M, Nichols WG. The impact of cytomegalovirus serostatus of donor and recipient before hematopoietic stem cell transplantation in the era of antiviral prophylaxis and preemptive therapy. Blood. 2004;103(6):2003–8.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Cwynarski K, Roberts IA, Iacobelli S, et al. Stem cell transplantation for chronic myeloid leukemia in children. Blood. 2003;102(4):1224–31.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Erard V, Guthrie KA, Riddell S, Boeckh M. Impact of HLA A2 and cytomegalovirus serostatus on outcomes in patients with leukemia following matched-sibling myeloablative allogeneic hematopoietic cell transplantation. Haematologica. 2006;91(10):1377–83.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Grob JP, Grundy JE, Prentice HG, et al. Immune donors can protect marrow-transplant recipients from severe cytomegalovirus infections. Lancet. 1987;1(8536):774–6.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Jacobsen N, Badsberg JH, Lonnqvist B, et al. Graft-versus-leukaemia activity associated with CMV-seropositive donor, post-transplant CMV infection, young donor age and chronic graft-versus-host disease in bone marrow allograft recipients. The Nordic Bone Marrow Transplantation Group. Bone Marrow Transplant. 1990;5(6):413–8.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Kollman C, Howe CW, Anasetti C, et al. Donor characteristics as risk factors in recipients after transplantation of bone marrow from unrelated donors: the effect of donor age. Blood. 2001;98(7):2043–51.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Ljungman P, Einsele H, Frassoni F, et al. Donor CMV serological status influences the outcome of CMVseropositive recipients after unrelated donor stem cell transplantation; an EBMT megafile analysis. Blood. 2003;102:4255–60.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Nachbaur D, Clausen J, Kircher B. Donor cytomegalovirus seropositivity and the risk of leukemic relapse after reduced-intensity transplants. Eur J Haematol. 2006;76(5):414–9.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Ringden O, Schaffer M, Le Blanc K, et al. Which donor should be chosen for hematopoietic stem cell transplantation among unrelated HLA-A, -B, and -DRB1 genomically identical volunteers? Biol Blood Marrow Transplant. 2004;10(2):128–34.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Avetisyan G, Aschan J, Hagglund H, et al. Evaluation of intervention strategy based on CMV-specific immune responses after allogeneic SCT. Bone Marrow Transplant. 2007;40(9):865–9.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Ganepola S, Gentilini C, Hilbers U, et al. Patients at high risk for CMV infection and disease show delayed CD8+ T-cell immune recovery after allogeneic stem cell transplantation. Bone Marrow Transplant. 2007;39(5):293–9.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Moins-Teisserenc H, Busson M, Scieux C, et al. Patterns of cytomegalovirus reactivation are associated with distinct evolutive profiles of immune reconstitution after allogeneic hematopoeitic stem cell transplantation. J Infect Dis. 2008;198(6):818–26.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Lin TS, Zahrieh D, Weller E, Alyea EP, Antin JH, Soiffer RJ. Risk factors for cytomegalovirus reactivation after CD6+ T-cell-depleted allogeneic bone marrow transplantation. Transplantation. 2002;74(1):49–54.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Ozdemir E, Saliba R, Champlin R, et al. Risk factors associated with late cytomegalovirus reactivation after allogeneic stem cell transplantation for hematological malignancies. Bone Marrow Transplant. 2007;40(2):125–36.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Marty FM, Bryar J, Browne SK, et al. Sirolimus-based graft-versus-host disease prophylaxis protects against cytomegalovirus reactivation after allogeneic hematopoietic stem cell transplantation: a cohort analysis. Blood. 2007;110(2):490–500.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Miller W, Flynn P, McCullough J, et al. Cytomegalovirus infection after bone marrow transplantation: an association with acute graft-v-host disease. Blood. 1986;67(4):1162–7.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Walker CM, van Burik JA, De For TE, Weisdorf DJ. Cytomegalovirus infection after allogeneic transplantation: comparison of cord blood with peripheral blood and marrow graft sources. Biol Blood Marrow Transplant. 2007;13(9):1106–15.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Ljungman P, Aschan J, Lewensohn-Fuchs I, et al. Results of different strategies for reducing cytomegalovirus-associated mortality in allogeneic stem cell transplant recipients. Transplantation. 1998;66(10):1330–4.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Martino R, Rovira M, Carreras E, et al. Severe infections after allogeneic peripheral blood stem cell transplantation: a matched-pair comparison of unmanipulated and CD34+ cell-selected transplantation. Haematologica. 2001;86(10):1075–86.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Nakamae H, Kirby KA, Sandmaier BM, et al. Effect of conditioning regimen intensity on CMV infection in allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2009;15(6):694–703.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Holmberg LA, Boeckh M, Hooper H, et al. Increased incidence of cytomegalovirus disease after autologous CD34-selected peripheral blood stem cell transplantation. Blood. 1999;94(12):4029–35.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Trenschel R, Ross S, Husing J, et al. Reduced risk of persisting cytomegalovirus pp65 antigenemia and cytomegalovirus interstitial pneumonia following allogeneic PBSCT. Bone Marrow Transplant. 2000;25(6):665–72.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Kudchodkar SB, Yu Y, Maguire TG, Alwine JC. Human cytomegalovirus infection alters the substrate specificities and rapamycin sensitivities of raptor- and rictor-containing complexes. Proc Natl Acad Sci U S A. 2006;103(38):14182–7.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Einsele H, Steidle M, Vallbracht A, et al. Early occurrence of human cytomegalovirus infection after bone marrow transplantation as demonstrated by the polymerase chain reaction technique. Blood. 1991;77(5):1104–10.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Nguyen Q, Champlin R, Giralt S, et al. Late cytomegalovirus pneumonia in adult allogeneic blood and marrow transplant recipients. Clin Infect Dis. 1999;28(3):618–23.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Machado CM, Menezes RX, Macedo MC, et al. Extended antigenemia surveillance and late cytomegalovirus infection after allogeneic BMT. Bone Marrow Transplant. 2001;28(11):1053–9.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Osarogiagbon RU, Defor TE, Weisdorf MA, et al. CMV antigenemia following bone marrow transplantation: risk factors and outcomes. Biol Blood Marrow Transplant. 2000;6(3):280–8.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Peggs KS, Preiser W, Kottaridis PD, et al. Extended routine polymerase chain reaction surveillance and pre-emptive antiviral therapy for cytomegalovirus after allogeneic transplantation. Br J Haematol. 2000;111(3):782–90.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Li CR, Greenberg PD, Gilbert MJ, et al. Recovery of HLA-restricted cytomegalovirus (CMV)-specific T-cell responses after allogeneic bone marrow transplant: correlation with CMV disease and effect of ganciclovir prophylaxis. Blood. 1994;83(7):1971–9.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Krause H, Hebart H, Jahn G, et al. Screening for CMV-specific T cell proliferation to identify patients at risk of developing late onset CMV disease. Bone Marrow Transplant. 1997;19(11):1111–6.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Junghanss C, Boeckh M, Carter RA, et al. Incidence and outcome of cytomegalovirus infections following nonmyeloablative compared with myeloablative allogeneic stem cell transplantation, a matched control study. Blood. 2002;99(6):1978–85.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Safdar A, Rodriguez GH, Mihu CN, et al. Infections in non-myeloablative hematopoietic stem cell transplantation patients with lymphoid malignancies: spectrum of infections, predictors of outcome and proposed guidelines for fungal infection prevention. Bone Marrow Transplant. 2010;45(2):339–47.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Chakrabarti S, Mackinnon S, Chopra R, et al. High incidence of cytomegalovirus infection after nonmyeloablative stem cell transplantation: potential role of Campath-1H in delaying immune reconstitution. Blood. 2002;99(12):4357–63.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Boeckh M, Stevens-Ayers T, Bowden RA. Cytomegalovirus pp65 antigenemia after autologous marrow and peripheral blood stem cell transplantation. J Infect Dis. 1996;174(5):907–12.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Hebart H, Schroder A, Loffler J, et al. Cytomegalovirus monitoring by polymerase chain reaction of whole blood samples from patients undergoing autologous bone marrow or peripheral blood progenitor cell transplantation. J Infect Dis. 1997;175(6):1490–3.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Bilgrami S, Aslanzadeh J, Feingold JM, et al. Cytomegalovirus viremia, viruria and disease after autologous peripheral blood stem cell transplantation: no need for surveillance. Bone Marrow Transplant. 1999;24(1):69–73.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Boeckh M, Gooley TA, Reusser P, Buckner CD, Bowden RA. Failure of high-dose acyclovir to prevent cytomegalovirus disease after autologous marrow transplantation. J Infect Dis. 1995;172(4):939–43.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Singhal S, Powles R, Treleaven J, et al. Cytomegaloviremia after autografting for leukemia: clinical significance and lack of effect on engraftment. Leukemia. 1997;11(6):835–8.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Reusser P, Fisher LD, Buckner CD, et al. Cytomegalovirus infection after autologous bone marrow transplantation: occurrence of cytomegalovirus disease and effect on engraftment. Blood. 1990;75(9):1888–94.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Schoemans H, Theunissen K, Maertens J, et al. Adult umbilical cord blood transplantation: a comprehensive review. Bone Marrow Transplant. 2006;38(2):83–93.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Albano MS, Taylor P, Pass RF, et al. Umbilical cord blood transplantation and cytomegalovirus: posttransplantation infection and donor screening. Blood. 2006;108(13):4275–82.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Matsumura T, Narimatsu H, Kami M, et al. Cytomegalovirus infections following umbilical cord blood transplantation using reduced intensity conditioning regimens for adult patients. Biol Blood Marrow Transplant. 2007;13(5):577–83.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Saavedra S, Sanz GF, Jarque I, et al. Early infections in adult patients undergoing unrelated donor cord blood transplantation. Bone Marrow Transplant. 2002;30(12):937–43.CrossRefGoogle Scholar
  114. 114.
    Takami A, Mochizuki K, Asakura H, et al. High incidence of cytomegalovirus reactivation in adult recipients of an unrelated cord blood transplant. Haematologica. 2005;90(9):1290–2.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Tomonari A, Takahashi S, Ooi J, et al. Preemptive therapy with ganciclovir 5 mg/kg once daily for cytomegalovirus infection after unrelated cord blood transplantation. Bone Marrow Transplant. 2008;41(4):371–6.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Beck JC, Wagner JE, DeFor TE, et al. Impact of cytomegalovirus (CMV) reactivation after umbilical cord blood transplantation. Biol Blood Marrow Transplant. 2010;16(2):215–22.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Safdar A, Rodriguez GH, De Lima MJ, et al. Infections in 100 cord blood transplantations: spectrum of early and late posttransplant infections in adult and pediatric patients 1996-2005. Medicine (Baltimore). 2007;86(6):324–33.CrossRefGoogle Scholar
  118. 118.
    Hebart H, Ljungman P, Klingebiel T, et al. Prospective comparison of PCR-based versus late mRNA-based preemptive antiviral therapy for HCMV infection in patients after allogeneic stem cell transplantation. Blood. 2003;102(11):195a.Google Scholar
  119. 119.
    Ljungman P, Griffiths P, Paya C. Definitions of cytomegalovirus infection and disease in transplant recipients. Clin Infect Dis. 2002;34(8):1094–7.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Konoplev S, Champlin RE, Giralt S, et al. Cytomegalovirus pneumonia in adult autologous blood and marrow transplant recipients. Bone Marrow Transplant. 2001;27(8):877–81.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Torres HA, Aguilera E, Safdar A, et al. Fatal cytomegalovirus pneumonia in patients with haematological malignancies: an autopsy-based case-control study. Clin Microbiol Infect. 2008;14(12):1160–6.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Ison MG, Fishman JA. Cytomegalovirus pneumonia in transplant recipients. Clin Chest Med. 2005;26(4):691–705, viiiPubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Ketai L, Jordan K, Busby KH. Imaging infection. Clin Chest Med. 2015;36(2):197–217, viiiPubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Green ML. Viral pneumonia in patients with hematopoietic cell transplantation and hematologic malignancies. Clin Chest Med. 2017;38(2):295–305.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Schmidt GM, Horak DA, Niland JC, et al. A randomized, controlled trial of prophylactic ganciclovir for cytomegalovirus pulmonary infection in recipients of allogeneic bone marrow transplants; The City of Hope-Stanford-Syntex CMV Study Group. N Engl J Med. 1991;324(15):1005–11.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Tabbara KF, Al-Ghamdi A, Al-Mohareb F, et al. Ocular findings after allogeneic hematopoietic stem cell transplantation. Ophthalmology. 2009;116(9):1624–9.CrossRefGoogle Scholar
  127. 127.
    Crippa F, Corey L, Chuang EL, et al. Virological, clinical, and ophthalmologic features of cytomegalovirus retinitis after hematopoietic stem cell transplantation. Clin Infect Dis. 2001;32(2):214–9.CrossRefGoogle Scholar
  128. 128.
    Larochelle MB, Phan R, Craddock J, et al. Cytomegalovirus retinitis in pediatric stem cell transplants: report of a recent cluster and the development of a screening protocol. Am J Ophthalmol. 2017;175:8–15.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Greco R, Crucitti L, Noviello M, et al. Human herpesvirus 6 infection following haploidentical transplantation: immune recovery and outcome. Biol Blood Marrow Transplant. 2016;22(12):2250–5.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Clark DA, Emery VC, Griffiths PD. Cytomegalovirus, human herpesvirus-6, and human herpesvirus-7 in hematological patients. Semin Hematol. 2003;40(2):154–62.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Zhang XH, Zhang JM, Han W, et al. Viral encephalitis after haplo-identical hematopoietic stem cell transplantation: causative viral spectrum, characteristics, and risk factors. Eur J Haematol. 2017;98(5):450–8.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Renard T, Daumas-Duport B, Auffray-Calvier E, et al. Cytomegalovirus encephalitis: undescribed diffusion-weighted imaging characteristics. Original aspects of cases extracted from a retrospective study, and from literature review. J Neuroradiol. 2016;43(6):371–7.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Inazawa N, Hori T, Yamamoto M, et al. HHV-6 encephalitis may complicate the early phase after allogeneic hematopoietic stem cell transplantation: detection by qualitative multiplex PCR and subsequent quantitative real-time PCR. J Med Virol. 2016;88(2):319–23.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Jang EY, Park SY, Lee EJ, et al. Diagnostic performance of the cytomegalovirus (CMV) antigenemia assay in patients with CMV gastrointestinal disease. Clin Infect Dis. 2009;48(12):e121–4.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Mori T, Okamoto S, Matsuoka S, et al. Risk-adapted pre-emptive therapy for cytomegalovirus disease in patients undergoing allogeneic bone marrow transplantation. Bone Marrow Transplant. 2000;25(7):765–9.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Kotton CN, Huprikar S, Kumar D. Transplant infectious diseases: a review of the scientific registry of transplant recipients published data. Am J Transplant. 2017;17(6):1439–46.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Pascual J, Royuela A, Fernández AM, et al. Role of mTOR inhibitors for the control of viral infection in solid organ transplant recipients. Transpl Infect Dis. 2016;18(6):819–31.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Mena-Romo JD, Pérez Romero P, Martín-Gandul C, et al. CMV-specific T-cell immunity in solid organ transplant recipients at low risk of CMV infection. Chronology and applicability in preemptive therapy. J Infect. 2017;75(4):336–45.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Schachtner T, Stein M, Reinke P. CMV-specific T cell monitoring offers superior risk stratification of CMV-seronegative kidney transplant recipients of a CMV-seropositive donor. Transplantation. 2017;101(10):e315–25.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Costa J, Benvenuto LJ, Sonett JR. Long-term outcomes and management of lung transplant recipients. Best Pract Res Clin Anaesthesiol. 2017;31(2):285–97.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Durante-Mangoni E, Andini R, Pinto D, et al. Effect of the immunosuppressive regimen on the incidence of cytomegalovirus infection in 378 heart transplant recipients: a single center, prospective cohort study. J Clin Virol. 2015;68:37–42.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Strueber M, Warnecke G, Fuge J, et al. Everolimus versus mycophenolate mofetil de novo after lung transplantation: a prospective, randomized, open-label trial. Am J Transplant. 2016;16(11):3171–80.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Lee EC, Kim SH, Park SJ. Outcomes after liver transplantation in accordance with ABO compatibility: a systematic review and meta-analysis. World J Gastroenterol. 2017;23(35):6516–33.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Phan TL, Lautenschlager I, Razonable RR, et al. HHV-6 in liver transplantation: a literature review. Liver Int. 2018;38(2):210–23.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Lowance D, Neumayer HH, Legendre CM, et al. Valacyclovir for the prevention of cytomegalovirus disease after renal transplantation. International Valacyclovir Cytomegalovirus Prophylaxis Transplantation Study Group. N Engl J Med. 1999;340(19):1462–70.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Reischig T, Jindra P, Mares J, et al. Valacyclovir for cytomegalovirus prophylaxis reduces the risk of acute renal allograft rejection. Transplantation. 2005;79(3):317–24.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Elfadawy N, Flechner SM, Liu X, et al. CMV viremia is associated with a decreased incidence of BKV reactivation after kidney and kidney-pancreas transplantation. Transplantation. 2013;96(12):1097–103.CrossRefGoogle Scholar
  148. 148.
    Malvezzi P, Jouve T, Rostaing L. Use of everolimus-based immunosuppression to decrease cytomegalovirus infection after kidney transplant. Exp Clin Transplant. 2016;14(4):361–6.PubMedPubMedCentralGoogle Scholar
  149. 149.
    Fallatah SM, Marquez MA, Bazerbachi F, et al. Cytomegalovirus infection post-pancreas-kidney transplantation--results of antiviral prophylaxis in high-risk patients. Clin Transpl. 2013;27(4):503–9.CrossRefGoogle Scholar
  150. 150.
    Shah AP, Chen JM, Fridell JA. Incidence and outcomes of cytomegalovirus in pancreas transplantation with steroid-free immunosuppression. Clin Transpl. 2015;29(12):1221–9.CrossRefGoogle Scholar
  151. 151.
    Manez R, Kusne S, Green M, et al. Incidence and risk factors associated with the development of cytomegalovirus disease after intestinal transplantation. Transplantation. 1995;59(7):1010–4.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Bueno J, Green M, Kocoshis S, et al. Cytomegalovirus infection after intestinal transplantation in children. Clin Infect Dis. 1997;25(5):1078–83.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Florescu DF, Langnas AN, Grant W, et al. Incidence, risk factors, and outcomes associated with cytomegalovirus disease in small bowel transplant recipients. Pediatr Transplant. 2012;16(3):294–301.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Gordon C, Siemionow M, Papay F, et al. The world’s experience with facial transplantation: what have we learned thus far? Ann Plast Surg. 2009;63:572–8.CrossRefGoogle Scholar
  155. 155.
    Schneeberger S, Lucchina S, Lanzetta M, et al. Cytomegalovirus-related complications in human hand transplantation. Transplantation. 2005;80:441–7.CrossRefGoogle Scholar
  156. 156.
    Ng AP, Worth L, Chen L, et al. Cytomegalovirus DNAemia and disease: incidence, natural history and management in settings other than allogeneic stem cell transplantation. Haematologica. 2005;90(12):1672–9.PubMedPubMedCentralGoogle Scholar
  157. 157.
    Marchesi F, Pimpinelli F, Ensoli F, et al. Cytomegalovirus infection in hematologic malignancy settings other than the allogeneic transplant. Hematol Oncol. 2018;36(2):381–91.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    O’Brien SM, Keating MJ, Mocarski ES. Updated guidelines on the management of cytomegalovirus reactivation in patients with chronic lymphocytic leukemia treated with alemtuzumab. Clin Lymphoma Myeloma. 2006;7(2):125–30.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Orlandi EM, Baldanti F, Citro A, et al. Monitoring for cytomegalovirus and Epstein-Barr virus infection in chronic lymphocytic leukemia patients receiving i.v. fludarabine-cyclophosphamide combination and alemtuzumab as consolidation therapy. Haematologica. 2008;93(11):1758–60.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Laurenti L, Piccioni P, Cattani P, et al. Cytomegalovirus reactivation during alemtuzumab therapy for chronic lymphocytic leukemia: incidence and treatment with oral ganciclovir. Haematologica. 2004;89(10):1248–52.PubMedPubMedCentralGoogle Scholar
  161. 161.
    O’Brien S, Ravandi F, Riehl T, et al. Valganciclovir prevents cytomegalovirus reactivation in patients receiving alemtuzumab-based therapy. Blood. 2008;111(4):1816–9.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Hwang YY, Cheung WW, Leung AY, et al. Valganciclovir thrice weekly for prophylaxis against cytomegalovirus reactivation during alemtuzumab therapy. Leukemia. 2009;23(4):800–1.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Gonzalez H, Vernant JP, Caumes E. Successful oral valganciclovir treatment of cytomegalovirus infection during Campath-1H therapy. Leukemia. 2005;19(3):478.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Thursky KA, Worth LJ, Seymour JF, et al. Spectrum of infection, risk and recommendations for prophylaxis and screening among patients with lymphoproliferative disorders treated with alemtuzumab. Br J Haematol. 2006;132(1):3–12.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Osterborg A, Foà R, Bezares RF, et al. Management guidelines for the use of alemtuzumab in chronic lymphocytic leukemia. Leukemia. 2009;23(11):1980–8.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Magliocca JF, Odorico JS, Pirsch JD, et al. A comparison of alemtuzumab with basiliximab induction in simultaneous pancreas-kidney transplantation. Am J Transplant. 2008;8(8):1702–10.PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Ishihara H, Ishida H, Toki D, et al. Effects of low-dose rituximab therapy in patients with primary cytomegalovirus infection. Exp Clin Transplant. 2015;13(6):573–80.PubMedPubMedCentralGoogle Scholar
  168. 168.
    Aksoy S, Harputluoglu H, Kilickap S, et al. Rituximab-related viral infections in lymphoma patients. Leuk Lymphoma. 2007;48(7):1307–12.PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Jain T, John J, Kotecha A, et al. Cytomegalovirus infection in autologous stem cell transplant recipients in the era of rituximab. Ann Hematol. 2016;95(8):1323–7.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Laberko A, Bogoyavlenskaya A, Shelikhova L, et al. Risk factors for and the clinical impact of cytomegalovirus and Epstein-Barr virus infections in pediatric recipients of TCR-α/β- and CD19-depleted grafts. Biol Blood Marrow Transplant. 2017;23(3):483–90.PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Chapman TM, Keating GM. Basiliximab: a review of its use as induction therapy in renal transplantation. Drugs. 2003;63(24):2803–35.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Penninga L, Møller CH, Gustafsson F, et al. Immunosuppressive T-cell antibody induction for heart transplant recipients. Cochrane Database Syst Rev. 2013;(12):CD008842.Google Scholar
  173. 173.
    Bowden RA, Sayers M, Flournoy N, et al. Cytomegalovirus immune globulin and seronegative blood products to prevent primary cytomegalovirus infection after marrow transplantation. N Engl J Med. 1986;314(16):1006–10.PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Bowden R, Cays M, Schoch G, et al. Comparison of filtered blood (FB) to seronegative blood products (SB) for prevention of cytomegalovirus (CMV) infection after marrow transplant. Blood. 1995;86:3598–603.PubMedPubMedCentralGoogle Scholar
  175. 175.
    Nichols WG, Price TH, Gooley T, et al. Transfusion-transmitted cytomegalovirus infection after receipt of leukoreduced blood products. Blood. 2003;101(10):4195–200.PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Marty FM, Ljungman P, Papanicolaou GA, et al. Maribavir prophylaxis for prevention of cytomegalovirus disease in recipients of allogeneic stem-cell transplants: a phase 3, double-blind, placebo-controlled, randomized trial. Lancet Infect Dis. 2011;11(4):284–92.PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Chemaly RF, Ullmann AJ, Stoelben S, et al. Letermovir for cytomegalovirus prophylaxis in hematopoietic-cell transplantation. N Engl J Med. 2014;370(19):1781–9.PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Marty FM, Ljungman P, Chemaly RF, et al. Letermovir prophylaxis for cytomegalovirus in hematopoietic-cell transplantation. N Engl J Med. 2017;377(25):2433–44.PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Ruutu T, Ljungman P, Brinch L, et al. No prevention of cytomegalovirus infection by anti-cytomegalovirus hyperimmune globulin in seronegative bone marrow transplant recipients. The Nordic BMT Group. Bone Marrow Transplant. 1997;19(3):233–6.PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Bowden RA, Fisher LD, Rogers K, et al. Cytomegalovirus (CMV)-specific intravenous immunoglobulin for the prevention of primary CMV infection and disease after marrow transplant. J Infect Dis. 1991;164(3):483–7.PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Boeckh M, Bowden R, Storer B, et al. Randomized, placebo-controlled, double-blind study of a cytomegalovirus-specific monoclonal antibody (MSL-109) for prevention of cytomegalovirus infection after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2001;7(6):343–51.PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Messori A, Rampazzo R, Scroccaro G, et al. Efficacy of hyperimmune anti-cytomegalovirus immunoglobulins for the prevention of cytomegalovirus infection in recipients of allogeneic bone marrow transplantation: a metaanalysis. Bone Marrow Transplant. 1994;13:163–8.PubMedPubMedCentralGoogle Scholar
  183. 183.
    Sullivan KM, Kopecky KJ, Jocom J, et al. Immunomodulatory and antimicrobial efficacy of intravenous immunoglobulin in bone marrow transplantation. N Engl J Med. 1990;323(11):705–12.PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Tomblyn M, Chiller T, Einsele H, et al. Guidelines for preventing infectious complications among hematopoietic cell transplantation recipients: a global perspective. Biol Blood Marrow Transplant. 2009;15(10):1143–238.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    van Gent R, Metselaar HJ, Kwekkeboom J. Immunomodulation by hyperimmunoglobulins after solid organ transplantation: beyond prevention of viral infection. Transplant Rev (Orlando). 2017;31(2):78–86.CrossRefGoogle Scholar
  186. 186.
    Safdar A, Bruorton M, Henslee-Downey JP, et al. Role of quantitative human cytomegalovirus PCR in predicting antiviral treatment response among high-risk hematopoietic stem-cell transplant recipients. Bone Marrow Transplant. 2004;33(4):463–4.PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Boeckh M, Ljungman P. How we treat cytomegalovirus in hematopoietic cell transplant recipients. Blood. 2009;113(23):5711–9.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Lacey SF, Diamond DJ, Zaia JA. Assessment of cellular immunity to human cytomegalovirus in recipients of allogeneic stem cell transplants. Biol Blood Marrow Transplant. 2004;10(7):433–47.PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Ljungman P, Lore K, Aschan J, et al. Use of a semi-quantitative PCR for cytomegalovirus DNA as a basis for pre-emptive antiviral therapy in allogeneic bone marrow transplant patients. Bone Marrow Transplant. 1996;17(4):583–7.PubMedPubMedCentralGoogle Scholar
  190. 190.
    Reusser P, Einsele H, Lee J, et al. Randomized multicenter trial of foscarnet versus ganciclovir for preemptive therapy of cytomegalovirus infection after allogeneic stem cell transplantation. Blood. 2002;99(4):1159–64.PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    Ljungman P, Perez-Bercoff L, Jonsson J, et al. Risk factors for the development of cytomegalovirus disease after allogeneic stem cell transplantation. Haematologica. 2006;91(1):78–83.PubMedPubMedCentralGoogle Scholar
  192. 192.
    Reed EC, Wolford JL, Kopecky KJ, et al. Ganciclovir for the treatment of cytomegalovirus gastroenteritis in bone marrow transplant patients. A randomized, placebo-controlled trial. Ann Intern Med. 1990;112(7):505–10.PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Ljungman P, Cordonnier C, Einsele H, et al. Use of intravenous immune globulin in addition to antiviral therapy in the treatment of CMV gastrointestinal disease in allogeneic bone marrow transplant patients: a report from the European Group for Blood and Marrow Transplantation (EBMT). Infectious Diseases Working Party of the EBMT. Bone Marrow Transplant. 1998;21(5):473–6.PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    Reed EC, Bowden RA, Dandliker PS, et al. Treatment of cytomegalovirus pneumonia with ganciclovir and intravenous cytomegalovirus immunoglobulin in patients with bone marrow transplants. Ann Intern Med. 1988;109(10):783–8.CrossRefGoogle Scholar
  195. 195.
    Emanuel D, Cunningham I, Jules-Elysee K, et al. Cytomegalovirus pneumonia after bone marrow transplantation successfully treated with the combination of ganciclovir and high-dose intravenous immune globulin. Ann Intern Med. 1988;109(10):777–82.CrossRefGoogle Scholar
  196. 196.
    Ljungman P, Engelhard D, Link H, et al. Treatment of interstitial pneumonitis due to cytomegalovirus with ganciclovir and intravenous immune globulin: experience of European Bone Marrow Transplant Group. Clin Infect Dis. 1992;14(4):831–5.PubMedCrossRefPubMedCentralGoogle Scholar
  197. 197.
    Machado CM, Dulley FL, Boas LS, et al. CMV pneumonia in allogeneic BMT recipients undergoing early treatment of pre-emptive ganciclovir therapy. Bone Marrow Transplant. 2000;26(4):413–7.PubMedCrossRefPubMedCentralGoogle Scholar
  198. 198.
    Chang M, Dunn JP. Ganciclovir implant in the treatment of cytomegalovirus retinitis. Expert Rev Med Devices. 2005;2(4):421–7.PubMedCrossRefPubMedCentralGoogle Scholar
  199. 199.
    Okamoto T, Okada M, Mori A, et al. Successful treatment of severe cytomegalovirus retinitis with foscarnet and intraocular infection of ganciclovir in a myelosuppressed unrelated bone marrow transplant patient. Bone Marrow Transplant. 1997;20(9):801–3.PubMedCrossRefPubMedCentralGoogle Scholar
  200. 200.
    Rahhal FM. Treatment advances for CMV retinitis. AIDS Read. 1999;9(1):28, 31–4PubMedPubMedCentralGoogle Scholar
  201. 201.
    Wang H, Chhablani J, Freeman WR, et al. Intraocular safety and pharmacokinetics of hexadecyloxypropyl-cidofovir (HDP-CDV) as a long-lasting intravitreal antiviral drug. Invest Ophthalmol Vis Sci. 2011;52(13):9391–6.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Cheng L, Beadle JR, Tammewar A, et al. Intraocular pharmacokinetics of a crystalline lipid prodrug, octadecyloxyethyl-cyclic-cidofovir, for cytomegalovirus retinitis. J Ocul Pharmacol Ther. 2011;27(2):157–62.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Bazewicz M, Fikri J, Martin CH, et al. Drug-induced uveitis in aids patients: two case reports. Bull Soc Belge Ophtalmol. 2011;318:19–23.Google Scholar
  204. 204.
    Wang L, Damji KF, Chialant D, Hodge WG. Hypotony after intravenous cidofovir therapy for the treatment of cytomegalovirus retinitis. Can J Ophthalmol. 2002;37(7):419–22.PubMedCrossRefPubMedCentralGoogle Scholar
  205. 205.
    Scott RA, Pavesio C. Ocular side-effects from systemic HPMPC (cidofovir) for a non-ocular cytomegalovirus infection. Am J Ophthalmol. 2000;130(1):126–7.PubMedCrossRefPubMedCentralGoogle Scholar
  206. 206.
    Ambati J, Wynne KB, Angerame MC, et al. Anterior uveitis associated with intravenous cidofovir use in patients with cytomegalovirus retinitis. Br J Ophthalmol. 1999;83(10):1153–8.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Biron KK. Antiviral drugs for cytomegalovirus diseases. Antivir Res. 2006;71(2–3):154–63.PubMedCrossRefPubMedCentralGoogle Scholar
  208. 208.
    Meyers JD, Reed EC, Shepp DH, et al. Acyclovir for prevention of cytomegalovirus infection and disease after allogeneic marrow transplantation. N Engl J Med. 1988;318(2):70–5.PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Ljungman P, De La Camara R, Milpied N, et al. A randomised study of valaciclovir as prophylaxis against CMV reactivation in allogeneic bone marrow transplant recipients. Blood. 2002;73:930–6.Google Scholar
  210. 210.
    Sullivan KM, Dykewicz CA, Longworth DL, et al. Preventing opportunistic infections after hematopoietic stem cell transplantation: the Centers for Disease Control and Prevention, Infectious Diseases Society of America, and American Society for Blood and Marrow Transplantation Practice Guidelines and beyond. Hematology Am Soc Hematol Educ Program. 2001:392–421.CrossRefGoogle Scholar
  211. 211.
    Goodrich JM, Bowden RA, Fisher L, Keller C, Schoch G, Meyers JD. Ganciclovir prophylaxis to prevent cytomegalovirus disease after allogeneic marrow transplant. Ann Intern Med. 1993;118(3):173–8.PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Winston DJ, Yeager AM, Chandrasekar PH, Snydman DR, Petersen FB, Territo MC. Randomized comparison of oral valacyclovir and intravenous ganciclovir for prevention of cytomegalovirus disease after allogeneic bone marrow transplantation. Clin Infect Dis. 2003;36(6):749–58.PubMedCrossRefPubMedCentralGoogle Scholar
  213. 213.
    Salzberger B, Bowden RA, Hackman RC, et al. Neutropenia in allogeneic marrow transplant recipients receiving ganciclovir for prevention of cytomegalovirus disease: risk factors and outcome. Blood. 1997;90(6):2502–8.PubMedPubMedCentralGoogle Scholar
  214. 214.
    Einsele H, Reusser P, Bornhauser M, et al. Oral valganciclovir leads to higher exposure to ganciclovir than intravenous ganciclovir in patients following allogeneic stem cell transplantation. Blood. 2006;107(7):3002–8.PubMedCrossRefPubMedCentralGoogle Scholar
  215. 215.
    Allice T, Busca A, Locatelli F, et al. Valganciclovir as pre-emptive therapy for cytomegalovirus infection post-allogenic stem cell transplantation: implications for the emergence of drug-resistant cytomegalovirus. J Antimicrob Chemother. 2009;63(3):600–8.PubMedCrossRefPubMedCentralGoogle Scholar
  216. 216.
    Ayala E, Greene J, Sandin R, et al. Valganciclovir is safe and effective as pre-emptive therapy for CMV infection in allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2006;37(9):851–6.PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Asberg A, Humar A, Rollag H, et al. Oral valganciclovir is noninferior to intravenous ganciclovir for the treatment of cytomegalovirus disease in solid organ transplant recipients. Am J Transplant. 2007;7(9):2106–13.PubMedCrossRefPubMedCentralGoogle Scholar
  218. 218.
    Åsberg A, Humar A, Rollag H, et al. Lessons learned from a randomized study of oral valganciclovir versus parenteral ganciclovir treatment of cytomegalovirus disease in solid organ transplant recipients: the VICTOR trial. Clin Infect Dis. 2016;62(9):1154–60.PubMedCrossRefPubMedCentralGoogle Scholar
  219. 219.
    Lim ZY, Cook G, Johnson PR, et al. Results of a phase I/II British Society of Bone Marrow Transplantation study on PCR-based pre-emptive therapy with valganciclovir or ganciclovir for active CMV infection following alemtuzumab-based reduced intensity allogeneic stem cell transplantation. Leuk Res. 2009;33(2):244–9.PubMedCrossRefPubMedCentralGoogle Scholar
  220. 220.
    Safdar A, Brown AE, Malkin M. Acute febrile myelodysplasia and pneumonitis due to human herpesvirus 6 after accelerated chemotherapy. Am J Med. 2001;111(4):329–30.PubMedCrossRefPubMedCentralGoogle Scholar
  221. 221.
    Bacigalupo A, Tedone E, Van Lint MT, et al. CMV prophylaxis with foscarnet in allogeneic bone marrow transplant recipients at high risk of developing CMV infections. Bone Marrow Transplant. 1994;13(6):783–8.PubMedPubMedCentralGoogle Scholar
  222. 222.
    Reusser P, Gambertoglio JG, Lilleby K, et al. Phase I-II trial of foscarnet for prevention of cytomegalovirus infection in autologous and allogeneic marrow transplant recipients [see comments]. J Infect Dis. 1992;166(3):473–9.PubMedCrossRefPubMedCentralGoogle Scholar
  223. 223.
    Bregante S, Bertilson S, Tedone E, et al. Foscarnet prophylaxis of cytomegalovirus infections in patients undergoing allogeneic bone marrow transplantation (BMT): a dose-finding study. Bone Marrow Transplant. 2000;26(1):23–9.PubMedCrossRefPubMedCentralGoogle Scholar
  224. 224.
    Avery RK, Arav-Boger R, Marr KA, et al. Outcomes in transplant recipients treated with foscarnet for ganciclovir-resistant or refractory cytomegalovirus infection. Transplantation. 2016;100(10):e74–80.PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Lea AP, Bryson HM. Cidofovir. Drugs. 1996;52:225.PubMedCrossRefPubMedCentralGoogle Scholar
  226. 226.
    Safrin S, Cherrington J, Jaffe HS. Clinical uses of cidofovir. Rev Med Virol. 1997;7(3):145–56.PubMedCrossRefPubMedCentralGoogle Scholar
  227. 227.
    Evers DL, Komazin G, Ptak RG, et al. Inhibition of human cytomegalovirus replication by benzimidazole nucleosides involves three distinct mechanisms. Antimicrob Agents Chemother. 2004;48:3918–27.PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Drew WL, Miner RC, Marousek GI, et al. Maribavir sensitivity of cytomegalovirus isolates resistant to ganciclovir, cidofovir or foscarnet. J Clin Virol. 2006;37:124–7.PubMedCrossRefPubMedCentralGoogle Scholar
  229. 229.
    Lalezari JP, Aberg JA, Wang LH, et al. Phase I dose escalation trial evaluating the pharmacokinetics, anti-human cytomegalovirus (HCMV) activity, and safety of 1263W96 in human immunodeficiency virus-infected men with asymptomatic HCMV shedding. Antimicrob Agents Chemother. 2002;46:2969–76.PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Wang LH, Peck RW, Yin Y, et al. Phase I safety and pharmacokinetic trials of 1263W94, a novel oral anti-human cytomegalovirus agent, in healthy and human immunodeficiency virus-infected subjects. Antimicrob Agents Chemother. 2003;47:1334–42.PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Marty FM, Ljungman P, Papanicolaou GA, et al. Maribavir prophylaxis for prevention of cytomegalovirus disease in recipients of allogeneic stem-cell transplants: a phase 3, double-blind, placebo-controlled, randomised trial. Lancet Infect Dis. 2011;11:284–92.PubMedCrossRefPubMedCentralGoogle Scholar
  232. 232.
    Marty FM, Boeckh M. Maribavir and human cytomegalovirus-what happened in the clinical trials and why might the drug have failed? Curr Opin Virol. 2011;1:555–62.PubMedCrossRefPubMedCentralGoogle Scholar
  233. 233.
    Kaul DR, Stoelben S, Cober E, et al. First report of successful treatment of multidrug-resistant cytomegalovirus disease with the novel anti-CMV compound AIC246. Am J Transplant. 2011;11(5):1079–84.PubMedCrossRefPubMedCentralGoogle Scholar
  234. 234.
    Aldern KA, Ciesla SL, Winegarden KL, et al. Increased antiviral ac- tivity of 1-O-hexadecyloxypropyl-[2-(14)C] cidofovir in MRC-5 human lung fibro- blasts is explained by unique cellular up- take and metabolism. Mol Pharmacol. 2003;63:678–81.PubMedCrossRefPubMedCentralGoogle Scholar
  235. 235.
    Bidanset DJ, Beadle JR, Wan WB, Hostetler KY, Kern ER. Oral activity of ether lipid ester prodrugs of cidofovir against experimental human cytomegalovirus infection. J Infect Dis. 2004;190:499–503.PubMedCrossRefPubMedCentralGoogle Scholar
  236. 236.
    Painter W, Robertson A, Trost LC, et al. First pharmacokinetic and safety study in humans of the novel lipid antiviral conjugate CMX001, a broad-spectrum oral drug active against double-stranded DNA viruses. Antimicrob Agents Chemother. 2012;56:2726–34.PubMedPubMedCentralCrossRefGoogle Scholar
  237. 237.
    Hiwarkar P, Amrolia P, Sivaprakasam P, et al. Brincidofovir is highly efficacious in controlling adenoviremia in pediatric recipients of hematopoietic cell transplant. Blood. 2017;129(14):2033–7.PubMedCrossRefPubMedCentralGoogle Scholar
  238. 238.
    Dunning J, Kennedy SB, Antierens A, et al. Experimental treatment of Ebola virus disease with brincidofovir. PLoS One. 2016;11(9):e0162199.PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Ciesla SL, Trahan J, Wan WB, et al. Esterification of cidofovir with alkoxyalkanols increases oral bioavailability and diminishes drug accumulation in kidney. Antivir Res. 2003;59:163–71.PubMedCrossRefPubMedCentralGoogle Scholar
  240. 240.
    Marty FM, Winston DJ, Rowley SD, et al. CMX001 to prevent cytomegalovirus disease in hematopoietic-cell transplantation. N Engl J Med. 2013;369(13):1227–36.PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    Clinical Trials. Accessed 27 Dec 2017.
  242. 242.
    Lu CH, Tsai JH, Wu MZ, Yu CL, Hsieh SC. Can leflunomide play a role in cytomegalovirus disease prophylaxis besides its antirheumatic effects? Antivir Ther. 2015;20(1):93–6.PubMedCrossRefPubMedCentralGoogle Scholar
  243. 243.
    El Chaer F, Mori N, Shah D, et al. Adjuvant and salvage therapy with leflunomide for recalcitrant cytomegalovirus infections in hematopoietic cell transplantation recipients: a case series. Antivir Res. 2016;135:91–6.PubMedCrossRefPubMedCentralGoogle Scholar
  244. 244.
    Rifkin LM, Minkus CL, Pursell K, et al. Utility of leflunomide in the treatment of drug resistant cytomegalovirus retinitis. Ocul Immunol Inflamm. 2017;25(1):93–6.PubMedCrossRefPubMedCentralGoogle Scholar
  245. 245.
    Silva JT, Pérez-González V, López-Medrano F, et al. Experience with leflunomide as treatment and as secondary prophylaxis for cytomegalovirus infection in lung transplant recipients: a case series and review of the literature. Clin Transpl. 2018;32(2)CrossRefGoogle Scholar
  246. 246.
    Sellar RS, Ward KN, Thomson KJ, et al. Evidence for clinical activity of artesunate in multidrug-resistant herpes simplex infection following HSCT. Bone Marrow Transplant. 2012;47:1482–3.PubMedCrossRefPubMedCentralGoogle Scholar
  247. 247.
    Efferth T, Marschall M, Wang X, et al. Antiviral activity of artesunate towards wild-type, recombinant, and ganciclovir-resistant human cytomegaloviruses. J Mol Med (Berl). 2002;80(4):233–42.CrossRefGoogle Scholar
  248. 248.
    Schnepf N, Corvo J, Pors MJ, et al. Antiviral activity of ganciclovir and artesunate towards human cytomegalovirus in astrocytoma cells. Antivir Res. 2011;89(2):186–8.PubMedCrossRefPubMedCentralGoogle Scholar
  249. 249.
    Wolf DG, Shimoni A, Resnick IB, et al. Human cytomegalovirus kinetics following institution of artesunate after hematopoietic stem cell transplantation. Antivir Res. 2011;90:183–6.PubMedCrossRefPubMedCentralGoogle Scholar
  250. 250.
    Shapira MY, Resnick IB, Chou S, et al. Artesunate as a potent antiviral agent in a patient with late drug-resistant cytomegalovirus infection after hematopoietic stem cell transplantation. Clin Infect Dis. 2008;46:1455–7.PubMedCrossRefPubMedCentralGoogle Scholar
  251. 251.
    Hoffman VF, Skiest DJ. Therapeutic developments in cytomegalovirus retinitis. Expert Opin Investig Drugs. 2000;9(2):207–20.PubMedCrossRefPubMedCentralGoogle Scholar
  252. 252.
    Stuehler C, Stüssi G, Halter J, et al. Combination therapy for multidrug-resistant cytomegalovirus disease. Transpl Infect Dis. 2015;17(5):751–5.PubMedCrossRefPubMedCentralGoogle Scholar
  253. 253.
    Vere Hodge RA. Meeting report: 29th International Conference on Antiviral Research in La Jolla, CA, USA. Antiviral Res. 2017;137:23–40.PubMedCrossRefPubMedCentralGoogle Scholar
  254. 254.
    Iwasenko JM, Scott GM, Rawlinson WD, Keogh A, Mitchell D, Chou S. Successful valganciclovir treatment of post-transplant cytomegalovirus infection in the presence of UL97 mutation N597D. J Med Virol. 2009;81(3):507–10.PubMedPubMedCentralCrossRefGoogle Scholar
  255. 255.
    Chou S, Lurain NS, Thompson KD, et al. Viral DNA polymerase mutations associated with drug resistance in human cytomegalovirus. J Infect Dis. 2003;188(1):32–9.PubMedCrossRefPubMedCentralGoogle Scholar
  256. 256.
    Rolling KE, Jorgenson MR, Descourouez JL, et al. Ganciclovir-resistant cytomegalovirus infection in abdominal solid organ transplant recipients: case series and review of the literature. Pharmacotherapy. 2017;37(10):1258–71.PubMedCrossRefPubMedCentralGoogle Scholar
  257. 257.
    Chou SW. Cytomegalovirus drug resistance and clinical implications. Transpl Infect Dis. 2001;3(Suppl 2):20–4.PubMedCrossRefPubMedCentralGoogle Scholar
  258. 258.
    Drew WL. Is combination antiviral therapy for CMV superior to monotherapy? J Clin Virol. 2006;35(4):485–8.PubMedCrossRefPubMedCentralGoogle Scholar
  259. 259.
    Couzin-Frankel J. Breakthrough of the year 2013. Cancer immunotherapy. Science. 2013;342(6165):1432–3.PubMedCrossRefPubMedCentralGoogle Scholar
  260. 260.
    Lemmermann NA, Reddehase MJ. Refining human T-cell immunotherapy of cytomegalovirus disease: a mouse model with “humanized” antigen presentation as a new preclinical study tool. Med Microbiol Immunol. 2016;205(6):549–61.PubMedCrossRefPubMedCentralGoogle Scholar
  261. 261.
    Hanley PJ, Cruz CR, Savoldo B, et al. Functionally active virus-specific T cells that target CMV, adenovirus, and EBV can be expanded from naive T-cell populations in cord blood and will target a range of viral epitopes. Blood. 2009;114(9):1958–67.PubMedPubMedCentralCrossRefGoogle Scholar
  262. 262.
    Neuenhahn M, Albrecht J, Odendahl M, et al. Transfer of minimally manipulated CMV-specific T cells from stem cell or third-party donors to treat CMV infection after allo-HSCT. Leukemia. 2017;31(10):2161–71.PubMedCrossRefPubMedCentralGoogle Scholar
  263. 263.
    Einsele H, Kapp M, Grigoleit GU. CMV-specific T cell therapy. Blood Cells Mol Dis. 2008;40(1):71–5.PubMedCrossRefPubMedCentralGoogle Scholar
  264. 264.
    Pei XY, Zhao XY, Chang YJ, et al. Cytomegalovirus-specific T-cell transfer for refractory cytomegalovirus infection after haploidentical stem cell transplantation: the quantitative and qualitative immune recovery for cytomegalovirus. J Infect Dis. 2017;216(8):945–56.PubMedCrossRefPubMedCentralGoogle Scholar
  265. 265.
    Smith CJ, Quinn M, Snyder CM. CMV-specific CD8 T cell differentiation and localization: implications for adoptive therapies. Front Immunol. 2016;7:352.PubMedPubMedCentralGoogle Scholar
  266. 266.
    Leen AM, Bollard CM, Mendizabal AM, et al. Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation. Blood. 2013;121(26):5113–23.PubMedPubMedCentralCrossRefGoogle Scholar
  267. 267.
    Anderholm KM, Bierle CJ, Schleiss MR. Cytomegalovirus vaccines: current status and future prospects. Drugs. 2016;76(17):1625–45.PubMedPubMedCentralCrossRefGoogle Scholar
  268. 268.
    Arvin AM, Fast P, Myers M, et al. Vaccine development to prevent cytomegalovirus disease: report from the National Vaccine Advisory Committee. Clin Infect Dis. 2004;39(2):233–9.PubMedCrossRefPubMedCentralGoogle Scholar
  269. 269.
    Bernstein DI, Munoz FM, Callahan ST, et al. Safety and efficacy of a cytomegalovirus glycoprotein B (gB) vaccine in adolescent girls: a randomized clinical trial. Vaccine. 2016;34(3):313–9.PubMedCrossRefPubMedCentralGoogle Scholar
  270. 270.
    Griffiths PD, Stanton A, McCarrell E, et al. Cytomegalovirus glycoprotein-B vaccine with MF59 adjuvant in transplant recipients: a phase 2 randomised placebo-controlled trial. Lancet. 2011;377(9773):1256–63.PubMedPubMedCentralCrossRefGoogle Scholar
  271. 271.
    Kharfan-Dabaja MA, Nishihori T. Vaccine therapy for cytomegalovirus in the setting of allogeneic hematopoietic cell transplantation. Expert Rev Vaccines. 2015;14(3):341–50.PubMedCrossRefPubMedCentralGoogle Scholar
  272. 272.
    Mori T, Kanda Y, Takenaka K, et al. Safety of ASP0113, a cytomegalovirus DNA vaccine, in recipients undergoing allogeneic hematopoietic cell transplantation: an open-label phase 2 trial. Int J Hematol. 2017;105(2):206–12.PubMedCrossRefPubMedCentralGoogle Scholar
  273. 273.
    Baraniak IA, Reeves MB, Griffiths PD. Criteria to define interruption of transmission of human cytomegalovirus from organ donor to recipient. Rev Med Virol. 2018;28(1)CrossRefGoogle Scholar
  274. 274.
    Safdar A, Decker WK, Li S, et al. De novo T-lymphocyte responses against baculovirus-derived recombinant influenzavirus hemagglutinin generated by a naïve umbilical cord blood model of dendritic cell vaccination. Vaccine. 2009;27(10):1479–84.PubMedCrossRefPubMedCentralGoogle Scholar
  275. 275.
    Konduri V, Decker WK, Halpert MM, et al. Modeling dendritic cell vaccination for influenza prophylaxis: potential applications for niche populations. J Infect Dis. 2013;207(11):1764–72.PubMedCrossRefPubMedCentralGoogle Scholar
  276. 276.
    Reap E, Suryadevara CM, Batich KA, et al. Dendritic cells enhance polyfunctionality of adoptively transferred T cells which target cytomegalovirus in glioblastoma. Cancer Res. 2018;78(1):256–64.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of MedicineEl PasoUSA
  2. 2.Infectious Disease ServiceMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  3. 3.Cornell University Medical College (ret)New YorkUSA
  4. 4.Infectious Disease Society of AmericaAlbuquerqueUSA

Personalised recommendations